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A theory of elastic scattering of neutrons from vortex rings in liquid 4He is presented, and a

study is made of the dependence of the differential cross section on the parameters that character-
ize the vortices. The sensitivity of the cross section to the details of the density profile in and near

the vortex core is examined with the aid of numerical calculations based on simple models. The
usefulness and significance of these calculations with regard to recent theoretical work on liquid
4He near the A. point and also with regard to liquid 4He turbulence produced by intense heat fluxes

or ion beams is discussed.

I. INTRODUCTION

Recent work on the theory of liquid 'He suggests
that quantized vortex rings may start to condense
spontaneously at temperatures somewhat below T„
and that their number density may be large at elevated
temperatures. ' The significance of such a
phenomenon, if it actually exists, is that it would pro-
vide a mechanism that might be responsible for the
specific-heat anomaly at T„. Since the basic theory of
the vortex condensation involves an element of specu-
lation at the present time, and it seems unlikely that
the remaining problems will be settled decisively by
theory alone in the very near future, it appears that an
experimental study of the situation would serve a
highly useful purpose. These considerations provide
the principal motivation for carrying out the calcula-
tions reported here. However, the computed results
would also be applicable to experiments designed to
study the possibility that vortex rings are present in
liquid-helium turbulence that has been produced by
high-intensity heat fluxes or ion beams. Part of the
theory developed here could also serve as the starting
point for calculations dealing with other assumed vor-
tex configurations, e.g. , a tangle of vortex lines. Both
Onsager and Feynman have speculated that such a
phenomenon might exist in He I.

In the theory developed here, the mechanism
responsible for the scattering is the coupling of the in-
cident neutrons to density variations in the vicinity of
the vortex cores. Cross sections for elastic scattering
of thermal neutrons from vortex rings in liquid 4He

are calculated, and features of the cross sections that
are characteristic of rings of a given size and core ra-
dius are discussed. Three simple models for the den-

sity profiles in and near the vortex cores are studied.
The main conclusions drawn here are of a qualitative
nature and are contained in the statements that
measurable elastic cross sections may be associated
with vortex structures and that neutron scattering is a
promising method for producing direct evidence of
these structures.

2

Se(Q, re) =5(re) g p~ J d3x e' "n~(x)
I

(4)

II. DERIVATION OF FORMULAS FOR ELASTIC
CROSS SECTIONS

According to the theory of Van Hove, ' the
differential scattering cross section can be written

d2g oh k(

dQdEr 4rrt k;

~here o-b is the bound-atom cross section, and k; and
k& are wave vectors of particles in the incident and
scattered beams, respectively. The dynamic structure
function S ( Q, re) is given by

S(Q ) =gpll&mI X e' "')I)('5(( —m„„l),
I, m

(2)
where pl is the probability for' the I th state. Since we
are concerned with elastic scattering, our attention will

be focused just on the diagonal matrix elements
(I = m) in Eq. (2). Denoting the elastic part of the
structure function by Sp(Q, re), and introducing the
one-particle distribution function

n&(xt) =X Ji d'x2 d xb )pl(x~, . . . , x„)[, (3)

one can write
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For the liquid at 0 'K, the wave function that
corresponds to a single rectilinear vortex bearing one
quantum unit of circulation can be written approxi-
mately in the form"

if& ( x(, . . . , X(v) = lff p( xt, . . . , x(v)

x g P(p)e '

where p, and 8j are polar coordinates measured with
respect to the vortex center. In Eq. (5), go is the
wave function for the liquid in its ground state,
without a vortex, and it is an eigenfunction of the z

component of angular momentum with eigenvalue
Ie.

