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Neutral-ionic interface in organic charge-transfer salts
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Charge transfer (CT) stabilization in linear stacks ...D~+A ~ D~+A ~ ... of m-electron donors {D) and
acceptors (A) involve spin-dependent configuration interactions that are treated exactly in rings of N = 4, 6,
8, 10 sites, and extrapolated to N~ ac, by adapting valence-bond techniques to electron-hole excitations.
The ground state CT y(z) and the magnetic gap EE„(z)/t/2I tI to the lowest triplet are computed for
arbitrary z = 8/t/2I rI, where —28 is the energy for DARD+A, —ItI = (D+A IxI
DA) is the Mulliken CT integral, and D +, A ' sites are excluded. The spin degeneracy of A cr and
D +cr ion radicals is treated exactly. Instead of the discontinuous change from y = 0 to y = 1 in the limit

I
i I~0, finite overlap gives a continuous y(z) and y(z, ) = 0.68+0.01 at the neutral-ionic interface

z, = 0.53+0.01. The magnetic gap hE is finite for z & z, and vanishes for z & z„where there is a
diamagnetic to paramagnetic transition and the ground state switches from k = 0 to k = m symmetry.
Collective efFects due to long-range three-dimensional Coulomb interactions are included in a Hartree
approximation and produce a first-order transition, with discontinuous y{z), when the critical value

in/+2ItI = 1.4+0.1 of the Madelung stabilization m of a dimer is exceeded. The puzzling magnetic

gaps in paramagnetic organic CT salts with mixed regular stacks arise naturally for partial CT and z & z, .
Valence-bond analysis of CT excitations models the physical properties of organic complexes with

overlapping sites and intermediate y.

I. INTRODUCTION

Ionic lattices are formed when the Madelung en-
ergy M per ion. pair exceeds the energy ID —A~ of
transferring an electron from a donor (D) to an
acceptor (A). NaCl is an elementary example in
which D =Na, A =Clproduces a lattice based on
closed-shell, diamagnetic Na' and Cl ions. Alka-
line-earth oxides approximate divalent ionic lat-
tices, in spite of the large energy needed to trans-
fer a second electron. Strong organic donors and
acceptors' also crystallize as salts when M ex-
ceeds ID=A„. Now D and A are closed-shell w-

electron molecules and paramagnetism is associ-
ated with the s = 2 ion radicals D' and A . In the
limit of nonoverlapping sites, an integral number
of electrons can. be associated with each lattice
site. Both organic and inorganic salts then show
sharp neutral-ionic interfaces, with D"A" lattices
that are either neutral (y= 0) or ionic (y= 1). The
simple condition M &ID- A„ for an ionic lattice can
readily be generalized to include all intermolecular
interactions of both the neutral a,nd the ionic lat-
tice.

Real solids have overlapping sites, with nonvan-
ishing Mullilten charge transfer (CT) integral

f=(D'a IXI').
CT interactions can be generalized' to crystal-
perturbed states. In organic solids based on planar
aromatic donors and acceptors, overlap is largely
restricted to one-dimensional stacks on the basis

of the polarization of the CT absorption and the
great anisotropy of electric and magnetic proper-
ties. ' A sharp neutral-ionic interface clearly re-
quires that t, which is of the order of 0.1—0.3 eV,
be far smaller than M —(ID A„), whic—h is about
-4'to +2 eV. Borderline cases with t- IM —(In
-A„) I have nonintegral y in the ground electronic
state. '

We present in this paper the first exact analysis
of the neutral- ionic interface for overlapping
sites. ' The ground-state CT, y, of the one-di-
mensional stack . . .D"'A D"A'. . . is found as a
function of 8/v2 If I where —28 is the energy re-
quired to transfer an electron from D to A in the
partly ionized solid. The energy 4E of the lowest
triplet above the singlet ground state is also com-
puted and plays a central role in the magnetic
properties. hE is finite for a neutral lattice
and vanishes for y&y, —-0.68+ 0.01, where a. dia, —

magnetic to paramagnetic transition occurs at O'K.
Overlapping sites necessarily require a, many-

body approach and idealized models. We never-
theless can include the key physical features of.
correlations in na. rrow-band solids and of collec-
tive effects due to the long-range Coulomb inter-
actions of the ionic solid. The collective nature
of the neutral-ionic transition arises because it is
easier to transfer electrons in an almost ionic lat-
tice, with Madelung energy My' per pair, than in a
neutral lattice, where only the nearest-neighbor
interaction M, stabilizes the D A ion pair. In the
Hartree approximation" for the long-range, three-
dimensional Coulomb interactions, the energy —26
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for transferring an electron from D to A depends
on y..

