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Diffusion tensor for atomic migration in crystals
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The diffusion of holes or interstitials in a crystal is treated by several types of asymptotic analyses, of
which the starting point is the Fokker-Planck equation. First, we show that the standard Smoluchowski
equation holds, for large as well as intermediate or small values of the interatomic potential 4, as an
approximation of the Fokker-Planck equation. Next, we derive from the Smoluchowski equation a
"homogenized" Smoluchowski equation, which contains only constant coefficients. Finally, we expand these
coefficients for large 4 and obtain explicit formulas for the diffusion coefficients in terms of 4 and other
physical quantities.

I. INTRODUCTION

The diffusion of holes or interstitials in a crys-
tal is caused by thermal vibrations of the crystal
lattice. A particle (i.e. , a hole or interstitial) is
bound by the interatomic forces inside a crysta-
line cell and is located, most of the time, Dear
the bottom of a potential well. Itis forcedtomove
from one cell to another by the random (thermal)
vibrations of a lattice. '

The motion of the particle is described, ac-
cording to three levels of approximation, by the
Langevin equation, the Fokker-Planck equation,
or the Smoluchowski equation. ' The basic purpose
of this paper is to derive a fourth and simpler
level of approximation, namely, a homogenized
Smoluchowski equation. This will be a diffusion
equation with constant coefficients, which are in-
tegrals of various quantities across a cell. How-
ever, as the activation energy (the minimum value
of the potential on the boundary of a cell) becomes
large, we show that these coefficients become ex-
plicit functions of the activation energy and other
physical quantities. For this case our results can
be compared to those of Kramers, ' Vineyard, ~ and
Glyde. '

We describe now in greater detail the problem
under consideration, and the nature of our results.

The motion of a particle in a crystal is defined
by the Langevin equations'

of the point x, v in phase space can be shown, by a
derivation from the Langevin equation, to satisfy
the Fokker-Planck equation'

0= — +vV P —VC ~ V„P
8$

—PV„~ (vP) — ts„P,ART

PR

P(x, v, $, ti, 0) = 6(x —Q5(v —ti) .

(1.3)

. For large dissipation (p»1), a Maxwellian dis-
tribution of velocities sets in after a short relaxa-
tion time of order P ', then, for t&P ',

P(x, v, $, tl, t) (rrt/2ttKT)s e " ssrp(x, $, t), (1.5)

and the displacement p is governed by the Smolu-
chow ski equation':

BP kT
P = bj+V, PVC,et pn

(1.6)

efficient, assumed to be very large, C (x) is the
potential per unit mass of the interatomic forces
in the crystalline lattice, T is the absolute tem-
perature, k is Boltzmann's constant, and v is
white noise. The last term in (1.2) represents
the thermal vibrations which exert a random force
on the particle.

The transition probability density

P(x, v, $, ti, t) = P„(x(t) = x, v(t) = v~x(0) = g, v(0) =j)

—x=v
dt

v=-pv —V„C (x)+ i v. (1.2)

Here x = (x„x„x,) and v = (v„v„v,) are the di s-
placement and velocity vectors, P is a friction co-

P(x, f, 0) = 5(x —g) .
In (1.2), (1.3), and (1.6), 4(x) is periodic and

takes identical values in each crystalline cell.
In this paper, we derive the following three re-

sults: first, in Sec. II, we derive (1.6) from (1.3)
u'Sing an asymptotic method which shows that for
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C large, of order WP, (1.5) and (1.6) remain valid,
and P can have large spatial derivatives, of order
WP. Then, in Sec. III, we show that for very large
t, ie. , t»P',

P(x, g, t)~e " ' "'u(x g f) (1.8)

where u is determined by the "homogenized"
problem:

(1.9)

u(x, $, 0) = 6(x —$) . (1.10)

Here D is a constant tensor, whose elements in-
volve integrals of VC across a cell [see (3.18) and
(3.13)]. Finally, in Sec. IV, we take 4 to be large
(of order ~P and derive the leading term of an
asymptotic expansion for D for large 4. [See Eq.
(4.16).]