zero. The factors e ' account for the characteristic
velocity field of a quantized vortex, and the factors of
P(p;) account for the variations in the density near
the center of the vortex. Excited-state wave functions
P', involving phonons and rotons, include the func-
tion P of Eq. (5) as a factor when a single vortex is

present. The variation in the density is still deter-
mined mainly by the function P, and so we shall deal
only with that function in our calculations. This pro-
cedure can be justified formally by simply interpreting
the quantity p( in Eq. (4) as the probability for all

states having the same vortex structure, but having
different numbers of phonons and rotons. The wave
function for a collection of vortex lines can be built up
from the simple one in Eq. (5) by including additional
factors of P(p) and e" with p and 8 measured with
respect to appropriate origins. Simple modifications of
these formulas can be made in order to adapt them to
vortex rings. For a single vortex whose center is at
the origin of the coordinate system, . the wave function
1s

Q( x(, . . . , xy) = IJ/0( x(, . . . , xy)

1 ~j ~N l~a~N'
R'(x, —y.) (9)

To proceed further, we must approximate the right-
hand side of Eq. (9). To justify the method that we
shall use here, let us first consider a simple situation
in which a single rectilinear vortex is located on the z
axis. Then one can express n((x() in a form analo-
gous to Eq. (9) by using Eqs. (3) and (5). Taking the
gradient with respect to the coordinates of particle 1 of
the ensuing equation, one obtains a differential equa-
tion for '7(n((x(). That equation has been solved ap-
proximately in Ref. 1, and there it was found that a
zeroth order solution is

n((x() = nP('(p() (10)

where pl is a cylindrical radial coordinate, and n is the
average number density of particles. That is, the fac-
tor P in the wave function is simply proportional to
the square root of the number density in this approxi-
mation. In the reference cited, it was found that
corrections to this result are small, and so for our pur-
poses here it should be sufficiently accurate, A
straightforward extension of that method to a collec-
tion of N' rectilinear vortices gives

n((x() =n g P('(p( )
1 ~a~N'

by n. As a practical matter, we are supposing that all
of the rings are the same size. This should lead to
useful results provided that the actual distribution of
sizes about the average is fairly sharply peaked. Tak-
ing the square modulus of P( in Eq. (7) and inserting
the result into Eq. (3), we find the following formula
for nI.

n(( x,) = W J~ d'x, d'x~
~ yo( x, , . . . , x,) ~'

x g R(x)e (6) Adapting this result to a collection of vortex rings, we
have

where R (x) and T(x) are certain real valued func-
tions of x. For N' similar vortex rings whose cores do
not overlap, the wave function is

n((x, ) =(( Q R, (x( —y )
1 ~a~N'

(12)

IP(( x(, . . . , x(() = lllo( x(, . . . , x(v) The Fourier transform of n((x) can be calculated
most easily by first introducing hole functions h((r( )
through the relation

1 ~j ~N 1 ~a~N'

(7)
h((r(.) = R('(r(.) —1 (13)

r, =x; —y (g)

where y locates the center of the vortex ring labeled

where 1 is a label associated with a particular
configuration of the vortices. Notice that the sum in
Eq. (4) may be limited to those states for which

pl W 0, viz. , the vortex ring states, in the situations
that we are considering. In Eq. (7), we have used the
notation

where we have assumed that R((r( ) has the value
unity except in and near the vortex core. For config-
urations in which the hole functions of different vortex
rings do not overlap, the product in Eq.(12) can be con-
verted to the sum

n((x() =n 1+ X h((r( )
l ~a~N'

For Q %0, Eq. (14) enables us to rewrite Eq. (4) as
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Sp(0, ip) =8(pi) Xp( X e
I 1 ~a(N'

fO 2

d ri e nhi(ri )
iQ r)

(15)

the correspondence between h& and ho can be ex-
pressed as

hi(r) = hp(R r)

Next, the invariance of the scalar product under rota-
tions gives

PI =PRPs (16)

In Eq. (15), pi assigns a statistical weight to each
configuration characterized by the spatial location and
angular orientation of each vortex in the liquid. In
this paper, we shall assume that PI can be written as
the product of two independent ~eights, PR and Ps .

