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Excitations in the electron liquid
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Starting from Mori's formalism, an expression for the dynamical structure factor for the electron liquid is
derived. The memory function is calculated such that no phenomenological collision rates have to be
introduced. Using simple approximations for some static correlation functions, good agreement with inelastic
x-ray experiments is obtained.

I. INTRODUCTION

Recently, some attention has been focused on
experimental results for simple metals, obtained
by inelastic x-ray' ' and electron' ' scattering
experiments. In these experiments, the dynami-
cal structure factor S(g, (u) is measured directly.
In the low-momentum-transfer region, a plasmon-
like excitation is observed, while for high mo-
mentum transfers particle-hole excitations domi-
nate the spectra entirely. For intermediate-wave-
vector transfers both excitations are visible.
Since the spectra for different metals, such as Li,
Al, and Be, are very similar, the observed fea-
tures should be general properties of the solid-
state electron gas. '

From a theoretical point of view, these results
are not well understood because the experimental
results strongly suggest the breakdown of the gen-
eralized random-phase approximation (RPA) theo-
ries. '6'' A modification of the theory of Ref. 7
was proposed' but as the modified theory violates
the continuity equation, ' the rather good agree-
ment with some experimental data should not be
regarded as a proof of the usefulness of this modi-
fication.

More recent attempts' "to calculate the dyna-
mical structure factor for an electron liquid are
based on Mori's formalism. " The most important
reason to use this formalism is the fact that the
finite lifetime of the excitations is introduced in a
way such that the continuity equation is not viola-
ted and that a number of frequency sum rules are
satisfied exactly. " In this approach, the original
problem of calculating S(g, ar} is replaced by the
equivalent problem of evaluating the memory
function. This function is formally the same as
S(C, &u} but the time evolution entering the memory
function describes fast decaying processes only
and the main problem is then to find a way to ap-
proximate the memory function. In Ref. 9, the

memory function was first approximated by its
free-particle part. In the context of Mori's
formalism, this is a strange starting point for an
approximation because free-particle excitations
have infinite lifetimes while the memory function
should account for fast-decaying processes. By
introducing a phenomenological collision rate,
the memory function was "renormalized" and
then the collision rate was determined such that
the best possible agreement between theory and
experiment was obtained. Nevertheless, the
theoretical results could not explain the experi-
mental facts. In Ref. 10 the effect of various
modifications of the theory, given in Ref. 7,
were studied extensively and the most important
conclusion of this approach was that the final re-
sult depends on the way the lifetime effects were
taken into account. Obviously, RPA-based theo-
ries are inconvenient to describe processes where
lifetime effects are important and perturbation
theory is not valid. '

As already mentioned, Mori's formalism is more
appropriate to calculate the dynamical structure
factor because it is not restricted to weak interact-
ing systems and because the motion of the density
operator can be separated from fast fluctuating
processes. These fast decaying forces are des-
cribed by the memory function. Using a method
first given and applied to one-dimensional spin
systems by the present authors, "

we calculate the
memory function as consistently as possible. The
result of this calculation is an expression for the
dynamical structure factor as a function of the
frequency and some well defined wave-vector-de-
pendent static correlation functions. Using plaus-
ible approximations for these static quantities we
obtain reasonable agreement with experimental
results.

The plan of the paper is as follows. In Sec. II,
we discuss the choice of the slow variables and
we apply the general theory' to the electron liquid
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Hamiltonian. In Sec. III, simple approximations
for the static quantities appearing in the expres-
sion for S(q, ~) are proposed and comparison with
experiments is made. The conclusions of this
work are summarized in Sec. IV.

II. DYNAMK EQUATIONS

The Hamiltonian for an electron liquid with uni-
form positive background is given by

B= ~ Q, s
kis

+
k+ q s pyr p+qsr ~os

Py Kg q

s, r

&& =(«e'/q')(1-';, .),
e- =k'/2I

(2.2a)

(2.2b)

Here and in the following we use units such that
bz =1. The Fourier transformed density operator
is defined by

Pq =~ Cg R+ q. s ~

~os

'

(2.3}

The dynamical structure factor, which can be
measured by inelastic x-ray and electron scatter-
ing experiments is related to the imaginary part
of Eubo's relaxation function'~ by

S
pp (q, ~) =[- (()/(1 —e )] happ (q, &()), (2.4)

where ~q is the Fourier transform of the Coulomb
potential, including the interaction with the positive
background, and ~], denotes the kinetic energy of
an electron with momentum k:

operator A. By rotational invariance, we have
(A, B)~ =(A, B},. The Liouville operator L de-
termines the time evolution in the space of opera-
tors and is related to the Hamiltonian by

