
PH 7 SICA I. REVIE% 8 I SEPTEMBER 1978

He excitations in dilute mixtures with He
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The deviation of the 'He quasiparticle spectrum from the Landau-Pomergnchuk parabolic form, seen in

neutron scattering, is shown to be accounted for by including the process of roton emission by He

quasiparticles in a self-consistent calculation. The normal-Auid density and second-sound velocity (as
functions of temperature and concentration of 'He), calculated from this spectrum (which exhibits no 'He
roton minimum) with no adjustable parameters, are in agreement with experiment.

I. INTRODUCTION

The 'He quasiparticle spectx'um in dilute 'He
—'He mixtures was postul'ted to have a "roton"
di.p'' a,s in the case of the 'He excitation spectrum
following experimentally observed deviations"
from the p. edictions of the parabolic Landau-
Pomeranchuk (LP) e,=q'/2m~ spectrum. (Factors
of S and ke will often be omitted from equations. )
A fit to the normal-fluid density' gave the 'He
roton parameters as 4, —6.6 K, 4, —1.95 A
p.,=0.07ms (ms is the mass of the 'He atom).
This contention has been. challenged recently. ' '
A microscopic calculation of excitations in
mixtures' shows negligible shift in the 'He spec-
trum due to hybridization with the 'He quasi-
pax ticle spectrum at small 'He concentration
(less than 5-mole'fg), " in agreement with Raman"'"
3..nd neutron" *"measurements, but no djps in the
"&Le spectrum in second-order perturbation theory.
Hummer et al. ,

' have measured the second-sound
velocity in mixtures up to 1-mole% 'He and con-
clude that a noticeable discrepancy exists between
experiment and the prediction of the LP spec-
txum, which is increased by the addition of a
roton dip to the 'He spectrum.

Recent neutron measurements" indicate de-
viations from the LP spectrum around q- 1.4A '
to lower energy values, but are inconclusive
regarding the existence of a 'He roton due to
resolution problems beyond 1.7A '. It is the
purpose of this paper to show that there is an
alternative expla, nation of the neutron data, which
can be reconciled with the normal-fluid density
and second-sound results using no ad'justable
Paxav&e~ers and without involving a deep narrow
r' oton minimum-

The basic idea is the following —as the 'He quasi-
particle momentum increases, it approaches the
threshold for emission of a 'He roton. [At the
threshold, obtained by drawing a parabola through
the 'He roton with an effective mass (m*+ p, ,), i.e.,
the sum of the 3He quasiparticle and 4He roton

II. THEORETICAL DETAILS

The Hamiltonian of the system can be written

0+int ~

where

Xo —~ 4)y6«&5~»+ ~ E, c~c»0 g (2a)

masses, the quasiparticle emits a roton and continues
traveling with it.] The threshold causes abendover of
the 3He spectrum in the same manner as the threshold
for decay of a 'He excitation into two rotons. "
However, the phase space for decay is not as
large (the imaginary part of the self-energy has a
(e —e,„)' ' behavior), and the bendover is less
drama, tic.

The vertex for this decay is the same as the
vertex for virtual decay of a q - 0 'He quasi-
particle into a 'He roton and 'He quasiparticle,
which dominates the renormalization of the 'He
quasiparticle mass. " Thus, the renormalized
mass (known from experiment) can be used to
determine the vertex, and the 'He spectrum can
be calculated self-consistently, using a zero tern-
perature Green's-function formalism.

The calculation shows a single quasiparticle
pole in the 'He Green's function below a roton
quasiparticle continuum for q less than a critical
wave vector q, . As the pole approaches the con-
tinuum, it transfers spectral weight to the con-
tinuum and ceases to exist as a well-defined ex-
citation beyond q, . Instead, there is a broad peak
in the spectral funct&on S(q, &u) which may be
thought of as a quasiparticle with finite lifetime
even at zero temperature and concentration.
However, the thermodynamic quantities at low
temperature are not sensitive to minor modifica-
tions of the spectrum beyond q, and so it suffices
to accurately parametrize the quasiparticle spec-
trum below q, (and reasonably beyond) to calculate
the normal-fluid density and second-sound velocity
to the accuracy of the present experiments.
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is the noninteracting part (bt and ct create 'He
excitations and 'He particles, respectively, while
+~ and e,'=q'/2m, are the corresponding energies)
and

and

1 1
Do(k, (u) =

(0 —QPp+ 2'g 4) + COy —4'Q
(6b)

(2b)Xi„=Z y„(b-+b „-)c;c;,-„

is the interaction between 'He particles and 'He
excitations.

