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The damping coefficient (imaginary part of the frequency) of ripplons in superfluid *He at low
temperatures T is found to be 7, =0.376(#/pg) (kg T/#y)'% due to processes in which the acous-
tic ripplon is absorbed by a thermal ripplon. The range of wave vectors for which a direct experi-
mental observation of the ripplon might be possible is discussed.

I. INTRODUCTION

The present experimental evidence for the existence
of quantized capillary waves, or ripplons,' on the free
surface of superfluid *He is based on measurements 2.3
of the low-temperature dependence of the surface
tension o (7)) and on the assumption of infinitely-
long-lived ripplons. For small g the ripplon dispersion
relation w, is given at 7=0 by *

Wq =‘)“13/2- ‘ (1)

where T is the temperature, y = (ao/po) %

ogo=0(T =0), pois the T =0 bulk mass density,

and ¢ is a surface (two-dimensional) wave vector.

A theoretical calculation of the ripplon contribution

to the dynamic structure function of superfluid

“He has been performed ° based on the assumption
of infinitely-long-lived ripplons. No direct ob-
servation of ripplons has been reported. In ord-

er to assess the experimental feasibility of a direct ob-
servation of well-defined ripplons, we investigate in
this paper the lifetime 7,(T) of an acoustic ripplon us-
ing a quantum-hydrodynamic (QHD) approach. We
find that the leading T dependence of the damping
coefficient of acoustic ripplons, i.e., ripplons that satis-

J

fy hw, << kgT, is

10/3
1 k| ksT
=0.376—|—— . 2
Tq(T) po[ h"y ] ( )
Note that the lifetime 7,(T) of acoustic ripplons at
fixed T is independent of g. The result (2) comple-
ments the small-¢ calculation of 7,(0) recently ob-
tained by Saam®:

1/7,(0) =0.162(#/po)q¢° . 3)

II. CALCULATION

We begin with the three-ripplon QHD interaction
Hamiltonian H, given by Saam® and determine T, US-
ing a finite-temperature Green’s-function technique.
The present approach is similar to that used in QHD
calculations of phonon damping’-? in bulk superfluid
‘He at low T. To lowest order in H), the self-energy
diagrams have a one-loop structure.® The lifetime 7,
is related to the ripplon self-energy 2(gq, ) by
7' =Im2(q, w, —i0%). (For simplicity we set
k= kg =1 throughout this section.) In this way, 7, is
found to be

2
it =2m [ LR 2] @5 1B Uy = )80, + 0, — o))

2m)?

+ ‘ (P, _F_)',lHll-q.‘)P(l +fp'+fp)8(‘”q _wp"'wp)

= OIH|T 5, 5) P+ 1 + 1) (0, —w, — w,)], (4)

w /T
where p'=p—qand f,=(e » —1)7'. The first matrix element of H; in (4) is given by®
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, 12
(@7 |H\|P)= [—‘”’—"—

8pow,wyw),

The latter two matrix elements of H, in (4) are simi-
lar in form to (5). Here p =p/p, etc.

The first term in (4) corresponds to an absorption
process in which a ripplon @ is absorbed by a thermal
ripplon p' (w,  ~ T) resulting in a thermal ripplon p
and another process in which p’ and p are inter-
changed. The second term in (4) represents a
decay.process in which a ripplon @ decays into two
ripplons p and —p'. The third term in (4) corre-
sponds to an annihilation process in which three
ripplons @, P, P’ annihilate. At T =0 only the decay
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lw,0,(p-p +1) +w40,(G5 +1) +w,w,(G-p'—1]. 5)

L

process is possible; this process was considered by
Saam® to obtain (3). At T =0 and for acoustic rip-
plons (w, << T) the decay and annihilation terms can
be neglected since the relevant & functions cannot be
satisfied and only the first term in (4) need be con-
sidered.

The first term in (4) can be divided into two in-
tegrals: 7,'=1,—1I,, where I, and I, denote the in-
tegrals proportional to f,- and f, respectively. We
evaluate explicitly /, which is given by

Iy= 4p0f ay [“’p“’p w+1) +w,0,(p+1) +o, wq('r]+1)]2f,,8(wq+wp +w,), 6)

Q2m)? w,w,

where v=p-p', u=p-4, and n =
is rewritten

p'-4. The change of variables x =w,, y

=w,, z=uw, is introduced and (6)

1 —-— max
h= ey yon [ mf(x)f 2),,2 D Ly D) Fxz(u 1) +yzln—DIBG +y —x) )

mm

with f(x) =(e*’T—1)"'. The & function in (7) implies that y =x —z, which can be shown to lic between ymax
and ymin. For acoustic ripplons z << x and the x integrand can be expanded in terms of z/x. To lowest order in

z/x, v=1,u= 'r)——(z/x)”3

1, becomes

2/3

L= 1 y“‘onﬁmdxx”’”f(x) 1+%

Zz
97 poz x

Similarly to O(z/x), I, is given by
23

I = 1 y"'oﬁj; dx x'93 £ (x) 1+%§ +;