IA =[H,A] or A(&) =O' 'A(0) =e'"'A(0)e '"' .
(2. '7)

If ~e want to use the memory function formal-
ism, .ze first have to know which operators belong
to the subspace of slow-varying quantities. For
the electron liquid, the total density is a conserved
quantity. Therefore, the Fourier-transformed
density p~ is a slow variable, and consequently all
time derivatives are slow variables too. This
means that the subspace E of slow variables is
given by

E=(p;, Lp;, L'p-„, . . .) (2.8)

It is obvious that this set is rather large for prac-
tical purposes and therefore we will confine our-
selves by taking

(2.9)

as the set of relevant variables. Since L pq
=q' J~(J ~ is the current density) and I'p~ is re-
lated to the energy density by the continuity equa-
tions, the three operators appearing in Eq. (2.9}
have a weO-defined physical meaning. It is inter-
esting to note that in the former attempts'" to
use Mori's formalism, only the density and the
longitudinal current density were taken as relevant
variables. A discussion of the consequences of
this limitation will be given at the end of this sec-
tion.

For practical purposes, it is convenient to ortho-
gonalize the operators of E with respect to the
scalar product Eq. (2.5) and therefore we replace
L'p~ by

A-„=L'p-, p-, (f p, f p—),/{p, p}, . (2.10)

(e, )ef)ee(A e eee ") de,
0

(2 5)

C'pp(q, (()) = lim ImC'pp(q, z);
~0

g =z+ze, e&P.

Defining a scalar product of two operators by the
static susceptibility"' " 4'(q, z) =

4'„(q,z) 4'...(q, z) C, (q, z)

C's,.«z) z, pi, p(q, z) @zp~(q, z)

@~p(q, z) '4s,.(q z} 4'~~(q, z)

(2.11)

Following Mori, " the matrix of Laplace-trans-
formed relaxation functions

the Laplace-transformed relaxation function can
be written as"

C
pp (q, z ) = (p, (z —I ) 'p }(( .

is the solution of the matrix equation

[zl-Q(q)+Z(q, z)]4(q, z) =g(q) . (2.12)

As usual, (A) denotes the thermal average of the
As a consequence of the orthogonalization, the
matrix of static susceptibilities
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(p, p),

X(q) = 0 (Lp, Lp),

0

0 (A, A},

(2.13)

Denoting f (q, z) =(QLA. , (z- QLQ) 'QLA), and
applying the operator identity z(z Q-IQ) ' =1
+QLQ (z —QLQ) ' twice, we obtain the equation of
motion for the memory function,

[z'+ (LA, IA), /(A, A), ]f (q, z)

is diagonal. The frequency matrix is given by

0 1 0

=z (QLA, QLA },+(QL'X, {z QL-Q) 'QL-A), .

(Lp, Lp).
(p, p),

(A,A),
(Lp, Lp),

(2.14)
Since the last term of the right-hand side of Eq.
(2.1V} contains higher derivatives than all other
terms, it is reasonable to replace it by a complex
constant ~. Taking the limit z -0 we have

while the projector on the space, spanned by the
relevant variables is given by

p, {p,X), LP~(LP, X}, A~(A, X),
)

(p, p). (Lp, Lp). (A,A).

The projector on the space of fast decaying quan-
tities is given by Q=-1 —&. Since QLp, =QL p, =0,
the matrix of memory functions ~(q, z} contains
but a single nonzero element and we have

[(LA, IA), /(A, A. ),]f (q. , 0) =R,

f (q o) = lim f (q ie )
0

and the final equation for f (q, z) reads

[z~+ (LA LA)q/(A A)q]f (q z)

(2.16)

(2.19)

=z (QI A, QLA ), + [(LA, LA ),/(A, A ), ]f (q, 0) .

0 0

~(q, z}= 0 0

0

(2.16) By symmetryf(q, 0) is pure imaginary. Using the
sum rule"

0 0 ~(qz)

where &(q, z) = —(QIA, (z —QLQ) 'QLA), /(A, A. ), .
Comparing this expression with Eq. (2.6) we con-
clude that these functions are essentially the same,
but the time evolution entering ~(q, z) is given by
QLQ instead of L. By construction, QLQ describes
fast-decaying processes. Then the simplest ap-
proximation one can think of is to replace ~(q, z)
by a constant. Unfortunately, a calculation of this
parameter is only possible if it is allowed to use
perturbation theory. ' In a previous paper, "the
present authors suggested a simple method to cir-
cumvent this problem and we will use this ap-
proach here.