6(y) = 6(0)+ my. (2)

For a neutral (y= 0) lattice, -26(0) is approximate-
ly

—26(0)—:E(D'A ) —E(DA) =I~ A~ ——I,.
The charge distributions of D' and A at the crystal
separation l.eads to M, -4 eV in organic CT com-
plexes. ' Embedding the dimer in the solid yields'
the additional stabilization m=M —M, -1 eV fav-
oring an ionic lattice. Thus —26(y) in (2) vanishes
at y= 2 for M=ID —A„, the usual interface between
the neutral and ionic lattice, and energy is gained
thereafter on further ionization.

The neutral-ionic interface in organic solids in-
volves y —0 alKl y -1. Doubly ionized D" or A'
sites are energetically quite unfavorable. Our
model overestimates such electron- electron cor-
relations by excluding D" or A2 sites. Each donor
can then be in the three cyrstal perturbed electron-
ic states, D, D'n, and D'P; each acceptor in A,
A n, A P. The t.numeration of all possible charge
and spin distributions for a chain of N sites form-
ally resembles 'a:valence-bond (VB) description'
of n electrons. ' The size of the basis set increases
as 3" and is only s'lightly reduced by application
of charge conservation and symmetry. Overlapping
sites lead to linear combinations of these VB
basis states in which any site can occur with dif-
ferent charge or spin, thus producing a nonintegral
ground-state CT y. The interplay between the CT
integral t = —It I in (1) for nearest-neighbor trans-
fers along the DA stack and the energy -26 in

(2) for producing a D'A pair is treated exactly for
rings up to N= 10 in terms of the single parameter
z= 6/v2 It I.

Section II develops a model for the neutral-ionic
interface in terms of an electron-hole representa-
tion whose diagrammatic analysis by VB methods
is the principal mathematical result of the paper.
This method can be applied to other topologies,
although a one-dimensional system yields by far
the simplest N -~ extrapolations. The inclusion
of collective effects in 6(y) and the behavior of y(z)
and t2E (z) are discussed in Sec. III. The neutral-
ionic interface is not symmetric about z =0 on ac-
count of the different spin degeneracies of neutral
and ionic sites. The lattice at 0 K undergoes a
diamagnetic to paramagnetic transition at z, =0.53
+0.01, which is computed here for the first time.
The fact that ~ (z) does not vanish for z &z,
even in regular lattices with a single CT integral
offers a natural explanation for the static suscep-
tibilities of several solid organic CT complexes.
These ionic solids can now be described as show-

ing partial CT, thus removing the fundamental
theoretical difficulties of models based on y-1.

II. VALENCE-BOND ANALYSIS
OF. ELECTRON-HOLE EXCITATIONS

nty

even

Cn~Cnfy
= CreCm

Odd

(6)

The dimension of the VB basis for N sites can be
computed by noting that there are (» ') ways of
ionizing p of the N/2 D sites and ( ') ways of dis-
tributing p A sites to satisfy (6). Since the. spin
degeneracyof A o or D'o is2, thatof p ionicpairs
is 2'~, and the total number of VB structures is

E/2
(N/2)2222

T p

N~ is listed in Table I for N=4, 6 8, and 10,
which is the largest ring considered.