One may obtain Eq. (2b) from a bare interaction
between 'He and 'He particles; this gives'

y
- k'(»')/b'" (3)

d k 640

( ) ( )y ~kqD(k a')G(q k & &)

(5)

Here I'(k, q) is the proper renormalized vertex, "
y„ is the bare vertex, and the proper self-energy
Z has renormalized 'He quasiparticle and phonon-
roton propagators Q and D."

e (q —k, ) e (k„-q)
Gotq &)= 0 +

(d —E~ + E'g (d —E~ —Z'g
(6a)

(a)
+

where S& is the He liquid-structure factor. " Thus,
y~- Wk for small k, while it has a peak near the
roton wave vector. At large k, 8„-1 and y& falls
off rapidly.

The exact Green's function for the 'He quasi-
particle is given by Dyson's equation [see Fig. 1(a)]

G(q, (u) = G,(q, (u) + G,(q, (u)Z (q, (o)G(q, (o), (4)

where

are the unrenormalized (bare) propagators. The
factor»„which conventionally appears in D, has
been incorporated into the definition of the ver-
tices.

For small concentrations of 'He, the renor-
malization of the 'He spectrum is negligible
(-0.2 K for molar concentration x- 5/o), so D(k, a)
may be approximated by D, (k, &u) in the limit x
-0. For the 'He intermediate state [Eq. (5)] we
take the form [Eq. (6a)] with s,' replaced by s,
=q'/2m* for (approximate) self-consistency. "
Within the ac'curacy of this calculation, it suffices
to approximate the 'He spectrum by

ck(phonons), k&k, = 1.3 A ',
A+(k —k,)'/2p, (rotons), k, &k&k, =2.5 A '

where k, is the point of intersection of the phonon
and roton branches, and k, the zero of y„after
the peak in'». c=238m/sec, b, =8.6K, p, =0.16m, .

A consideration of the form [Eq. (3)] for y~ sug-
gests the approximation of one pair of vertices
y,„(k) and I',„(k)-v k for phonons, and another
y„and I'„(constants) for rotons. If the ratio of
the renormalized vertices [I,„(k)/I'„] is of the
order of the ratio of the unrenormalized ones
[y»(k)/y„], . most of the 'He mass renormalization
turns out to be due. to rotons in the intermediate
state, so the exact magnitude of the phonon vertex
is not crucial. We shall work out results for the
two cases,

Gp + Go ~G r,„=0 (8a)

(b)

q~0

q kp kp (c )

kp

q Itp

ko

-k 00
i" „(k)/I „=y „(k)/y„= 2.4k (k in A ') . (8b)

(d)
q+k

q

FIG. 1. (a) Dyson's equation; (b) and (c) vertices for
q- 0 and q-k() quasiparticles, respectively; and (d)
usual diagram for calculation of hybridization effects.
Wavy and straight lines represent He and 3He propaga
tors. Renormalized (unrenormalized) propagators are
in bold (light).