To derive the Smoluchowski equation in Sec. II,
we make the (standard) assumption P»1. Specifi-
cally, we define the dimensionless parameter e by
e = (v, /Pl)'~', where v, is a typical particle speed
and l is a typical cell diameter. Then I/v0 is a
typical "passage" time for a particle, unaffected
by the interatomic forces, to cross a cell, and

/relaxation time &
'~'

f =
& passage time )

The requirement P»1 is then equivalent to e «1.
The Smoluchowski equation is derived in Sec. II
as an asymptotic solution of the Fokker-Planck
equation for e «1, and for O(1) or O(e ') values
of the interatomic potential 4. It is valid after a
time interval of order e', i.e., for t &P '.

To derive the homogenized Smoluchowski equa-
tion [Eqs. (1.8) and (1.9)] in Sec. III, we assume
only that t »P '. Then the displacement varies
on a time scale slower than P ', and spatially is
near periodic, with a slow nonperiodic spatial
va, riation. The slow time and space variations
are described analytically by means of a small
dimensionless parameter 6, but the final results
are independent of 5. These results, Eqs. (1.9),
(1.10), (3.18), and (3.13), are new and have not
been reported elsewhere. The diffusion tensor
0 is analytically complicated, but is explicitly
defined. In general it is not proportional to the
identity tensor, and so diffusion is anisotropic.
This is due to geometrical properties of the lat-
tice. For example, the zinc lattice ib hexa, gonal
in a certain plane, but not in the direction perpen-.
dicular to this plane. .

In Sec. IV, we assume that the height of the po-
tential barrier is large compared to the thermal
energy of the particles. This assumption was
also made by Kramers, ' Vineyard, and Glyde. '

II. DERIVATION OF THE SMOI.UCHOVf SKI EQUATION

We begin by introducing the following dimension-
less variables

(2.1)

Here l is a typical diameter of a cell C and v, is
a typical particle velocity. [Thus, r is a dimen-
sionless position variable, in terms of which a
typical cell diameter is O(1), &o is a dimensionless
velocity variable in terms of which a typical velo-
city is O(1), and v is a dimensionless time vari-
able in terms of which the time required for a
typical particle unaffected by 4 to traverse a cell
is O(1).] We also define

e = (v,/P l)'~' A = kT/rn v20, (2.2)

Specifically, we assume that the interatomic po-
tential 4 is O(e '), which was accounted for in
Secs. II and III, and we then compute the leading
term of an expansion of the diffusion tensor, de-
rived in Sec. III, for e«j. . The result is Eq.
(4.16). Here D is expressed explicitly in terms
of the activation energies at the saddle points of
4 on the cell boundaries, on directional deriva-
tives of 4 at these points, and on directional
derivatives of 4 at the bottom of the potential well.
We compare our result to those of Vineyard' and
Glyde' in the discussion (Sec. VI), and we note
and discuss the differences.

Also in the discussion, we show that our result
is identical to that of Matkowsky and Schuss, ' who
derived D by using the Smoluchowski equation to
asymptotica, lly compute the average time of a
single jump across the potential barrier. (In this
work, 4 is large, but its size relative to P is not
made clear. ) The formulas for D are then obtained
by approximating the random walk of the particle
between cells by a 'diffusion. These authors used
solutions of the Smoluchowski equation that contain
boundary layers, but they did not verify the validity
of the Smoluchowski equation as an approximation
to the Fokker-Planck equation in the boundary
layers.

In this paper, we show that the boundary layer
expansions are justified if 4 = O(v P ), and more-
over, we obtain the same formulas for D without
resorting to the theory of stochastic differential
equations, exit times, and exit probabilities.

In Sec. V, we specialize our results to the simple
case of one-dimensional cells, and we show that
our results agree with those of Kramers. "
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y(r, e) = (I/e)y, (r)+ y, (r) = (I/v', )C (x),

g(r, u), r) = (I /I'e', )P(x, v, t) .
In (2.3) we require

(2 3)

(2.4)

co. V g„—A.aP„

=(V~go' Vg x
—+ ~ V„t)„x)

min Q, (r) =O(1), i=0, 1,
I COC

where 8C is the boundary of C. Also, we a,liow

$0=0 or Q, =0 (or both). Thus, for e «1, our
analysis accounts for the possibilities that the
activation energy, related to

min C(x),
x cf)C

is large [i.e. , O(e ) = O(&P)], is O(1), or is zero.
In (2.4) and the remainder of this paper, we drop
the dependence on g and j.