Q r=(RQ) (Rr)

From Eqs. (17)—(20) it follows that

Fi(Q) =Fp(R Q)

This procedure can be generalized to deal with Eq.
(15) by introducing a set of W' rotation operators

(21)

The subscript R refers to rotational degrees of free-
dom, whereas the subscript S refers to the spatial ar-
rangements of the centers of the rings.

Now we want to calculate the angular dependence of
Sp(Q, 4p) in Eq. (15). Let F~(Q) denote the Fourier
transform of the hole function for a given density
profile; then

R =R($, 8 ), u=l, . . . , N' (22)

S,(Q, ~)=S(~)xp, xp, X e "«F.(R.Q)
s R 1~a~N'

which specify the relative orientation of each ring in
the fluid for the configuration labeled I. Then Eq.
(15) becomes

Fi(Q) = n J)d3r e'o'hi(r) (17) (23)

R =R($, 8) (Ig)

The orientation of this profile can be related to that of
a reference profile ho by specifying two Euler angles,
$ and 8. Then introducing the rotation operator

Let us use angular brackets to denote the average for
a single ring over its available orientations, and
introduce the W'-point distribution function
p&(yi, y2, . . . , yN» to describe the distribution of ring
centers in the liquid. Then Eq. (23) can be rewritten

1

sp(Q. ~) =5(~) J Ai d'yN ps(yi. . . yN) &'&IFp(Q)l')+l&Fp(Q))l' X e
a. P

(a&P)

(24)

Paralleling procedures used in the theory of ordinary liquids, we shall define a "vortex structure factor, " analogous to
a static liquid structure factor. In order to do that, we let D = N'/V be the number density for vortex rings, and
define a vortex pair correlation function as

G(yi —y2) ~ d 33d 34 ' ' ' d 3' 'pSN(y y l, .3yN')W'(N' I)
D2 J

Finally, the vortex structure factor is given by

S„(Q)= I +D ~r d3y [G(y) —lie'o'"

With the aid of S„(Q), we can now rewrite Eq. (24) as

sp(Q, ~) =&(~»'l&&IFp(Q) I') —
1 &Fp(Q)) I'j+1&Fp(Q))1 s.(Q)l

(25)

(26)

Equation (27) contains the main result of this sec-
tion. In essence, it gives the cross section for elastic
scattering of neutrons directiy in terms of the
diffraction properties of the vortex core density profile.
The form of S„(Q) to be used in Eq. (27) will

depend, in general, ori the vortex distribution being
considered.

We will apply Eq. (27) to two specific models in-

volving qualitatively different spatial distributions.
One is a "vortex gas" in which the rings are in spatial afG(r) =I —e " (28)

configurations describable by a smeared out pair distri-
bution function. The other is a "vortex solid" in
which the ring centers lie on a simple lattice.

For the gas model we will use a phenomenological
pair distribution function, involving a single Gaussian;
then provided that the spatial arrangement of widely
separated vortex pairs are uncorrelated we have
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The corresponding vortex structure factor can be
evaluated analytically, and is given by the formula

S„(Q)=1 —(7r/a)' 'D e (29)

This should provide a reasonable model for the vortex
distribution in Jackson's theory, as well as in turbulent
He. For the gas model, the cross section for elastic

scattering of neutrons per helium atom in the target is

d a
dO dE/

3

=&(o3) (IFo(Q) I )
t

' 3/2

D
I (F.(Q)) I2e-&'i4-

S„(Q)=N'So o (31a)

(30)

The lattice model is discussed here because it is

tractable mathematically and represents a definite pos-
sibility which may be realized when the vortex
number density becomes suSciently great. For a sim-

ple cubic lattice containing N' vortex sites and charac-
terized by reciprocal lattice vectors 6, the vortex
structure factor is

models that have been considered are: (i) a hollow
core embedded in a uniform background; (ii) a
smoothly varying density profile that is zero only at
the center of the core; and (iii) a hollow core sur-
rounded by a mantle of constant, high density, em-
bedded in a uniform background. The deficiency of
atoms in the core is exactly compensated by the ex-
cess of atoms in the mantle. Results for, these models.
are discussed in Sec. III.