97 poz

Since ;' =1, —I,, we see that the z™! and z™'” terms

cancel and that the leading term in -r‘,“l is given by a

z-independent term: ‘
- __ 10 1003 73

T, 271rp0 f dx x"3f(x) [1+0

1/3
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10 10
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—4
T

(8)

If we substitute into (8), I'(5- )= 28 57 (2.679) and

( )——1 148 and remtroduce h’and kg , we obtain the
result quoted into (2). The first correction to the
leading behavior of 7, given in (2) is

O ((#iw,/kpT)"?) which would give to 7,  a correc-

and the lower limit of the x integration can be set equal to zero. Thus to O (z/x),

A
A7

tion term «q'2T?. This correction arises from the z/x
expansion of the integrals in the absorption term in

(4) and is within the validity of QHD.

III. DISCUSSION

The acoustic ripplon damping can be reexpressed in
terms of the attentuation a, =Imq. We write
w, +it;'=y(Req +ia,)*? assume a, << Reg=q,
and find '
10/3

kg T
ag= —=025—"|7F )
Tq PoYq ky
where v, =dw,/dq = (%)yq”2 is the ripplon group

velocity. Note that in contrast to the case of bulk
phonons, :he g dependence of the ripplon attentuation
a, differs from the ¢ dependence of the ripplon damp-
: -1

ing 7.
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We follow the discussion of Pines and Noziéres' for
bulk phonons and consider the qualitative behavior of
the damping of ripplons as a function of frequency.
The function argg =Img/Req is a convenient measure
of the effectiveness of the damping. The collisionless
regime for which argg ~ 1/w7, can be divided into
two parts corresponding to the different collisions
mechanics. Saam® has already considered the decay
regime, Aw >> kgT, in which a ripplon decays into a
pair of ripplons and finds that

argqg =0.11(#/pg) y %P’

For #fw << kgT, we are in the thermal regime in
which an acoustic ripplon is absorbed by a thermal rip-
plon. From (9) we find in this limit that

argg =0.25(#/py) (kg T/ Fry) " w™!

As the frequency is reduced we pass from the colli-
sionless to the hydrodynamic regime. We follow Lan-
dau and Lifshitz'° and find that in the limit of low fre-
quencies,

argg = (4n/3p)) v w

where 7 is the (bulk) shear viscosity. We see that for
low-w ripplons, argg approaches zero with infinite
slope, in contrast to the case of sound in a Fermi
liquid® for which argg ~ w for small w.

The above behavior of argg implies that the "win-
dow" for well-defined ripplons (argg << 1) should oc-
cur at intermediate frequencies (or wave vectors)
between the high-frequency ripplon decay side and the
low-frequency viscous damping side. We estimate the
range of the window for well-defined ripplons by re-
quiring w,7,(7T) >> 1 with 7,(T) due to absorption
processes and by requiring w,7,(0) >> 1 with 7,(0)
due to the decay process. If we use (2),(3), and sub-
stitute?? pg=0.146 g/cm® and o =0.37 erg/cm?, we
find that ripplons are well defined for

94<9<4q, 1

1/3 , (10)‘

where (T is in degrees Kelvin)

¢, =0.0972° A-! (12)
and

a=1A". (13)

At T=1K, ¢,=0.09 A, at T=0.1 K,

=0.0005 A™'. From (11) and (12) we see that at a
given T, long-wavelength ripplons!! are not well
defined. Note that the same requirement, i.e.,
w,7,(T) >> 1, for bulk phonons would imply that
long wavelength phonons are well-defined siflce7

y= g and 7, « gT* for small q.

The estimate of the range given in (11) is made
somewhat uncertain by the extension of the spectrum
(1) to shorter wavelengths and by the fact that our
result (2) for 7, is restricted to acoustic ripplons for
which fw, << kgT or

g << g, = (3T A

The latter restriction can be removed by numerically
evaluating the integrals in (4) for arbitrary #w,/ksT
(but w,7, >>1). Itis possible that the bulk phonons
make an important contribution to the ripplon damp-
ing since in the range (11) the frequencies of the bulk
phonon and the ripplon are comparable.

Our conclusion is that the ripplons in superfluid ‘He
at fixed temperatures are not well defined at long
wavelengths, but there is a window of "intermediate"
values of g for which direct experimental observation
of ripplons might be possible. Problems suggested for

- future work include an investigation of the contribu-

tion of bulk phonons to ripplon damping and a study
of the contribution of ripplon lifetime effects!? to the
T-dependent surface tension.
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