The electron-hole representation of a mixed DA
stack with D" and A' sites excluded, with near-
est-neighbor CT integrals t = —~t ~, and with energy
-26 for transferring an electron from D to A thus
leads to the basic equation of our model,

The molecular sites in the one-dimensional ar-
ray . . .D~'A~ D~'A~. . . are labeled consecutively
with odd n for D sites and even n for A sites. The
electron-hole vacuum ~0) is defined as the neutral
lattice ~. . DAD.A . . ) a. nd is represented by N
points for N sites. Fermi creation operators c~,
create a crystal. perturbed A 0 state for even n
and a D'a state for odd n. The CT excitation for
a DA dimer is induced by the operator

(4)

which is denoted as an arrow from n to n+1. It
can be verified directly that (n, n+1)t ~0) is a nor-
malized singlet state in which sites n and n+1 have
an electron-hole excitation corresponding to trans-
ferring an electron from D to A. The matr'ix ele-
ment of K between ~0) and (n, n+ 1)t ~0) is just
V2t. Reversing the arrow, or bond, gives

(n+1, n)t =-(n, n+1)2,

since two Fermi operators are interchanged in

(4). The adj oint operator (n+ 1,n) returns
(n, n+ 1)t ~0) to the vacuum ~0) .

Any charge and spin distribution on the one-di-
mensional lattice can be represented diagrammat-
ically by points for neutral sites, by arrows for
singlet-correlated D'A sites, and by notched ar-
rows for triplet-correlated D'A sites. The ex-
clusion of D" and A' sites means that no VB
structure has two arrows at any site. Charge con-
servation requires equal numbers of electron ex-
citations (A sites) and hole excitations (D' sites),



NKUTRAI. -IONIC INTERFACE IN ORGANIC. . . 1993

TABLE I. Dimensions && of the VB basis set and M of selected subspaces of $/0 with Axed
S and k for a x'ing of & sites.

Ring
N

VB Basis
N&, Eq. (7) Total

Singlets (S=0)
m(k = 0) m(& = ~)

6
8

10

33
245

1921
15 525

7
30

143
70S

3
6

19
73

2
6

17
75

42
296

1475

x(age~ c +P f(n, m+1)~+(n+1, n)] f, (8)

with g = 8/vY ~f f. Since CT does not involve spin
flips, the total spin S,is conserved and only singlet
operators (n, n+1)~ and (n+1, e) occur. Further-
more, the C„rotational symmetry of a ring of N
sites allows the classification of the eigenstates
of 3Cp by the wave vector k,

k=0, +2m/N, Av/N, . . . , + v. (8)

The dimensions of several exact subspaces (S,k}
for rings with N =4, 8, 8, and 10

sites a,re listed in Table I. The VB analysis of
-X,/v 2 jt I

in these exact subspaces is developed
below.

Several qualitative features of Xo follow( directly:
z --~ corresponds to y = 0, since ere@ting an elec-
tron-hole pair costs —W2 (t ~s = & ~, while z -+~
yields y =1, with all sites ionic, and a -0 describes
comparable values of t and & aieund the neutral-
ionic interface. Other propertiis of X can be ob-
tained from the generalization

(10)

where U&0 is the correlation eiiergy for creating
D" states at odd n and A' states at even h. The
U- ~ limit of the electron-hole Hubbard ~odel
(10) excludes doubly ionized sites and reduces to
Xp The canonical transformation eg -c„,for
odd n and c„,-a~ for evert n leads to the modified
Hubbard model4'

where we have neglected the additive coristant
(2sn+ U)N/2 associated with the neutral lattice
~0). The highest occupied molecular orbital
(HOMO) energy en.=+ &- U of D sites and the low-
est unoccupied molecular orbital (LUMO) energy
e„=—& of A sites are shown in Fig. j., together
with the on-site correlatioo U&0 for doubly. oc-
cupying D sites in the electron-hole vacuum or
A' sites. The self-consistent solution' of (10)
for N electrons on N sites is hn approximate sol-
ution of 3C,„for finite U. Long-range Coulomb
interactions can be included, in a Hartree approx-
imation, by redef ining the coefficients &„, c~, and
U in (11). An energy gap for optical transitions is
found' even at the neutral-ionic interface, but mag-
netic properties are spoiled in self-consistent sol-
utions. Since Xp is the U- ~ limit of a Hubbard
model, it conserves the total spin S and has its ab-
solute ground state in the S =0 subspace. The low-

--0

FIG. .l, Schematic repre-
sentation of the energy levels
~g for8 sites Wd q„ forA
sites, ivith the correlation
energy U for doubly occupy-
ing either i& or e&. The
energy' foi' the electron
transfer E44 to 6 A is -26.