The starting point of our analysis is the Fokker-
Planck equation (1.3). Thus we introduce the above
equations into (1.3) and get

a
+V,P v„g„,+ g„,)BT

{2.8)

&u %go —Ab, go=0.

This equation has the bounded solution

go =A(y; r, r; s;o),
where A is (at this point) undetermined.

Next we set n = 1 in Eq. (2.8) and get

Vg, —Xb g, =-&u V,A.

(2.9)

We reject exponential growth in ~ and require
each P„ to have at most polynomial growth in &u

as &o- ~. Then, by (2.6), g will essentially decay
exponentially as m- ~.

Setting n=0 in (2.8) gives

-(V . (~t()+~~ y). (2.5) By (A1) of the Appendix, this equation has the
polynomial solution

We shall study this equation for e «1. By (2.2),
this means that the viscosity P must be large com-
pared to the frequency v,/l by which particles un-
affected by P pass through a cell. Equation (2.5)
has the equilibrium solution

exp —— —$0+ Q~+ —,&o'
~

&2 —(d '(d

After a finite relaxation time, .g should have the
above form, modulo certain spatial and time
variations. Thus, our ansatz for (2.5) is

exp 4'0+ 4&+
'

2mkT ) A. )

g, = —~ ~ V,A(y;r, ~; s;o).

We could include a solution of the homogeneous
equation in g~, but do not since this can be in-
corporated into A.

Setting I =2 in (2.8) and rearranging gives

(u V $2 —Ab, g2 = -&u ~ V„A+ V„((u&u —AI) V„A

a„A —V„y, V,A — . (2.10)
8A

By (Al), (A2), and (A6) of the Appendix, g, is
a polynomial in + only if the terms in parenthesis
(2.10) is zero; otherwise, g, will grow exponentially
in v. Hence, we set this last term equal to zero.
This is the "solvability condition" for (2.10):

where

x g Pg„(y; r, v, 7'; s, o'),
n=0

(2.6) =Ah A —V„po V A.y r 0 y

Then u, is given by

(2.11)

y = (1/e)r,

S=CT
y

0 =6 T.

(2.7)

The spatial variable y describes boundary layers,
if any exist, and s, o are slow time variables.

Introducing (2.6) and {2.7) into (2.5), and equating
the coefficients of different powers of e, we ob-
tain the following system of equations:

u, = —&o V„(Ay; r, T; s; o)

+ —,
' (v ~ V„)'A(y; r, ~; s; o ) .

As above, we choose not to include a solution of
the homogeneous equation in u, .

We continue the above procedure by solving
(2.8) for n=3 and 4. Since only the solvability
conditions are of interest to us and the calcula-
tions follow exactly as above, we shall just state
these conditions. For n = 3, we get
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= 2AV~ V„A —V„po V„A —V„Q~ V~A,Bs

and for n=4,

(2.12)
condition (1.7) from (1.4), but we remark that it
can be derived by means of an asymptotic "initial
layer" analysis of Eqs. (1.3) and (1.4).'

=X~„A —V„y, V„A.
Bg

(2.13) HI. HOMOCaWZEO SMOiUCHOWSKI EQUATION

tt(r, o) =A(y; r, T; s; o), (2.14)

Equations (2.11)-(2.13) describe the evolution of
A according to the three time variables T, s, and
0, and the two position variables r and y. We can
combine these equations into a single equation for

In this section, we analyze (2.15) and (2.16),
which we have shown are equivalent to (1.5) and
(1.6). Equation (2.16) has the equilibrium solution
@=const.. Thus, after a, finite relaxation time, we
expect 6 to be nearly constant, i.e. , 8 and V„~
to be small. We therefore take

where the dependent variables are related by (2.7).
By (2.3), (2.7), and (2.11)-(2.13),

2 BC BA BA 2 BA
+g +6

B(T B7 BS Bo'

= e'~( V„+ (I/~) V,) ~ (V„+(1/e) V,jA

—~'V, ((1/~) y, + y, ) ~ (V„+(I/~) V„)A

=e Ab„S —e'V„Q V„@.

with

and

5" „r,r', (T",
n=o

r'= 5r,
0"= 5'0

(3.1)

(3.2)

Therefore, by (2.3), (2.6), (2.9), and (2.14),

BQ =~~„@-V„y V„m. (2.16)

Equations (2.15) and (2.16) describe the asymp-
totic solution of the Fokker-Planck equation (2.5)
for large times. It is essential to keep in mind
that by (2.3), P can be O(1/e), and by (2.7) and
(2.14), SCt/So can be O(I/&'), and V„e can be
O(l/e). In other words, P can be (suitably) large,
and tt can have (suitable) boundary layers.