In the above discussion, it has been possible to
suppress the q dependence (distinct from the de-
pendence on k, the momentum transfer) of I',
because the q dependence of the self-energy is
found to be dominated by rotons in the inter-
mediate state. Thus the vertex I' for small q,
which determines most of the mass renormalization
[Fig. 1(b)], and q- ko [Fig. 1(c)], which determines
the bendover, are the same"; in the inter-
mediate q region, the approximation is less ac-
curate but the results should still be reasonable.
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With these approximations, the 'He self-energy
in the dilute zero-temperature (T, e„-0) limit
becomes the sum of phonon and roton terms,

Z(q, c) = Z»(q, e) + Z„„,(q, e),

Z (q, .)='""""'q' ""'k
dk

4m'q 0

d cos8
e —(j-R)'/2m*-ck+iq ' (10a)

with

=ye d cos0
E —(g —k) /2m r —6 —(k —ko) /2 p4 + iq' (10b)

where 0 is the angle between q and k, which may
be evaluated exactly. We have used y „(q)I' „(k)
-k; thus the prefactor [y,h(q) I;„(q)/4v'q] in Eq.
(10a) is a constant. The imaginary part due to
phonons ZI„(q, a,) vanishes for q &m*c (-2.7 A '),
while that due to rotons becomes nonzero above
a threshold energy:

g th(q) = b+(q ,—ko) /2(m ++ p g) 2

& ~&2

4w' (1+ p.,/m 2')' q m*
(12)

&«2(m*+ p )(& &th-) ~ ~th ~

The real part of the self-energy Z is given by
&'=~ h+~-t-, (13)

with

r2)h(q)»(q))t m2', 2 m*c+2k,-q, m*c+atk, —q 3 m*c+a)k, +q
m*c+q

1

—2qk', +16m*cqk, +4m* e — (m*c -q) ln
q' m*c+2k, -q

2m* m*c -q

-(-*"). *'."'" "!'(' '. '!,m*c-pq ~~ 2m* ] (14a)

2 2
Z)2 ( q) = r"~" m

(—'k'+pQ) ln k' —2i c2ka+2p Q —(tk'+ Q)1
~-. 2pc2k, +2p. Q

4m' q
' ' k', —2p, c,k, +2p. Q ' ' k', -2p. c,k, +2p, Q

k', —2p, c,k, +2p, Q

kl —2' ikx+ 2p.

canc, (anat —C. 'c', )"'(tan '

—2n c,(2c.tt —I. 'c,*)'n(tan '

2~ c2k2+ 2
2 k 2pc k +2pQ mQ

k2 —pcs j kj —pc~
(2n(t n*c')"* (ann-n'cl)'n)

k2 —pc2 „~ kj -pc2
(anat —n'c*)'" (anat -n'c')'") (14b)

where c, =k,/p, q/m*, c, =k—,/p4+q/m*, g
= p, ,m*/(p. ,+ m2'), and Q = &+k', /2 p. - c + q'/2m*.
In E(I. (14a), the self-energy has been truncated
at the lowest-order term in deviations from the
parabolic form which is accurate to the same
degree as replacement of the intermediate 'He
state by the LP form Inclusio. n of the 0((&
—q'/2m*)') term leads to changes which are much
smaller than the differences between the results
for the two approximations in E(I. (8). The factor
inside the square root, in the last term in E(I. (14b),
is proportional to (et„—e), and thus Z,"„„hasa
2('&2„—'e term, as expected from the result for the

e, = q'/2m, + Zs(q, e,) —Z "(0,0), (15)

where an uninteresting constant; shift has been
removed. As expected, as q approaches q„ the
term 2('&2„(q) —e, in Z,"„„arising from the emis-

imaginary part [E(I. (12)]. I&iso note that e as it
appears on the right-hand side of E(ls. (14) is
measured from the renormalized zero of energy. ]

For wave vectors q less than a certain value q,
[such that the renormalized (Iuasiparticle energy
determined self-consistently from E(I. (15) lies
below e,„(q) defined in E(I. (11)], the renormalized
Green's function has a pole at an energy given by
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sion of rotons by 'He quasiparticles causes a
bendover of the single quasiparticle pole in the
Green's function. However, the (finite) bendover
term cannot sustain a pole below E,„(q) beyond
a critical wave vector q„and the single quasi-
particle pole merges into the roton-quasiparticle
continuum, developing a finite line width even at
zero temperature and concentration. Using the
4e,„—a nature of the bendover term in Z~, the
quasiparticle pole may be shown to approach
e,„(q) tangentially, with a spectral weight Z,- (1+dZ/de), ', decreasing linearly to zero as q

The above results indicate that shifts in the 'He
spectrum near the roton minimum at larger x,
due to hybridization with the 'He quasiparticle
branch [Fig. 1(d)], cannot simply be calculated
by using q'/2m* or even e, in the intermediate
'He state, but must properly take into account
finite lifetime effects of the 'He intermediate
state. Thus, the shift of spectral weight to higher
energies would tend to cancel level repulsion from
the quasiparticle pole.