(QLA, QLA), = —lim d& lmf (q, z), (2.20)
j.
7T /~0

we can calculate f (q, 0) and the resulting expres-
sion for the memory function is

(QLA, QIA)„1
(A A) z+i (LA LA)'12/(A A)

'2

(2.21}

Note that in this approach no phenomenological
collision rates have to be introduced. Using Eq.
(2.12), the solution for 4'(,))(q, z) is easily obtained
and we have

In order to show that the memory function has been
calculated as consistently as possible we expand
Eq. (2.22} for large z and we find

( ) (P P) (LP LP)
z

(2.24)&=0, 1, 2, 3 .

{p,p), [z'+z&(q, z) —(A,A) /(I. p, Lp), ]
z[z'- (L'P L'P) /(LP LP),]+~(q, z}[z':(Lp LP) /{p P) ] '

This means that our expression for C„(q,z) exactly
fulfills the sum rules

(IpI. p)f."~
,

"e=;,, (q-~)~w"

(L'p, L'p). (L'p, L'p). ,z' (2.23)
The first three sum rules are automatically ful-
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where

Z, (QL'p, QL'p).
(Lp, I.p), 8+17 ' '

with

filled by the choice of our variables. The sum rule
for + =3, however, is implied by the sum rule on
the memory function Eq. (2.20).

In order to show that we can recover the results
obtained by Mukhopadyay and Sjolander, ' we take
fp~, Lp~} as the set of relevant variables and we
repeat the steps given above. Then we find"

(p, p). [~+F(q, ~))
s'+~i(q, ~)- (LP, LP), /(P, p), '

where X'(q) denotes the usual Lindhard response
function for the noninteracting electron gas. For
small wave vectors, the local field factor G(q) can
be written as' '0 G(q) = yq' while for large wave
vectors one finds" ~ - G(q)- 3.

The calculation of the susceptibilities (Lp, LP), ,
(L'p, L'p), , and (L'p, L'p), is straightforward and
the results are summarized in Appendix A. In the
following, p denotes the plasma frequency of the
noninteracting system in units of the Fermi energy
&~ and q stands for the wave vector in units of the
Fermi wave vector &~.

We first consider the region of small wave-vec-
tor transfers (q-0}. Restricting ourselves to
terms of order g' we find

=(L p L p) /(Lp Lp)' ' (Lp, Lp),
e~z(p, p4

' =~H1+q'(-'~&'- r)), (3.2a)

The frequency dependence of this relaxation func-
tion is exactly the same as the one of Ref. 10, with
choice IV for the memory function. The only differ-
ence betweenboth relaxation functions is that Muk-
hopadyay and Sjolander assumed that v is propor-
tional to the plasmon frequency or~, while in our case
it is not.

The relaxation function given by Eq. (2.25) has
three poles in the lower half of the complex. z
plane. One pole is pure imaginary and the other
two are symmetric with respect to the imaginary
axes, Therefore this relaxation function can never
give a line shape with two peaks at positive ener-
gies. This simple but strong argument justifies
our particular choice of the variables Eq. (2.9},
because the resulting relaxation function Eg. (2.22)
is a four-pole approximation.

I2 I2P)e ~2 [1 (1+ ~ 2 ~
)q2]

1
2

dk [S(k) 1], (3.2b)

I3 +8P)a 48 ~2 [1 ~g(0)]q2 + +4 (1 1$ yq2)
~'(Lp, Lp).

(3.2c)

Z(z, q) =(un~a/(a+i(a~a'~'), q-0, (3.3}

where

Substituting these expressions in Eg. (2.21) we con-
clude that the memory function is independent of q:

III. APPROXIMATIONS

The remaining problem is the evaluation of the
static quantities appearing in the expression for
the relaxation function [see Eq. (2.22)]. Although
we have formulated the dynamical theory for ar-
bitrary temperatures, we will restrict ourselves
to the zero-temperature limit. This is a good ap-
proximation for the electron liquid because the
Fermi energy is of the order of electron volts.

Instead of using the results of laborious numer-
ical calculations, we will make simple but plaus-
ible approximations for the static quantities, be-
cause it turns out that even then, good qualitative
agreement with experimental results is obtained.