Using (2.1)-(2.3), and (2.7), we may write (2.15)
as

exp —
2~T u(x t) ~ ~ I (2.»)

2mkT ] 2AT ' )'go) '

where
~W 2

P( tx)=exp — C(x) 8 -x, ', t~ I'v', . (2. 8)
l

' Pl'

Then using (2.16) and (2.18), one can show that p
satisfies (1.6). Also, Eqs. (2.4) and (2.17) imply
(1.5).

To summarize, in this section we have derived
the Smoluchowski equation (1.6) from the Fokker
Planch equation (1.3). In so doing, we have shown
that the Smoluchowski equation remains valid if
the potential and spatial derivatives of the solution
are suitably large. We have not derived the initial

exp —— y(r) + —,
' (u' C(r, o), (2.15)

m )'t' 1

2mkT ]

where

B
+Ah„ f„2— „f„2.Bo'

Setting n =0 in (3.3) yields

O=Lf, =hb„fo —V,Q V„fo,

which has the "constant" solution

(3.3)

(3.4)

f —F(rl ol/) (3.5)

The operator I. acts on a space of functions
f(r), each of which is periodic in r across a cell
C. To be more precise, we shall assume that BC
consists of 2n planar faces, and we require

f(r) =f(r+I, ) ~ li I =1, . . . , n, (3.6)

where 1; are vectors which connect a point on the
ith face to its related point on the opposite (-ith)
face and 1, = -I, (see Fig. 1).

It can be shown that L,*, the adjoint of I., is

L"f(r) = A 6„f + V„ fV„Q,

and that

(3 7)

The variables r' and 0" describe slow changes of
I in space and time; 6 is an artificial small para-
meter which does not appear in the final results.
Since (2.16) contains P(r), which is periodic across
a cell, we allow each f„ to depend on r periodi-
c',lly.

Introducing (3.1) and (3.2) into (2.16) and equating
the coefficients of different powers of 6, we ob-
tain the following sequence of equations:

0=Ah f„—V„Q V„f,
+»V" ' V.fn i —V. 0 ' V"fn-i
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+I ~ 5/X

C

FIG. l. Hepresentation of a two-dimensional lattice
and the vectors l;. .

+2&V„L '(V„P)]d'r
~

V„E. (3.11)
i

However, Green's theorem gives

e e~'2zv L '(v y)d'r
C

Lg(e-4 r)/k) i)

Next we set n = 1 in (3.3) and get

0 = Lf, —V„y(r) .V, ,E(r', o") .

(3 8)

(3.9)

so (3.11) reduces to

gF
„- =V,~. M V„rF,8g

e-"'2(V„y)L '(V„y) d'r,
C

(3.12)

For a solution f, to exist, a solvability condition
must be met. This condition is obtained by multi-
plying (3.9) by e ~~ and integrating over a cell.
By (3.8), the resulting condition is

0 = — e "'V„y V„,Edsr.
C

where the constant diffusion tensor M is defined by

fo e [A.I+(V„P)L '(V„f)]d'r
@/A. y3

C
To leading order in 6, (3.1), (3.2), and (3.5) imply

e(r, o) =E(5r, 5'o),

and then (3.12}yields

V, .E(r', v") ~ V„e ~ ' "d'r
C

= XV„.E(r', o") ~ n(r)e ~" d'~.
ac

But the surface integral vanishes, so this
solvability condition is automatically satisfied.

Thus (3.9) has the solution

Next, (2.18) can be written as

P(x, t}=e ~ @ "u(x, t),
with

(3.14)

(3.15)

(3.16)

(3.10) and by (3.14), the equation governing u is

where the scalar operator L ~ is the pseudoin-
verse of I., defined uniquely as follows: for a
periodic function f(r) satisfying

P =V„.D. V u,
Bt

where

D =voM.