Before going on to comparison with experiment,
we note that for finite concentrations x, the second
term on the right-hand side of Eq. (Ga) should be
used instead of the first for quasiparticles with

q & k~. This leads to, in addition to a small fractional
increase of the Fermi velocity of order k' ~x', a
rather weak singularity at the Fermi surface (for T
= 0) of the form (1 —q/k~)' ln

~

1 —q/k~
~

of the same
order of magnitude. However, this would be washed
away at finite temperatur e and probably not be not-
iceable at least for the weaker solutions.

III. RESULTS AND COMPARISON WITH EXPERIMENT

For a given ratio of phonon and roton coupling
constants [Eqs. (8a) and (8b)J, the renormalized
spectrum depends on only one parameter —the
product y„l „. Determining that from the experi-
mental renormalization of the 'He mass (m,-2.3m, ) separately in each case [Eqs. (8a) and (8b)],
the 'He quasiparticle spectrum is obtained by
solving the transcendental equation [Eq. (15)] on
a computer. The results are shown in Fig. 2
for the two cases I',„=0 and F,/y, „=I'Jy„, along
with the neutron results. The magnitude of the
bendover calculated is seen to be well within the
experimental results, while the pure parabolic
spectrum is not. Comparison is limited by the
resolution of the neutron data and by the width
44&~&, of the quasiparticle hole continuum which
would be present at finite 'He concentration, even
in an ideal neutron experiment.

In order to evaluate the normal-fluid density
and second-sound velocity in the dilute mixtures,

20

15

~ 10K
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00
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FIG. 2. Dashed and dot-dashed curves are the 3He

quasiparticle spectrum calculated using approximation
discussed in text. Also shown are the LP parabolic
curve and the spectrum of pure 4He. The open circles
are neutron results on x= 6-mole% solution.

we parametrize the 'He quasiparticle spectrum by

(q'/2m*) (1 —q'/Q'),

(q'/2m')(1-q'. /Q'), q&q.

where q, is the point where the spectrum intersects
e,„(q), and Q determines the deviation of the spec-
trum from the parabolic form below q, . The ex-
pression [Eq. (16)] (for q &q,) constitutes the first
two terms in an expansion of &, in powers of q'
and is found to be a surprisingly accurate approxi-
mation of the deviation of calculated spectrum
over the relevant range of momenta (0.5 A '& q
&1.7 A ').~~ The form for q&q, (chosen to coin-
cide at q, ) is also a reasonable approximation
to the damped mode above q„and results are not
sensitive to minor variations of the form selected.
Besides, the one-parameter (Q) form appears
to be entirely adequate within the accuracy of the
present theory (cf. the differences in the spectrum
calculated for the two cases in Fig. 2), and the
scatter and accuracy of the present experimental
data. Fitting the two cases in Fig. 2 gives
@=3.2 and 3.8 A '.

The normal-fluid density and specific heat due
to the 'He quasiparticles are given in terms of the
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usual phase space integrals"

where

(17)

(19a)

tegrals. This amounts to a power series expansion
in T/T„where T, = Q'/2m~; however, because
of the spectrum given by the first part of Eq. (16)
bends over at large q, one cannot let q, go to in-
finity and the analytical result is not particularly
advantageous with finite q, . Therefore, the normal-
fluid density and specific heat have been evaluated
numerically using Eqs. (17)-(19), for the spectrum
given by Eq. (16).