Donor Acceptor

est magnetic excitation is a triplet (8 = I) state with
energy 4hZ .

The ground-state properties of Xc in (8) are thus
associated with the 8 =0 subspace. 'The ground
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Numerical differentiation of the lowest 8 =0 eigen-
value of X, for a given ring N thus yields y direct-
ly. The crossover region z,(N) from k=0 to k=w
involves a change of slope, or a jump in y, and de-
fines the neutral-ionic interface.

Arranging the sites in a ring minimizes end ef-
fects The. VB analysis of -X,/v"2 If I

for K=6, the
"benzene" case in the Burner-Pauling method, ' will
now be summarized. The extension to larger N is
straightforward. The vacuum state IO) is repre-
sented in Fig. 2 by the six points of a hexagon. The
VB ket ll):

I1&= g(n, n+1P lo&, (13)

from Fig. 2 is clearly the k =0 linear combination
of VB structures with one bond, a singlet-corre-
lated electron-hole represented by an arrow from
n to n+1. Remembering that the exclusion of D"
or A' sites implies that each site has at most a
single bond, we see that another application of
K,/v2 It I

p-roduces the two VB structures I3) and

I4) in Fig, 2. The singlet annihilation operators

4
5 ~ ~

state is nondegenerate and is consequently in either
, the k =0 or 4 =m subspaces listed in Table I for
rings of up to K=10. The vacuum state IO) clearly
transforms as k = 0 and is the ground state in the
limit z --~ of a neutral lattice. The fully' ionic
lattice . . .O'A D'A . . . has a charge-density wave
and transforms as k =m, with a change in phase for
every rotation of 2w/N T.hus the absolute ground
state is in {0,0) for z &z, (N) and in {0,w) for
z&z, (N). The average degree of CT y is just the
average number of electron-hole excitations in
the absolute ground state,

y(z, ~)= —gc„,.„, = —&x,&/u~lfl~. (12)
1 8

in -Xc/v 2 It I
acting on

I
3) induce long-bonded

structures such as I2), as can be verified from
the general identity

(n+2, n+1)(n n+1)t(n+2, n+3)~=-,'(n, n+3)

(14)

Since interchanging the sense of a bond changes
sign, as shown in (5), the k =0 linear combination
of long-bonded singlets vanishes.

Repeated application of h =-R,/0 2 lt I
interre-

lgtes the VB kets in Fig. 2. The resulting linear
equations in the S =O, &=0 subspace are

h 0)= iS),
hl1&=2z 1&+6 lo&+2I3&+2I4& ~

hl» =4z I»+2 I»+3 I6&

h I4&=4z I4&+ Il&,

h I5) =4z I5)+ ll),
hl6&=6z 16&+ I3&-!I5&.

The fully ionic structures I6) and I7) are the
usual' neutral VB kets for benzene and describe
the different ways of spin-pairing a single elec-
tron at each site. The present interpretation is
quite different physically: the Kekule structures
I6) and Dewar structures I7) have the same ener-

gy 6z under the diagonal part of -K,/v 2 It I, which
merely counts the number of ionic sites. However
the mathematical results' for the completeness of
the VB basis, for evaluating overlaps between
structures, and for finding linearly independent
structures are directly applicable to X,. For ex-
ample, VB structures with intersecting bonds are
not linearly independent and need not be included
in Fig. 2.