III. EVALUATION OF THE VORTEX
FORM FACTOR Fo( Q ) AND

DISCUSSION OF RESULTS

First we will consider the case of a hollow toroidal
core embedded in a uniform background of particle
density n. A cross sectional view of the torus in a

plane containing the symmetry axis is shown in Fig. 1.
In cylindrical coordinates, the equation for the surface
of a torus having core radius A and ring radius B is

given by

(p —B) +z =A, Ip —BI A (33)

Referring to Eq. (17) and taking i to refer to the stan-

.dard orientation 0 for the present, we can write

i (0]x+02y)
Fo(Q) = n —dx dy e

Therefore, the elastic cross section per helium atom

for this case is

d cr

dQ dEf

where

f' 0 ig3z
dz eJ —z 0

[g 2 ( B)2]1/2

(34)

(35)

T

[&I Fo( Q) I')

+(&'g-o, —,—1)
I (Fo(0)) I'] .

(31b)

As a practical matter, in representing numerical
results of calculation, the factor of 5(o3) in Eqs. (30)
and (31b) must be omitted. This can be treated for-

mally by introducing a quantity (der/d Q)o, the angu-

lar distribution for elastic scattering, which is defined

in the following way:

d cT ~d
d Q'

dA 0
4-~ dQdEf 0

(32)

for e &0.
The quantitative implications of Eqs. (27) and (31b)

can be understood more fully if one analyzes the pro-
perties of the vortex form factor Fo(Q). That analysis
has been carried out, in part by numerical methods,
for a range of ring and core radii and for three
dift'erent models of the core structure. The three

Because of the axial symmetry of the torus, it is help-
ful to express the x and y components of vectors in

polar form using complex variable notation. Then

x +iy = pe', Q3 + iQ2 = Ke' (36)

The first exponential in Eq. (34) can be expanded in

the following orthogonal series (Jacobi-Anger formu-
ia):

e
'" ' = g (iei~) "J (kp)e~~~

—oo~~it ~~oo

(37)

x sin(Q3[A' —(p —B)2]' 2] . (38)

In the cross-section formula derived earlier, this func-
tion occurs in a statistical average. If the weights p~
are such that the rings all have a single orientation,

where J„ is the Bessel function of order n. Substitut-
ing this into Eq. (34) and performing the integrations
over the angle P and coordinate z gives

4 pB+A

Fo(Q) -— J" dp pJo(kp)
3
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FIG. 1. Coordinate system for a vortex ring, where

( 2 +,2) ]/2

then Eq. (38) can be applied directly. However, when
the vortices form spontaneously near the X point or
when they are generated in turbulent helium, it is
probably more realistic to suppose that all orientations
are equally likely. ln this case, Fp(Q) and IFp(Q) I'
must be averaged over the angles t) and $ shown in

Fig. 2. In general, those average values cannot be ex-
pressed in a simple analytic form but must be evaluat-
ed numerically. However, it is possible to obtain an
analytic expression for (Fp(Q)) whenever 8 is much
larger than 3, and thi.-. gives some insight into the
structure of the scattering cross section.

To average Fp(Q) over a sphere, first make the
transformation

Q2' sin{Q2[A' —(p —8) ]' }

l~ -(~-8)2l'/2
dl cos(Q2t) . (39)

Once again we introduce polar coordinates in complex
variable notation, and write

Q2+iK =ge'P

When Eqs. (39) and (40) are combined with (38) and

the average over all solid angles is taken, one gets

e B+A t (g 2 ( g)2] 1/2 P vr

(Fp( Q )) = 2 2m — d p p dt „d8sine Jp(g p sin&) cos(gt cos8)

42rtt
e B+A & [& 2 (p —B)211/2 sin[Q (p2 + t2)1/2]

dpp
'

dt
g ~B—A uP ( 2 + t2) 1/2

(41b)