The second-sound velocity for dilute mixtures
is given by":

p, T t (v, + k,x/I, )' k,x
(24)

ndT (19b)

C„= ',n,k, (T-» ~g,
where n3 is the number af 'He atoms per unit
volume and q~ is the Fermi energy.

For a spectrum with a 3He roton dip

~(q) = &.+ (q —k.)'/2p. ,

in addition to the parabolic form, one obtains
[to O(e-'3")]

(20b)

(21)

k' 3i
p, =m+n, I+a ' ——~, e ~T«n, „2rn*T 2 ),'

(22a)

2Q
C =2n kB 1+a —,'- ' EE«T«~„v3 2 3 B y2

where

n = (2h k /3m*k T)v p /I* e ~»r

(22b)

{23)

In obtaining the above equations, the 'He quasi-
particle number has been conserved, and there-
fore the "roton" contributions to Eqs. (22) are not
the same as for 4He. In addition, while the ex-
pression for specific heat [Eq. (22b)] is true only
for T» &~, the result for normal-fluid density
[Eq. (22a)] is very good even at low temperatures
because Eq. (20a) is exact for the LP spectrum
for all temperatures, and so errors in Eq. (22a)
are O(e s~'&).

For the spectrum [Eq. (16)], one may work out
expressions by expanding the spectrum about a
parabolic form in order to evaluate thermal in

Here n = [exp(& p)/T—+ 1.] ' is the Fermi dis-
tribution and e(q) is the excitation spectrum. For
the Landau-Pomeranchuk form &(q) =q'/2m~, the
results are

(20a)

where p„and p, are the total normal-fluid and sup-
erfluid densities, 04 is the He entropy, and C is
the total specific heat per unit mass of the solution,
and x is the molar concentration of 'He.

Turning now to the normal-fluid density, we fit
the data4 for x= 11%using the normal-fluid den-
sity for 4He from Bendt et a/. 24 for all three
spectra [Eq. (16), LP, and LP plus Eq. (21)].
In each case, m* is determined from the data at
the lower temperatures. The data are seen to be
fit as well (Fig. 3) by the spectrum (16) with
Q=3.4 A ' and m~ =2.1m, as the three-parameter
rotongt (&, =6.6K, k, =1.95 A ', p, , =0.07m, ) with
m* = 2.25nz3. The Landau-Pomeranchuk spectrum,
however, underestimates the normal-fluid den-
sity at the highest temperatures by about 20% of
the zero-temperature p„3.

In Fig. 4(a), we compare the second-sound
velocity determined experimentally' for the x
=0.71% solution with the predictions [from Eq.
(24)1 of the three spectra —parabolic (m~ = 2.4m, ),
parabolic plus roton (I*= 2.4m„roton parameters
as above), and Eq. (16) with Q = 3.4 A ' and m*
= 2.25m3 using pure 'He data again from Ref. 24.
The renormalized masses are again determined
by fitting the data at the lowest temperatures and
for each spectrum are somewhat higher (by 0.15
n&) than the previous case. This is not surprising
because m* in general depends on the concentration
[through the concentration dependence of Z (q, e)
which we have neglected in the present calculation,
and also through 'He -'He interaction omitted in
the present model] and a decrease of I*with
increasing concentration has been found experi-
mentallyq too '(In a.ddltlonq any lllaccul acy 111

the determination of x gets lumped into a re-
normalization of rn" for p~. ) As can be seen,
Eq. (16) yields a better fit than the parabolic plus
roton spectrum, which in turn is in better agree-
ment with experiment than the pure parabolic
spectrum. 2' Figure 4(b) shows the fits using Eq.
(16) with the same parameters as Fig. 4(a), for
different concentrations. The small deviations
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(data of Ref. 4) along with calculations for various
forms of the 3He quasiparticle spectrum. Where the
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above 1 K are not experimentally significant and
do not scale with x (as would be expected for errors
in the 3He spectrum or shift of the 4He spectrum

. due to ~He). We also note that previous second-
sound velocity measurements below 0.6 K have
been fitted there" using Eq. (16) with Q = 4.0
+0.8 A '.
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IV. CONCLUSIONS

