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The diffusion of a labeled particle on a one-dimensional chain is discussed. It is shown that the long-time
behavior' is dominated by density fluctuations leading to a t '" dependence of the mean-square deviation in

agreement with Monte Carlo results of Richards.

In the context of superionic conductivity, a num-
ber of recent investigators' ' have considered the
classical diffusion of labeled particles. In particu-
lar, Richards' has obtained the surprising result
that, for a one-dimensional chain with exclusions,
the mean-square excursion of a labeled particle
after a time f asymptotically varies as t' '. In
Ref. 1, this result was obtained by a Monte Carlo
calculation and then some intuitive arguments were
presented to provide some physical insight. Fed-
ders and Sankey' have developed a multiple scat-
tering formalism for the more general problem.
Subsequently' this method was applied to the one-
dimensional case where results similar to those
of Ref. 1 were obtained. The purpose of this note
is to point out that the Richards result follows
directly from the coupling of the single-particle
motion to the density in a one-dimensional geome-
try.

Consider a simple one-dimensional lattice with
lattice constant a. A fraction c of the sites are
occupied by classical diffusing particles. At most,
one particle may be situated on a given site. This
"excluded volume" interaction in a one-dimen-
sional geometry constrains the order of the dif-
fusing particles to be fixed. The particles may
then be numbered sequentially with the order re-
maining invariant. On the average, the spacing
between particles is a/c. Let u, (t) be the dis-
placement of the l th particle from a configuration
where the particles are uniformly spaced. Then,
for relative displacements which vary slowly, the
local particle concentration fluctuation in the
neighborhood of the 1th particle n(t ) is given by

(e') du, ,
(a) dI, '

or upon Fourier transforming,

A precise derivation of these relationships and of
their range of validity is given in the Appendix.
The concentration fluctuations obey a diffusion
equation leading to

(n, (t)n, (0)) =c(l —c)& D' ' @&0,

where D is a diffusion constant relevant to the
long-wavelength behavior of the chain; it may be
expressed in terms of the microscopic transfer
rates. The concentration-dependent prefactor ex-
plicitly exhibits the role of the exclusion in limiting
the amplitude. of the diffusive modes. Combining
(2) and (3), we find for the mean-square displace-
ment of any particular (labeled) particle in a time

—,'( [ug (t ) —u, (0)] ') = (u', (0)) —(u, (t )u, (0))

dkk (1 —e ')
C ]

(4)

which upon integration yields

([u, (t) —u, (0)] ') = const+[ (l —c)/c] (4wDt )'~'

(5)
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The constant depends on the short time behavior
and is not derivable from Eq. (4). Both the asymp-
totic time dependence and the concentration de-
pendence exhibited in Eq. (5) are in close agree-
ment with the Richards' Monte Carlo results. This
unusual behavior is thus purely a one-dimensional
effect closely related to the divergence of the
mean-square amplitude for the elastic chain. The
effect does not carry over to two and three dimen-
sions, where we expected a labeled particle to
obey a standard diffusion equation with a renor-
malized diffusion constant to take into account ex-
clusion effects.

u= .u e ""i.
a

Expansion of Eq. (Al) gives

n, (t)n, (0) = c'q'u, (f )u, (0)[1+O(q')], (A3)

n, (t )n, (0) = E, c'q' u, (t )u, (0) t1+ O(q') ],
(A4)

which leads directly to our (and the Richards' )
result. One notes however that Eq. (A3) is actually
inconsistent. Hessumation on the right-hand side
would lead to
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where

q 2(g 2) /2

is a Debye-Wailer factor. One notes that the (in-
stantaneous) mean-square fluctuation

APPENDIX

The relationship between the density and dis-
placement in Eqs. (1) and (2) can be given a pre-
cise meaning using standard lattice dynamics tech-
niques. This also gives some insight into the ap-
proximations involved.

One has

(Al)

where N is the number of available sites, 9, is
the position of the lth particle in a uniformly
spaced configuration, and

Dt l(u2)» 1 (q (u ) « 1) (A7)

This is assymptotically consistent for sufficiently
small q (long times) since

(u') -N, q21/N,

so that a regime of the type required in (A7) exists
for any finite system when t &

¹

(u') = —Q{u,u, ),
q iso

diverges for a truly one-dimensional system. On
the other hand our result in the text requires
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