The linear etluations (15) describe exactly the
configuration interaction of all S =0, k =0 linear
combinations of VB structures in Fig. 2. To ob-
tain nontrivial solutions for the eigenvalues, we
arrange the coefficient in columns to form a mat-

2e ~6

I

V 8
Structure: ~0)
Number: I 6

0 6 0 0 0 0

1 2g 2 1 1 0

Structure ~4)
Number 3

IS)
6

ls)
2 3

-Xo 0 2 4z 0 0
(tj 0 2 04' 0

0 0 0 0 48 -1/2

0 0 3 0 0 6g

FIG. 2. Valence-bond structures in the singlet sub-
space of $CO, Eq. (8), for a ring with N = 6 sites. Donors
occupy the odd sites and acceptors the even sites.

and find the roots of the corresponding determin-
ant. Since the convenient VB basis IO), I1), I3),
I4), I5), and I6) in {0,0) is neither normal nor
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orthogonal, (16) is not symmetric. It can be sym-
metrized by orthonormalizing the basis, but such
a procedure is tedious for the large M values of
symmetry-adapted states listed in Table I for
N=8 or 10. The largest eigenvalue A»(z) of (16)
gives the exact ground-state energy -&2 ft f&„(z)
in the (0, 0) subspace of X,. This root and the
corresponding eigenvector are readily obtained"
iteratively from (16). We start with a normalized
M-component vector each of whose elements is
M 'i', multiply by (16), normalize the resulting
vector, and repeat until the eigenvalue ~» and
eigenvector cease changing. Varying z in (16) is
straightforward, since the energy —v 2 If fz = 25 of
O'A pairs only occurs on the diagonal. Thus A»(z)
and its numerical derivative leading to y are read-
ily found.

Each rotation of 2v/N changes the phase in the
4 = m linear combinations of the VB structures in
Fig. 2. We take positive phases for (n, n+1)t
bonds when n is odd and negative phases when ~
is even. Thus I1) in (I.3) now has a phase factor
of (-1)"". Configuration interaction in the 10, mj
subspace of k= K,/v 2 ft I

—interrelates Il), I2&,

I», I5), f6&, and I7&:

k I»=2z I»+21»
k 2&=2z I2&+ I5&,

kl3&=4. I3&.2 f1&. I3).3 f6&,

k 5) = 4z
f
5) +

I
1) + 2

I
3) + 2

I 7),
h I6) = 6z

I
6) +

f
3&+ z I

5&,

k 17&
= 6z f7& + I»+ I5&

(17)

The neutral state IO& and the state I4) vanish,
while long-bonded kets based on I2) and I7) con-
tribute. Arranging the coefficients of (17) in col-
umns again generates a nonsymmetric 6x 6 de-
terminant whose largest root A. ,(z) gives the ex-
act ground-state energy —off t&„(z) in the (0, z)
subspace of X,.

It is clear that 4 =m favors the ionic side, since
both of the fully-ionized VB structures I6) and I7)
in Fig. 2 contribute, while the vacuum state IO)

does not. Indeed, all k =m subspaces have at least
one ionpair and, for a ring of N sites, have y(z)
-2/N in the limit z --~. The crossover from
X»(z) to &„(z)as the absolute ground state occurs at
z,(N) = 0.415 for N = 6. The change in slope from
'(k)/ zfNor z ~ z, to X,', ( )/Nzfor )zz, is shown in Fig.

3 for N = 4, 6, 8, 10. In the limitN - , the occurrence
of at least one ion pair in the 4 =m subspace cannot
change the energy per site and y(z) has a point of
inflection, instead of a discontinuity, at z, . Extra-
polating the discontinuity of Lky at z, (N) in Fig. 3
gives g, =0.52 y0.01.

0.80-

N= 4

1
— = y'c

/

I

/]t

/

l ON I C

0.50 Zc

0

FIG. 3. Degree of CT y (z,N) in the singlet ground
state of rings of N=4, 6, 8, l0 sites as a function of
z = 6/ 2 i t i . The crossover z~ (N) from k = 0 to k = z
symmetry results in a discontinuity for finite N and a
point of inflection at z~ in the limit N

Table II lists the absolute singlet energies per
sites and y(z, N) for representative z values at
N= 4, 6, 8, 10. The numerical derivative in (12)
gives the degree of CT y(z, N) in Fig. 3 while

z, (N) is the crossover from the k =0 to the k =z
singlet ground state. The rapid convergence of

&,/N as a-pproximately N 4 is the basis for the
N- ~ extrapolations in Table II, while the N '
plot of z, (N) in Fig. 4 yields the second estimate
g, = 0.53 y0.01.

z,(N)

05—

O.I—

0.0
0 t.o ioze

FIG. 4. Crossoverz, (N) from ak=0 to ak=71 ab-
solute ground state for rings with N=4, 6, 8, 10 sites.
The linear extrapolation against N" gives z~ = 0.53
+ 0.01.
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TABLE II. Absolute ground-state energy &0(&)/N, in units of -v 2t, . and degree of CT y(&) of
X0, Eq. (8), for rings of &= 4, 6, 8, 10 sites.

