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Recently, Dash has shown that adsorption isotherms can show distinct types of behavior. In class I the

bulk vapor pressure is reached asymptotically for an infinite adsorbed amount; in class II it is reached for a

finite amount; in class III no adsorption takes place at all. We show that these possibilities can also be

derived by a simple discussion of the possible forms of the free energy as function of the thickness of the

adsorbed film. The question of clustering, i.e., the formation of drops, is also discussed.

In a recent paper, Dash' has developed a theory
of cluster ing in adsorbed films, and described
three classes of behavior, which correspond to
three types of adsorption isotherm. In class I the
saturated vapor pressure of bulk adsorbate is
reached asymptotically as the thickness of the ad-
sorbed layer becomes large; in class II it is
reached at a finite thickness, and further adsorp-
tion is in clusters; in class III there is no adsorp-
tion at all.

The argument used in characterizing these
classes makes strong use of the Young-Dupre
wetting condition, which may not be familiar to
some readers. The purpose of the present paper
is to show how a large part of the results can be
read off directly from the behavior of the free en-
ergy of the film as a function of thickness, and to
connect the classification with this behavior. How-
ever, for the question of the clustering explicit
reference to the wetting condition seems unavoid-
able.

I et E(n) be the free energy per unit area of a
uniform adsorbed layer containing n atoms per
unit area. Figure 1 illustrates the simplest pos-
sible shape for the E(n) curve; other shapes will.
be discussed later. In general E decreases mono-
tonically with n, whi1. e the chemical potential

tion of the pressure.
For large n, the asymptotic form of E may be

written

E „=np,(T)+a„(T),
where p3 is the bulk chemical potential, related
to P~, the saturated vapor pressure of bulk ad-
sorbate. n„ is the intercept of the asymptote with
the E axis. From Eci. (3), n„ is also the constant
term in the asymptotic linear 1aw, and therefore
the surface free energy.

Since, for large n, our assumptions include a
surface bounding the layer against the substrate,
and another bounding it against the vapor,

~ =&ss+&t.

in the notation of Dash. '
For any other n, we can draw the tangent to the

curve, and define the intercept with the E axis as
o.'(n). Evidently

E
n(n) =E(n) —n —,

dn '

and therefore

d~ d'E
de

dpi'

From (1) and (2),

is negative and increases with n. The intercept
with the E axis is the free energy per unit area of
the bare substrate, i.e. , it contains the surface
free energy of the substrate, denoted by Dash by

y„. We may ignore the volume free energy of the
substrate, which ls a constant additive term for
our purpose.

The chemical potential p, is related to the vapor
pressure p. If the vapor is a perfect monatomic
gas, then

p = kT [ln(peak T) ——ln(mkT/2mb') ] . (2)

In any event, p is a monotonically increasing func-
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FIG. 1. Free energy vs coverage: class I. No point
of inflection. Solid curve, uniform layer;dot-dashedline,
asymptote.
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d2E dp d lnp
dn dn dn

and (6) becomes

do'. (n) „dInp
dn dn

e(n, )

This is identical with the Gibbs equation for the
spreading pressure P, except for the sign, , so that

Q(n) = -Q(n)+ const.

But for n=0, P vanishes, whereas o.'is y„. Hence
FIG. 2. As Fig. 1, but with one point of inflection;

class II. Dashed curve, unstable uniform layer; double
line, some bulk adsorbate.

Using Eq. (4) of Dash, we have

a(n) =y,„.
From (4) therefore

(10)

For the shape of the E(n) curve shown in Fig. 1,
evidently n„& o', (n) for all n, and by (11) this means
that the condition for complete wetting [Eq. (1) of
Dash'] is satisfied for all n. Independently, in-
spection of Fig. 1 shows that, with increasing n.,
p, and hence P, increases continuously to reach
the bulk value asymptotically, corresponding to
class -I behavior.

One may query whether the condition for com-
plete wetting should have been seen as evidently
necessary a Priori, since its derivation assumes
the coexistence of the film with a liquid phase,
which does not exist below bulk vapor pressure.
The present derivation, which does not make use
of the wetting condition, confirms that it is sat-
isfied in class-I systems.

The alte'rnative situation, in which o.„&n(n), re-
quires that the F(n) curve have somewhere a neg-
ative curvature, either by having a point of inflec-
tion ag in Fig. 2, or negative curvature all the
w. ay, as in Fig. 3.