(3.17)

(3.18)

L 'f is the unique solution of the equation

L(L f) =f

which satisfies

Next, we set n= 2 in (3.3) and apply the solvabil-.
ity condition, obtaining

Equations (3.15) and (3.17) are identical to (1.8)
and (1.9), stated earlier. As a check; we see from
(3.13) that for I = 0, M = XI, so D = vpI = (kTlm)I.
Thus, for 4 = 0, the homogenized Smoluchowski
equation (3.17) reduces to the original Smoluchow-
ski equation (1.6}, as it should. Of course, the
dependent variables in these equations, u and P,
are also identical by virtue of (1.8}.

Finally, we note that we have not derived the
initial condition (1.10) from (1.7), but as before,
we remark that it can be derived by means of an
initial layer analysis of (1.6) and (1.7).
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IV. DIFFUSION TENSOR FOR LARGE ACTIVATION
ENERGY

If r =0 is taken to be the (single) point in C at
which the minimum value of P occurs, then'

In this section, we analyze the results of Sec.
III for / =0(1/e). However, first we must re-
write M in a more useful form. From (3.13) and
(3.4),

'30)~" d33 ~ (2peX)3)33e i) (y 0)e
c

(4.9)

X($0, 0) = det (t)3(0), j, k = 1, 2, 3 . (4.10)

where

in C, and X is periodic across C.
Introducing X =-r+w, we obtain (after an integra-

tion by parts)

Also if r, denote the points on BC at which P takes
on (local) minima, then'

e eo~'~r 4d yr 8

ac 8V

~2veXQ & '~3(y„r, )e &(&)g i)'~r, —4(r;),
M= X e-«"Ve

C c
(4.1)

(4.11)
where 4 satisfies the equation

V ~ (e ~)'V4)=0. (4.2)

where

H($3, r;) =det, , $3(r,), j, k = 1, 2, (4.12)
8 8

Equation (4.2) shows that the integrand in the
numerator of (4.1) is divergence free Thus .we
make use of the summation convention to obtain

e ~/' 8 3 8 y 8/" 0') d3r
C c

8

c 8&& 8x& j

e i"r; v„ I@'s d'r,
ac

and r,', r2 are local tangential coordinates on 8C
near r,-. Thus to determine M it remains to
determine 84'/Bv at the points r„which are sad-
dle points for p.

To do this we argue that 4 is a boundary layer
which quickly decays to zero away from 8C. Thus,
along the line r,. + sv we take, for

i si small,

4(r,. + sv) = F(q), )7 = s/We,
(4.13}

lim F=0, F(0) = r, + X(r, )

where v is the outer normal. Therefore,

M=A. e + r 4d'x e
OC 8V (4.3)

(4 4)

where 8/Sv= v V„ is the outer normal derivative.
The problem for 4 can be taken to be

Xb,„4' —(V(t) ~ V)f =0 in C,

and

Q,(r; +sv) = Q,(r, ) + —,
' s'

i Q, (r,.) .
8V)

To leading order (i.e., ignoring the transverse
derivatives), Eq. (4.7) becomes

XF"()7)—g —
i p, (r, )F'(q) =0.

4' = r+ X(r) on &C, (4.5) This equation and (4.13) have the solution
where X(r) = X(r+I,.) for r a point on the ith face.
[See Eq. (3.6).]

Now we assume that (()) is large. Thus, as in
(2.3), we set

and then

Z/2 8 2 X/2

$(r, +sv) = [r, + X(r, )] ](

—y, (r, )
(AW 8V

s/Me -t2 8 i-2
x exp

i
(t),(r, ) dt .

~OO 2X 8pj
Thus

@=X e ~0/"r ed'r
ac 8V

40/ E ) d3+ (4 6} $(F)= [f +x(ir ) (,.i)) *
(& ) (' (r&)

(4.14)
eXb,,4' —(V„P, ~ V„)4' =0 in C,
4' =r+X(r) on BC . .

(4.7)

(4.8)
Now we combine (4.6), (4.9), (4.11), and (4.14) to
get
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2 Z/2

M = 36'~'(y„0) Q r, r,. y, (r, ) H '~'(yo, r, ) exp(- —[po(r, }—yo(0)] . (4.15)

We note that the terms y(r, ) have cancelled out because y(r,.}= y(r, ) = y (-r;). Therefore all of the quanti-
ties in (4.15) are known.