Ring size N
6 8 10

Extrapolation '

1.076 970
0.854 8

1.095 203
0.820 1

1.097 644
0.807 5

1.096 973
0.802 7

1.097 0
0.792

0 4 A, ON

'y

0.744410
0.806 2

0.784 146
0.553 8

0.797 226
0.568 3

0.802 022
0.579 7

0.811 0
0.612

0.0 0.559 020
0.350 6

0.598 767 - 0.606 669
0.386 1 0.398 5

0.608 912
0.403 0

0.610 5
0.415

A.ON

'y

0.441 096
0.248 3

0.467 390
0.277 1

0,471 315
0.285 5

0.472 279
0.287 6

0.474 8
0.292

-0.8 A, ON

z,(~'
0.356 109
0.1814
0.354

0.372 532
0.201 1
0.415

0.374 299
0.204 7
0.438

0.374 735
0.207 5
0.462

0,375 7
0.209 2
0.53+0.01

+0.0005 for &ON, +0.002 for p.
Crossover from k = 0 to & = ~ absolute ground state.

The VB procedure allows the matrix elements of
-Xe/V 2 ~t j

to be generated almost by inspection
in terms of symmetry-adapted kets. Even the
K =10 subspaces involve only some hours, although
higher K is likely to be prohibitive in view of the
increasing dimensions suggested by the data, in
Table I. The iterative solution' of the la, rgest,
eigenvalue of the M-dimensional subspaces is fast
and economical, involving less than 2 sec of
IBM 360/91 time per subspace for N ~ 8 and about
20 and 40 sec, respectively, for S=O and S=l sub-
spaces for N =10. The numerical analysis is fa,c-
ilitated by adding a number like 10 to the diagonal
elements of (16), thereby shifting all energy levels
and ensuring that the matrices are not singular for
any z values of interest.

Since ~0) is necessarily a singlet, the most neu-
tral triplet- correlated electron-hole pairs for
%=6 are the VB structures 1) and ~2) in Fig. 5.
The M, = 1,0, -1 components of a triplet are in-
duced by the operator VB

Structure

Number

2~ 6
I

li)
6

wise, triplet bonds satisfy many of the same re-
lations as singlet bonds. Long triplets like ~2)
in Fig. 5, for example, are created in a manner
analogous to (14):

(n+2, n+1)(n, n+ 1)~(n +2, n+3) tr= e(n, n+3)tr. (19)

The entire S =1 subspace of -X,/v 2 ~f
~

can be
generated by repeatedly applying the singlet op-
erators in (8) to the elementary triplets ~l) and

There is always at least one ion pair in the
triplet manifold. Configuration interaction in
any of the M, = 1, 0, or -1 subspaces leads to an
absolute triplet ground state with 4 = m symmetry.

~n~~n+» a

(n, n+ 1)tr = (c'„c'„„,—c~~c'„„)/~2

l cnecn+ie

(18)

A triplet bond created by (n, n+ l)r is represented
by a notched arrow from n to n+1. The singlet
operator (n+1, n) annihilates any ket in which
n, n+1 are triplet correlated, since the parallel
spins cannot be transferred to a D site. Other-

Structure ~4)
Number 6

FIG. 5. Valence-bond structures in the triplet sub-
space of Ko, Eq. (8), for N=6, with donors at odd
sites and acceptors at even sites.
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We again use plus (minus) phases for (n, n+ l)t
with n odd (even). The symmetry-adapted triplet
kets Il& and I2& corresponding to (13) are

I1& = Q (-I)""(n,n+ l)tr ID&,
nial

3

I2&= P (-I)""(n,n+3)t ID&.