An evaluation of the integral over the angle 8 is given
in the Appendix. Equation (41b) can be further
simplified by interchanging the order of integration.
The new limits can be deduced easily with the aid of
Fig. 3, where the shaded region that constitutes the
interior of a semicircle defines the domain of integra-
tion. This procedure gives

u = (p'+ t')', t = A sinw

one can reduce Eq. (42) to

/Fp(Q) ) = —(4n2A /Q2) n sin(Q8) J1(QA )

(43)

Finally, introducing new variables of integration u and

w, through the relations

4 fe A 8 g+(~ 2 &2)]/2

sin[g(p2+t )' ']
X

( 2+ t2)1/2
(42)

forA/8 &(1 . (44)

Comparing this with results obtained by numerical in-

tegration methods, one Ands that the formula in Eq.
(44) holds quite well for A/8 as large as 0.3. The
right-hand side of Eq. (44) divided by n tends to the
volume of a torus as g 0; this provides a useful
check on the formula in Eq. (44). Thus,

lim —1(Fp(Q)) I
=22r'A'8

0~ n

FIG. 2. Defining representation of the Euler angles 8 and

P and the components K and 03 of the momentum transfer

Q. The z axis coincides with that in Fig, 1.

0
FIG. 3. Representation of the domain of integration, viz.

the shaded region, for Eqs. (411) and (42),
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The usefulness of these formulas will become clear
shortly.

Consider FIg. 4, which shows the calculated cross
section for fieutroAs elastically scattered from a gas of
vortices characterize() by a hollo~ core with radius

0 0
A =3.0 A, ls ring radIus of 8 =10.0 A, a mean density
of D = (40.0A) ', and a correlation length of
u '~'=20. 0 A. In all calculations reported here, we
have assumed (T~ 1.13 b. The maximum value of

0
the cross section occurs near g =0.1 A ' and the peak
value is about 100 b/sr per helium atom. From Eq.
(31b) and Fig. 5 one can infer. that changes in

(~FO(Q) ~ ) as a function of Q follow closely the
changes in tlte envelope of

~ (Fo(Q)) ~
. From this

observation and Eq. (44), one can deduce that the
core radius A largely governs the range of 0 for which
elastic scattering is appreciable; whereas the ring ra-
dius 8 largely controls the fine structure in the elastic
scattering cross section. Even when the vortices are
modeled more realistically, these observations still
seem to be valId. Therefore they should be useful in

analyzing experimental data if elastic scattering from
liquid "He is observed.
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FIG. 4. Plot of the cross section (der/d A)0, for elastic

scattering of neutrons from a gas of hollow vortex rings vs

momentum transfer 0 based on Eqs. (30) and (32). All

orientations of the rings are taken to be equally likely. The
0 0

ring radius of the vortices is 10.0 A, the core radius is 3.0 A,
O

the mean density of vortices is (40.0 A), and the correla-

0A

FIG. 5. Plot of the cross section (do-/d O)0 for elastic

scattering of neutrons from hollow vortex rings distributed

on a ubic lattice, having a primitive translation vector of
O

length 40.0 A. The curves are based on Eqs. (31b) and (32).
The ring and core radii are the same as in Fig. 4. Curve I

gives the continuous part of the cross section, and curve 2

gives the envelope of the Bragg peaks, except for a factor N',

which has been omitted. The Bragg points are denoted by

crosses.

Figure 5 shows calculated cross sections ror a simple
cubic spatial array of vortices with a lattice spaciI&g of
40.0 A . The vortex parameters A and 8 are the
same as in Fig. 4. Since we have assumed that the
number of vortices W' within a macroscopic volume of
helium is extremely large, it is not practical to
represent the continuous arid discrete contributions in
Eq. (31b) on the same scale. Therei'ore, two curve
are displayed. Curve Ik gives the continuous part of
the cross section, which has a peak value of about 20
b per helium atom. Curve 2 gives, within a factor of
N', the envelope of the contribution of the Bragg
peaks, the actual Bragg points being denoted by
crosses. The structure of curve 2 can be readily un-
derstood by referring to Eq. (44).