The present work has shown that the deviation
of the 'He spectrum in dilute He —He mixtures
from the Landau-Pomeranchuk parabolic form,
seen in neutron scattering, is in agreement with
a theoretical estimate of the bendover due to the
decay channel 3He-'He+ rotons using a rather
simple picture of interaction between 'He and
4He. Further, by parametrizing the theoretically
calculated spectrum in terms of a single bendover
parameter Q, which seems to be adequate to
within the accuracy of both experiment and theory
at present, the calculated normal-fluid density
and second-sound velocity (as functions of tem-
perature and concentration of 'He) are found to be
in agreement with experiment, with essentially
no adjustable pa.rameters.

No a Priori claim can, of course, be made about

FIG. 4. Second-sound velocity obtained from Eq. (24)
(a) in x=0.vl-mole@ solution using different forms of
the quasiparticle spectrum; (b) for different concen-
trations using the spectrum (9). Data are from Ref. 9
(except triangles from Ref. 25).

quantitative accuracy of the theoretical calculation
in view of the original simplifying assumptions
about the vertices. However, the essential physics
and qualitative nature of the bendover are, we
believe, correct and, in view of the remarkable
agreement with experiment, a quantitative first
approximation. Further refinement of this model
at this stage, though, would be little more than
a parameter game because of lack of any experi-
mental evidence requiring that and because of the
somewhat intractable nature of calculations in a
strongly coupled system like the 'He -4He mix-
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tures. On the other hand, both the absence of
any pronounced 'He roton minimum in the cal-
culation, and the amenability of present experi-
mental data to explanation in terms of a spectrum
without the minimum, provide incentive for further,
more accurate, experimental work on, say, nor-
mal-fluid density and specific heat, to determine
the quantitative details of the deviation of the
3He quasiparticle spectrum in mixtures from the
parabolic form.

Note added in Proof. Recently, after this work
was submitted for publication, Greywall has done
high-precision specific-heat measurements" on
dilute sHe-4He mixtures (x = 0.004-1.0 mole /o).
His results confirm that there are substantial de-
viations from the results of the LP parabolic spec-
trum (which increase with temperature, extrapola-
ting to about15% at1K). The data canbe fit in

terms of a roton only with unreasonable, concen-
tration-dependent parameters (b,,-2.5-3.5 K,
p, -10 3-10 4m, ). The deviations are in approxi-
mate quantitative agreement with the results based
on the spectrum (16) with the present parameters,
above 0.3 K. The data do, however, show a small
kneelike feature (magnitude- 1%) in the specific
heat versus temperature plot around 0.2 K, which
is not present in the specific heat computed from
the parametrized form in Eq. (16).

ACKNOWLEDGMENTS

This work was started while the author was at
the Aspen Center for Physics. Helpful discussions
with C. M. Varma, R. C. Dynes, V. Narayanamurti,
and P. C. Hohenberg are gratefully acknowledged.

L. P. Pitaevskii, Comments at the U. S.-Soviet
Symposium on Condensed Matter, Berkeley, 1973
(unpublished) ~

2C. M. Varma, Phys. Lett. A 45, 301 (1973).
M. J Stephen and L. Mittag, Phys. Rev. Lett. 31, 923
(1973).

V. I. Sobolev and B. N. Esel'son, Zh. Eksp. Teor. Fix.
60, 240 (1971) [Sov. Phys. JETP 33, 132 (1971)].

~B. N. Esel'son, Yu. Z. Kovdrya, and V. B. Shikin, Zh.
Eksp. Teor. Fiz. 59, 64 (1970) [Sov. Phys. JETP 32,
37 (1971)]~

V. I. Sobolev and B. N. Esel'sou, Zh. Eksp. Teor. Fix.
Pis'ma Red. 18, 689 (1973) [JETPLett. 18, 403 (1973)].
J. Slinkman and J. Ruvalds (unpublished) and J. Ru-
valds, in Quantum Liquids (North-Holland, Amster-

dam, 1978), pp. 263-291 have shown that a 3He roton
at 5 K is in disagreement with the data of Ref. 4, and