FFirst consider the ease of Fig. 2. Here there
exists a value n, of the coverage, for which the
tangent is parallel to the asymptote. Uniform lay-
ers between 0 and n, are still stable, and the vapor
pressure rises with n to reach the bulk value at n, .
Beyond n„ the uniform layer, whose free energy
would be given by the broken curve, is unstable,
because its free energy is above the double line,
which for n & n, represents an adsorbed layer with
n, atoms, with n n, in bulk form (We ne-e. d not
attribute any surface free energy to the latter,
since we are concerned with the limit of a very
large area of substrate, whereas the nonadsorbed
substance could be in a single drop, and its sur-
face area negligible. )

It follows that in this case there cannot be a uni-

y„, cos~+y„-y,„=0, (12)

where ~ is the angle of contact. The requirement
that cos~ lie between 1 and -1 leads, in conjunc-
tion with (11), to the conditions

-2y, „&o.(n, ) —u„&0 (13)

If the curve is as in Fig. 2, the second of these
inequalities is satisfied, since the tangent at n,
lies below the asymptote. Hence cos~ is less than
unity, and we do not have complete wetting, in

agreement with our conclusion that no uniform ac-
cretion can take place. Whether the first part of
(13) is satisfied, depends on the value of y,„. If
this is large enough, there exists a value of ~ sat-
isfying (12), and a drop can adhere to the surface.
If y,„ is too small, there is no possible value for
8, and no further adsorption, uniform or other-
wise, can take place.
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FIG. 3. As Fig. 2, but with negative initial curva-
ture; class III.

form layer with a coverage exceeding n, . The dia-
gram does not tell us directly anything about the
stability of a nonuniform layer. However, at and
above n, the system is at the bulk vapor pressure,
and we can apply macroscopic considerations to a
nonuniform configuration, such as a large single
drop adhering to the surface, on top of the uniform
layer.

In that case we can impose the setting condition
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FIG. 4. As Fig. 1, but with two points of inGection.
Double line, bvo-phase region.

In either case, the adsorption isotherm resem-
bles that deduced by Dash for his class II. lf the
first part of (13) is satisfied, adsorbate added be-
yond n, will form a drep or drops on toIj of the m, i-
form layer. Otherwise no more adsorbate ad-
heres to the surface, but it will coadenee anywhere
(not excluding the possibility of drops resting on,
but not wetting, the film-covered surface}. We
shall refer to these two possibilities as classes
IIa and IIb. They may not be easy to distiaguish
exper imentally.

In the case illustrated in Fig. 3, in which the
E(n) curve has negative curvature from the begin-
ning, no uniform film can form at all. The whole
of the curve lies above the line through its starting
point parallel to the asymptote. Thus bulk liquid
is more stable than any uniform layer. Here
again, the second part of (13}is necessarily vio-
lated at n=0. If the first part is still satisfied
there, i.e. , for sufficiently large y,„, there will be
a finite wetting angle, and a drop may form on the
substrate. Otherwise no adsorption can take place
at all. We shall denote these two situations by IIIa
and IIIb, respectively. Again the observed iso-
therms look the same, and have the form given by
Dash for class III. His description seems to fit

FIG. 5. As Fig. 1, but with a discontinuous rise ip
pressure.

our class IIIb.
Other possible shapes include a curve with two

points of inflection, as in Fig. 4. The curve
sketched there has a common tangent, with con-
tacts a4 n, and n, . The part of the curve between
these points is now unstable, and replaced by the
tangent, representing a two-phase region with

part of the surface having coverage n, and the rest
hiaving n, . Beyond n, thy v8.por pressure, which is
constant from n, to n» rises again, to reach the
bulk value asymptotically.

The examples discussed so far have a chemical
potential which is a continuous function of the cov-
erage. One cannot rule out a pnori the possibility
of discontinuities in p, , hence of breaks in the slope
of E. An example ig shown in Fig. 5, ah@re there
is a kink at n, . Here, as the coverage increases
through n„ the chemical potential increases dis-
continuously. This, ideally, is the behavior upon

completion of a monolayep at T=0. For real sys-
tems, and at finite temperature, there will. always
be some rounding off.
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