To study the sensitivity of the computed cross sec-
tion to the details of the core density profile, we have
made further calculations with the more realistic hole
function'

(46)
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where p and z are defined in Fig. 1, and R measures
the radial distance from the core center. The results
are shown in Figs. 6 and 7. Although there are dis-
cernible changes in features of the cross sections, the
gross behavior is the same as in the previous case.
The decrease of intensity in the forward peak for the
partly filled core is due to the eff'ective reduction of
the core volume. Therefore, before directly compar-
ing the scattering intensities associated with the two
core models, one should choose a larger radius A in
Eq. (46) than for the hollow core.

In the analysis given so far, we have considered
only models in which the density of atoms is constant
outside of the core regions. Models of this type have
been both popular and useful. However, certain cal-
culations indicate that there may be appreciable densi-
ty variations even outside of the vortex cores. For
isothermal conditions, the density would be greater in
regions where the superfluid velocity is higher. To in-
vestigate the influence of this phenomenon on the
elastic scattering cross section, we have made calcula-
tions for a model in which a hollow vortex core is sur-
rounded by a mantle of constant high density. The
density and radius of the mantle were chosen so that
the deficiency of atoms in the core is exactly compen-
sated by the excess of atoms in the mantle. %e
recognize that this is an extreme assumption, and we
do not know of any general principle that requires this

IO

E
O
4 p

IO
x

I
0-I

N

IO

O

lO

b

I

IO
I
I

5I
IO I,O

I I

2.0

FIG. 7. Plot of elastic cross section {der/d O)0 vs momen-

tum transfer Q for scattering from vortices characterized by a

core profile ho(p, z) = siri (R m/2A ), R ~ A. The other

parameters and conditions are the same as for Fig. 5.

IO

E
O
a p

IO

CO

IO

a
Cg

IO

b
'Cl

4
IO

IO l.o
I

20 5.0

FIG. 6. Plot of elastic scattering cross section (der/d O)0
vs momentum transfer 0 for vortices characterized by a core
profile ho(p, z) =sin (R m/2A), R ~ A. The characteristic
parameters are the same as for Fig. 4.

exact compensation. However, the results for this
model will enable us to see a trend that is applicable
even if the compensation is only partial.

Figure 8 shows the calculated cross section for a gas
of vortex rings characterized by the same parameters
as in Fig. 4, but with a constarit, high-density mantle
around the toroidal core. Measured from the center
of a core, the region occupied by the mantle is
between 3.0 and 5.2 A. The density there is 0.0327

0
atoms/A . This density is unrealistically high, being
far into the range where the helium would be solid,
but we shall use it for illustrative purposes. One
feature of the cross sectjon in Fig. 8 that is of central
importance now is the steep drop in the cross section
as Q tends to zero. From that behavior, one can infer
that vortices having the structure assumed here would
have little effect in light-scattering experiments, where
Q would be of the order of 10 3 A '. We will com-
ment further on this, matter later.

In Fig. 9 are the results for the vortex rings with the
same density profile as in Fig. 8, but for a simple cu-

0
bic spatial array having a lattice spacing of 40.0 A.
Figure 9 should be compared with Figs. 5 and 7. The
intensities are still large enough to be easily observ-
able in neutron scattering experiments.

Perhaps we should emphasize that the parameters
which characterize the vortex structures in all of our
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FIG. 8. Plot of elastic scattering cross section (der/d O)0
vs momentum transfer 0 for a gas of vortex rings character-
ized by a hollow core surrounded by a mantle of constant,
high particle density. Measured from the center of a core,

O

the mantle is between 3.0 and 5.2 A. The particle density
0

there is 0.0327 A . Other characteristic parameters are the
same as for Fig. 4.