Converting to the (original) dimensional variables and using Eqs. (3.18), (2.3), (2.2), and (2.1)
we obtain

D = —K ' '(4, 0) g x;x, ~4„„(x,-) ~'~'H '~'(4, x, ) exp — [C (x,) C (0)] ~.
w av' ' )

(4.16)

Here K and H are defined as in (4.10) and (4.12),
except for the derivatives which are taken with
respect to x instead of r. Also, 4„„(x,) denotes
the second normal derivative of 4 at the saddle
point x,

and as before, the n =0 equation gives

f +(rl o.lf)

We next set n= 1 in Eq. (5.4) and get

(5.5)

V. ONE-DIMENSIONAL PROBLEMS

To illustrate the homogenization method in Sec.
III and the method of expansion for a large po-
tential in Sec. IV, we consider a one-dimensional
potential well, since for this the calculations are
simpler and more explicit. The Smoluchowski
equation (2.16) becomes, in one spatial dimen-
sion q

0=~ ., f, —y'(r) -f, —y'(r) —
—, I'(r', o").

(5.6)

As before, the solvability condition (i.e., multiply
by e ~~ and integrate over 0 ~r ~1) is satisfied
automatically. But now, Eq. (5.6)—along with the
periodicity condition —is an ordinary differential
equation which can be solved explicitly, giving:

BG B g, 68
Bo' Br Br

Here Q is periodic: P(r) = P(r+ I}. As in Eq.
(3.1), we set

(5.1) I, e"'"ds BZ

0

(5 7)

5" „~,r', o",
n=0

y'= 5r) 0'"= 5 o') 5&&1)

(5.2)

(5 3)

We now set n = 2 in (5.4), introduce (5.5) and

(5.7), and apply the solvability condition. After
integrating by pg+&'. s and rearranging, this
solvability condition reduces to

and we require each f„ to be periodic in r with
period 1.

We introduce (5.2) and (5.3) into (5.1) to obtain
the system

.f.—0'(r) f.

8
Bv" (J'e ' ds) (y'e ~' ds) Br')

(5.8)

which is the one-dimensional version of (3.12). If
we return to the original variables using (5.3),
(2.7}, (2.1), and define

'tII2
&

' ~I 'PI'

(5.4) then by (5.8), the equation governing the dimen-
sional quantity u is

Bu kT 8 Q
l (m/kf') C(s) d l -(,m/kT) C(s) g 8. 2

0 0

(5 8)
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Here I is the dimensional width of a cell: 4(x)
=4 (x+ I).

The diffusion coefficients in (5.8), (5.9) can be
evaluated asymptotically for large 4. if

C(x) =@(x,)+-,'(x-x, )'@ (x )+ ~ ~

is the Taylor series expansion for 4 at its min-
imum value, and C "(x,) &0, then for large 4,

I 2mkr &
'/'

e' "/~'~"'ds =~,
I

e' "/~r'o'*0' ~ (5 10)
irnc "(x,)&

Also, if

4'(x) = 4'(x )+ (x —x ) 4 "(x )+ ~ ~ ~

is the Taylor series expansion for 4 at its max-
imum values, and 4 "(x,) &0, then for large @',

Combining (5.9)-(5.11), we obtain, for large 4,
8g l'

P
— [@11{x)]&/2[ @ii{x )]&/2

et 2e

8 Q
x exp

I
— [4'(x, ) —4'(x,)],. (5.12)

Formula (5.12) is the one-dimensional version of
{4.16). Making notational adjustments, it is equi-
valent to the results obtained by Kramers for the
escape of particles over potential barriers. ' Also,
see Ref. 2, Eq. (476).

VI. DISCUSSION

It is worthwhile to compare the homogenization
procedure with the random walk approach of Mat-
kowsky and Schuss' and others. Such an approach
is based on the average exit time v' of a particle
from a cell, and on assuming that P is large. It
is shown in Ref. 7 that F(r), the average exit
time of a particle from a cell, given that the par-
ticle-was initially at the point r, satisfies the
problem

XA F VP-~ O'„F= -1 in C

v=0 on 8C.