For the static susceptibility, we use the well-
known expression'

—x'(q)
1 —~ (q)[1 —G(q)lx'(q) '

24[1-g(0)]- 9y~',
'-,'+ ~', (5r —2r }

c„(q,z) z
(p, p), ~'-~l(q) ' (3.4)

where &u (q) =m [1+q (6/5aP& ——,y)].
For large wave vectors (q-~) we have

(Lp, Lp),i~'(p, p), =q'--:q'.

(L'P, L'P),/e' (LP, LP), = q'+ —", q',

(L'p, L'p),/~~(Lp, Lp), = q'+ 6q'.

(3.5a)

(3.5b)

(3.5c}

Thus the inverse collision time +&+' ' is roughly
proportional to +&.' Neglecting the damping for
a moment, Eq. (2.22} reduces to'
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0.4. APPENDIX A

0.2
Using the relation

KALB't f,(4'e'=LB)dl,
FIG. 3. Line shapes for Be and Li in the large-mo-

mentum-transfer region.

d
(4. 'e-"'a& dx

dA,

ceptibilities and a memory function. This function
has been approximated as consistently as possible.
The final relaxation function only depends on the
frequency and some static correlation functions,
and exactly fulfills four frequency sum rules. No
phenomenological collision rate has to be intro-
duced. Using simple approximations for the static
quantities, good agreement between experiment
and theory is obtained.

In our opinion, the dynamical theory given in
this paper can be useful if one wants to extract in-
formation about static quantities, such as the kin-
etic energy and the static susceptibility, from ex-
perimental data.

By eonvoluting the experimental resolution func-

(Lp, Lp), = nq'/m,
I

(L'p, L'p), = 2 (~;.;—~-,)'(c', c;&
k

(A2)

jt.+, [(k q+q')'v-„, ; —(k q)'v-„]
m5k

& (c'-, (c,c;, l-, c- &, (A3)

= Q'a& g~e "a—&=([A-',a]&,

we cen write (Lp, Lp), , (L'p, L'p) „and (L'p, L'p),
in terms of static correlation functions. In the fol-
lowing, we assume that T=O, so that the expec-
tation values must be evaluated in the ground
state. The exact expressions for the static sus-
ceptibilities now read

(L'p, L'p), = 2 Z (~;,;—~;)'(c', c;&
k

+, e- —e- » ' k ~ qv-k 2q '+ 4m q+ k ~ q+ n k —m k
mnk

-(k —q) qv-„;(q +2n q+2m q+k q+n k —m k)](ct, -„c~zc;,-„c-&]

+ —.Eok+q) (0+q)[k qv;-(k+q) qv;. -,][5 qv, -(V+q) qv;. ;1
pk

+2p ~ q(k+q) qvy[k. qv; (k+q) qv;, q]]Q (c,-„c;,qc;c;,;,-„c~c-&.
mal

(A4)
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(A5)

For simplicity we have not written the sums over the spin indices explicitly. The density of the electron
gas is denoted by n.

As a first approximation we now ignore the difference between the exact single-particle density and the
density for the noninteracting system. ' " Using Eqs. (A2) and (A3) we can write

1 — dk k'[S (k) - 1] I —, , ln
I 6 2q' 4kq' k -q

In this expression ~~ denotes the plasma frequency
in units of the Fermi energy g~ and the wave vec-
tors are in units of kz. S(k) stands for the
static structure factor. ' In order to obtain
a tractable expression for (L3p, L'p)„more as-
sumptions are necessary. Therefore, the three-
particle correlation function is approximated by its

uncorrelated part" (cf. terms in &u~~). As we did
not succeed in writing all two-body terms as a
function of S(k), we have replaced some difficult
terms by their mean value. This approximation
does not affect the essential wave-vector depen-
dence. We then obtain

=q'+ &q'++'q'+2(v~[2-g(0)](q'+ —", q')+,' 1+ — dkk'[S(k). -1]

(1V 2k' 3 q' (k'-q')' k+q (k'-q')' k+q
&6 q2 2 k2 kq3 k q 4k3q k q

(A6)

Finally, we want to stress the fact that the ap-
proximations we have made, have no implications
at all as far as frequency sum rules are concerned.
Care must be taken, however, that the Schwartz
inequality is not violated. In our case this means

that our expressions satisfy the inequalities

(L'p, L'p), (p, p), (Lp,-Lp)'„

(L'p L'p), (Lp, Lp) ~ (Lap Lap)'.
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