calculations were chosen for illustrative purposes.
Even though there are some reasons to believe that
they may be roughly correct, we should not overlook
the possibility that some of those parameters may be
wrong even in order of magnitude. Of course, chang-
ing the parameters could strongly afII'ect the peak in-
tensities as well as other characteristics of the calculat-
ed cross sections. Therefore it is worth noting that
even if the peaks in the cross sections are smaller than
those in Figs. 8 and 9 by about three orders of magni-
tude, careful experiments may still be able to detect
them. %e should also note that the computed cross
sections for all models that we have studied are shar-
ply peaked at small values of 0. This indicates that
one may have to take special measures to separate
scattering events of interest here from those involving
the walls of the container and from multiple scatter-
ing. For the erst two types of the density profile, we
have made calculations for several other choices of
the vortex parameters, and the results are qualitatively
similar to those shown in Figs. 4—7.

A few comments should be made about the feasibil-
ity of observing neutrons elastically scattered from
externally produced vortex distributions. From ob-

FIG, 9. Plot of elastic cross section (do./d Q)0 vs momen-

tum transfer g for vortex rings with a constant high-density

mantle, distributed on a lattice. The ring characteristics are
the same as for Fig. 8; the lattice parameters are the same as
for Fig. 5.

served ion densities in accelerated ion experiments,
one can estimate an upper limit an the vortex ring
number density to be D &10'cm '. Using the He
particle density n -0.0218 A. ', one finds
N'/N (10 '6. Since this ratio is a multiplicative fac-
tor in Eq. (30), it appears unlikely that an elastic cross
section will be observable for this case. The small-
number density is believed to be due to the fact that
the vartices are charged and so their spatial distribu-
tion is space-charge limited.

The situation is more favorable for vorticity occur-
ring in helium turbulence. From the data of Phillips
and McClintock, Henson' has estimated that an upper
limit on the length of vortex line per unit volume lies
between S &10' and 5 &10' mm/mm . If this were
distributed among vortex rings of mean radius 10.0 A, ,
then the ratio N'/N would lie between 10 ' and 10 ~.

This term, occurring as a factor in Eq. (30), is large
enough for one to consider seriously the possibility of
studying the nature of the vorticity in helium tur-
bulence by employing the method of elastic scattering
of neutrons. In connection with this last statement,
one should note that N'/N= 10 ' for the examples
treated in detail in this paper.

Now let us return to the subject of vortices spon-
taneously farmed in liquid 4He. In the literature there
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is a large amount of information on relevant scattering
experiments involving light, x rays, and neutrons.
Some observations based on a study of those experi-
ments are given below.

Measurements of light scattering from liquid 4He

near T„, both at saturated vapor pressure and at 25
atm, indicate that there is no appreciable elastic
scattering there. 8 This would be consistent with the
presence of large numbers of vortices of any size pro-
vided that the deficiency of atoms in the cores are
compensated by excess atoms within distances that are
much smaller than a wavelength of the incident light.
Even in the absence of appreciable compensation, it
would be consistent with the presence of large
numbers of vortices on a lattice provided that the
smallest primitive reciprocal lattice vector is much
larger than a wave vector for light. This last state-
ment can be understood with the aid of Figs. 5, 7, and
9. The light-scattering experiments show that even
near T„, it is possible to distinguish clearly between
elastic and inelastic scattering for at least some range
of small wave vectors. Other experiments indicate
that the total intensity of light scattered through an
angle of 90' is slightly affected as the temperature of
the helium is varied through T„.

A large number of experiments involving x-ray
scattering from liquid 'He have been reported in the
literature. ' ' Only in the experiments of Tweet'
have measurements been made for wave vectors

0
below 0.1 A ', his data cover the range0
0.06 «Q «0.36 A '. Most of his data seem to indi-
cate that there is no anomalously large scattering there
as the temperature varies from about 1.5 'K to about
4.16 'K. Tweet mentions that there was a possibility
that the liquid was bobbling when the temperature was
greater than T&. Because of this, one can not reach a
firm conclusion regarding evidence for vortices from
his measurements there. Ho~ever, other x-ray stu-
dies of liquid He above T& give no evidence-of large

0
cross sections for 0.13 «Q «1.0 A that might indi-
cate the presence of vortices. ' A survey of the litera-
ture reveals that no x-ray scattering measurements
have been reported for temperatures just below T&

when 0.16 «Q «1.0 A. '. These are the conditions
which would seem to be most favorable for new
experiments designed to search for direct evidence of
vortices, as we see from our model calculations and
the available experimental data.