The asymptotic solution (for large Q) satisfies

(6.1)

Next, the probability p(r, z) that a particle in-
itially at r in C will leave the cell at z in 8C is
shown in Ref. 7 to be the Green's function of the
Dirichlet problem

Xb,U- 0„@ V„U=O in C

u~f on BC.

The asymptotic solution (for large Q) is computed
to be

p(r, z) = g p,.6(z —r,),

where p, , the probability of exit from r, , is

l Q,„(r,) I'/'H '/'(r~) exp(-(1/X)[P(r, ) —Q(|))])
(r ) ]'/ H '/ (r,.)exp( —(I/X)[y( ) —y(0)])

(6.2)

(Note that p is asymptotically independent of r.)
Now since the structure of a cell is symmetric

about its center point (r = f), then there are an
even number of boundary points at which Q has a
minimum (r, = -r, , with i = 1, . . . , n, and p,. =p,.) .

Also if r is the center of an arbitrary cell, then
r.—2r, are the centers of the adjoining cells, and

P(r, (n+1)F)= p p,.P{r-2r.„nv),
(6.3)

P(r, 0) = &(r,),

where P(r, r&r) is the probability ot a, :.'i;in;.; at r
in n jumps 7' apart, given that initially the part-
icle was at r, .

Expanding (6.3) about r and a =nr and invoking

symmetry, we get

8 . ~ 2
o — Prr og jPi i

S

Combining {6.4), (6.2), and (6.1), formulas (3.14)
and (4.15) follow.

In Eqs. (3.17) and (4.16), 3C(4, 5) is the Hessian
of the potential evaluated at the bottom of the cell.
It is known from classical mechanics that
K'/'(C, l) is theproduct of the principal frequen-
cies of vibration of the particle at the bottom of
the cell. Thus the faster it oscillates, the more
likely is the particle to jump to the next cell.

The term H'/'(C, x,.) is the product of the tangen-
tial frequencies at the points x,, which are saddle
points for 4. The faster are these oscillations at
x,. the longer will the particle stay at x, , thus low-
ering the diffusion rate. Both terms X'~' and H'~'
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are present in Vineyard's' and Glyde's' papers.
However, the terms jc'„„(x,) ~'~' do not appear in
Refs. 4 and 5, although they do appear in Refs.
2 and 3. These are related to the curvature at x,
in the direction across the saddle point, which is
the direction of the path the particle takes upon
jumping to the next cell. Thus the flatter the path
through the saddle point, the thicker is the poten-
tial barrier, and so (thinking quantum mechanical-
ly) the longer the particle takes to escape.

Formula (4.16) accounts for anisotropy in the
diffusion rates in different directions due to dif-
ferent jump rates in different directions. For ex-
ample, in the hexagonal zinc lattice the diffusion
is isotropic in the hexagonal plane, but this rate
is different by an exponential factor from the rate
of diffusion from one plane to another.

It is worthwhile to note that our analysis, al-
though three dimensional, can be extended to any
number of degrees of freedom, as in Refs. 4 and
5. Also, we emphasize that, our analysis (in Sec.
III) is more general than in Refs. 4 and 5 because
it holds for small, intermediate, and large poten-
tials; only for large potentials can one make ap-
proximations to obtain formulas similar to those
in Refs. 4 and 5.

APPENDIX

The following identities were used to derive the
Smoluchowski equation in Sec. II. In these iden-
tities, A arid 5 are constant vectors, and M is a
constant 3x 3 tensor:

= (+ ~ A)4 —3A2(A ~ A)~, (A4)

((d o g gQ )(Q3 o M (d)

=2[+ ~ M ~ &u —&(M»+M»+M»)] . (A5)

Also, the equation

((u ~ 0 —Xb,„)f(~)= 1

has the particular solution

1 & er /2A 7'

f(~) =- — ~ s'e ' ~'"ds.
y xo - 8xo

This solution grows exponentially as v-.
(A6)
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((u ~ v —A.b )(a ~ A) =(u ~ X, (A1)

(&u 7 —&& )[X. (
—2~~) ~ 5] =4 ~ (ev —&I) ~ 5

(A2)

(z ~ V„—Xa„)[3(~ ~ A)'+ 2X(X ~ A) (~ ~ A) ] = (~ X)',

(A3)

((u ~ v„—Xb,„)[—,'(v ~ A)'+ —', X(X ~ A)(u) ~ A)']
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