(we believe mistakenly) have come to the conclusion
that a roton spectrum is not commensurate with the
data of Ref. 4.
J. Ruvalds, J. Slinkman, A. K. Rajagopal, and A. Bag-
chi, Phys. Rev. B 16, 2047 (1977)~

R. B. Kummer, V. Narayanamurti, and R. C. Dynes,
Phys. Rev. B 16, 1046 (1977).
The earlier quantum-hydrodynamic calculation of D. L.
Bartley, J.E.Robinson, andV. K.Wong, J.LowTemp.
Phys. 12, 71 (1973)had shown significant modification
of the He spectrum due to hybridization with the ~He

quasiparticle branch.
'C. M. Surko and R. E. Slusher, Phys. Rev. Lett. 30,
1111 (1973).

2R. L. Woerner, D. A. Rockwell, and T. J. Greytak,
Phys ~ Rev. Lett. 30, 1114 (1973)~

J. M. Rowe, D. L. Price, and G. E. Ostrowski, Phys.
Rev. Lett. 31, 510 (1973).

4P. A. Hilton, R. Scherm, and W. G. Stirling, J. Low
Temp. Phys. 27, 851 (1977)~

L. P. Pitaevskii, Zh. Eke. Teor. Fiz. 36, 1168
(1959) [Sov. Phys. JETP 9, 830 (1959)]~

This result actually follows from the calculation,

assuming that the ratio of the renormalized vertices
for the phonon and roton is not much greater than
that for the unrenormalized ones.

~This depends on identifying the He excitations as
density fluctuations, in the spirit of Feynman [Phys.
Rev. 94, 262 (1954)] aud Bogoliubov-Zubarev (Zh.
Eksp. Teor. Fiz. 28, 129 (1955) [Sov. Phys. JETP 1,
83 (1955)]), so higher-order interactions are left out.
Vertex corrections are not of order of the Fermi
momentum kz, as stated in Ref. 8, and cannot be
assumed to be negligible. Thus Eq. (3) should be used
only for qualitative trends as regards I'(k, q).

9A. L. Fetter and J. D. Walecka, Quantum Theory of
Many-Particle Systems (McGraw-Hill, New York,
1971), pp. 402—405.
Actually, a constant should be added to q2/2 m*, due
to an overall shift of the spectrum, but since only
energy differences enter the calculation of Z(q, e ),
the constant drops out and may be suppressed to begin
with.
This assumes that the q dependence of the vertex at
small q is dominated by that of the self-energy. There
is no a priori justification of this, except that using
bare vertices gives 80k of the mass renormalization at
small q (Ref. 8), and the approximation I'(k, q)
= I'(k) & y~ should do better. Besides the agreement
with experiment could be viewed as a posteriori justi-
fication.

2It does slightly overestimate the deviation at small
q and underestimate that at larger q. This would im-
ply somewhat lesser deviation from the LP form at
lower temperatures and larger at higher temperatures
for the calculated spectrum than that given by Eq.
(16)~

~3I. M. Khalatnikov, Introduction to the Theory of
Superfluidity (Benjamin, New York, 1965), pp. 161-
164.

24P. J. Bendt, R. D. Cowan. , and J. L. Yarnell, Phys.
Rev. 113, 1386 (1959)~

J, C. King and H. A. Fairbanks, Phys. Rev. 93, 21



18 He EXCITATIONS IN DILUTE MIXTURES %ITH He

(1954).
6N. R. Brubaker, D, O. Edwards, R. E. Sarwinski,
P. Seligmann, and R. A. Sherlock, Phys. Rev. Lett.
25s 715 (1970).

2~This is contrary to the statement of Ref. 9. %e be-
lieve this is so because the formula for second-sound

velocity used in Ref. 9, as generalized there from the
result for Bose excitations, does not correctly keep
track of 3He quasiparticle number conservation (chemi-
cal potential) and does not agree with Eq. (24).

2 D. S. Greywall, Phys. Rev. Lett. 41, 177 (1978).