In a search of the literature on neutron scattering
from liquid 4He, we have found only two rneasure-
ments of line shapes for temperatures just below T„
and for Q «1.0 A '. Woods'7 has reported data for
T =2.05 'K and Q =0.38 A, ', and Cowley and
Woods'8 have reported data for T =2.1 'K and

0
Q =0.72 A '. In neither of those experiments was
the elastic scattering from the container subtracted.
One can infer from their data that if elastic scattering
from the liquid was actually present, then it was not

very intense. Furthermore, their data indicate that it
would be'possible to distinguish between the one-pho-
non peak and an elastic peak of comparable intensity,
at least for the particular conditions of their experi-
ments.

If there were many vortices present in the liquid
near T&, they would affect the inelastic scattering of
neutrons by broadening the line appreciably because
of the high, nonuniform superfluid velocities near
vortex cores, and because of the high roton densities
that ~ould enhance the effects of interactions among
excitations there, The frequency of the one-phonon
peak could be shifted do~n~ard by two effects. First,
a high particle density, e.g. , in a mantle around the
vortex cover, would lower the minimum roton energy;
second, a net attractive interaction among rotons
should have a similar effect. In fact, estimates indicate
that one might explain much of the temperature
dependence of inelastic neutron scattering data fairly
well if vortices are assumed to be present. However,
even in the absence of vortices one might be able to
account for the observed scattering lines near T& on
the basis of certain interactions among elementary ex-
citations alone. Therefore inelastic scattering does not
seem to provide a definite, simple test for the ex-
istence of vortices, and that is why we have concen-
trated only on elastic scattering in our study here.

In summary, we conclude from model calculations
and from a study of available experimental data that
measurement of elastic neutron scattering cross sec-
tions is a reasonable method for searching for direct
evidence that vortices are present in the liquid at tem-
peratures somewhat below T„. The wave-vector range0
smaller than 1.0 A ' seems to be the most favorable
for this search.
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I = Jt, d 8 sin8 Jo(g p sin8) cos (Qt cos8)

From the tables, '

~ m/2

d8sin8 Jo(z sln8) (cos8)oo

= (2/z) [I'(m +
2

)/Jm] j„,(z) (Al)

where j (z) is a spherical Bessel function of order m.

Therefore, expanding cos(gr cos8) in a power series
and using Eq. (Al) to integrate term by term, one ob-
tains

One of the authors (H.W.J.) would iike to ac-
knowledge useful discussions with Professor B. L. Hen-
son and Professor F. E. Moss on the subject of tur-
bulence in liquid 'He.



2154 MORGAN, JACKSON, AND WERNER 18

1'(m + —,
'

)
'

2Q 2
'

'=W X r(2 +1)
t

(A2)

Then employing the duplication formula for y func-
tions

Next, differentiate the generating function'

m—cos[(z' —2zy)'~'] = X y j ~(z)
Z m&0 +.

(A6)

1'(m + —,
' )/1'(2m +1) = Wm4™/m!

and the parity property of Bessel functions

j (ze' ) = ( —1) j (z)

(A3)

(A4)

with respect to y. This gives

sin[(z' —2zy)'"] ~ y
ia =X

(z —2zy) 0 m!
(A7)

we get
'm

i=2 X, j (Qpe' )
1

m Om' 2p
(AS)

Setting y = Qt'/2p, z = —Qp in Eq. (A7) and compar-
ing the result with Eq. (AS) gives

I = (2/Q)sin[Q(p'+ r')' ']/(p'+r')'
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