(2o)

Operation with It =-K,/alt I
on the VB structures.

in Fig. 5 after symmetry adapting to k =m leads to
the linear equations

I I1&=2. Il&. I3&. I4&,

al2&=2z 2&+ I5&,

& l3&=4z I»+2 I»+2 I2&+2 I6&

I I4&=4. I4&+ Il&,

h I5& =4z I5&+ I1&+ I2&+2 IV&,

a I6& = 6z I6& +-,' I3&+ -,'
I 5&,

alV&=6z I7&+ —.'I3)+ I5&.

The operator identity

(21)

(n, n+1)t(n+2, n+3)tr+(n, n +I) tr(it+2, n +3)"=(n, n+3)tr(n+ I, n+2) t+(n, n +3) t(n +I,n +2) ~t. , (22)

can be represented diagrammatically as

II+

(23)

It follows that && is linearly dependent on the VB
structures retained in Fig. 5. Such identities
hold quite generally provided that all four dia-
grams in (23) have the same arbitrary distribu-
tion of bonds at other sites. Both bonds can be
long, as occurs in %=8 and K=10 diagrams, and
care must be taken with phases.

Arranging the coefficients of (21) into columns
leads to a nonsymmetric V xv matrix for any M,
component of the (I, w) subspace

III summarizes values of &„(z)/N and of hE (z)
for rings of %=4, 6, 8, and 10. The behavior of

(z, N) is shown in Fig. 6 and is discussed be-
low.

Quintet states can be generated by constructing
the most neutral VB structure with a pair of D'A
sites and subsequently applying -R,/alt I

repeat-
edly. Higher multiplicities can be treated similar-
ly. All these states, as well as the other k sub-

N=4 68 IO)

1.0—

-x0

v2lt I

2g 0 2 1 ] 0 0

0 2z 2 0 1 0 0

1 0 4z 0 0 3/2 1/2

1 0 04m 0 0 0

0 1 0 0 4z 1/2 1

0 0 2 0 0 6z 0

0 0 0 0 2 0 Gag

(24)

Q.

O
I-
UJ
Z,'

0.2—
IO

The largest root X„(z) of (24) is again found iter-
atively and gives the lowest triplet energy
—&2jt l&„(z) of K, . The magnetic gap ~„is given
by

~.( )/alt I=}.( ) - ~.,( ) (25)

where X,(z) is the larger of Aoo(z) and A„(z). Table

NEUTRAL
0.0 =

i u

-04 0

IONIC

Z ZQ 0.8

FIG. 6. Magnetic gap bE (z, fV)/v 2 ~t~ vs z for rings
of N=4, 6, 8, and 10 sites. The dashed-line has slope
—2 and gives the limit ~t~ 0. Theextrapolation to
vanishing gap at z~ is discussed in the text.
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TABLE III. Lowest triplet energy per site X&„(z)/N, in units of -v 2~t~, and magnetic gap
AE (z)/v 2~t( of Ro, Eq. (8), for rings of N 4=, 6, 8, 10.

z = 5/alt I

Ring size +
10

Extrapolation '

0.8

0 4

0.0

-0.4

-0.8

)I )„/N
AE„/W2~t

~

1.006 206
0.283 07
0.667 423
0.307 95
0.353 553
0.821 87
0.067423
1.494.69

-0.193798
2.19963

1.053 438
0.250 59
0.733 470
0.304 06
0.450 000
0.892 60
0.206 671
1.564 31

-0.002 872
2.252 42

1.071 226
0.211 34
0.759 960
0.298 13
0.493 063
0.908 85
0.273 411
1.583 23
0.091 395
2.263 23

1.079 717
0.172 54
0.773 434
0.285 88
0.516 873
0.920 39
0.313182
1.590 97
0.147 913
2.268 22

1.0970
0.000
0.8110
0.275
0.6105
0.943
0.4748
1.615
0.3757
2.272

+0.005 for AE /v 2~t~;&«(z)N i extrapolates to Ao(z)N to order N

spaces for S =0 and S =1 and the excited states in
the S = 0, 1 and 4 = 0, m subspaces, are needed to
construct the partition function and obtain the com-
p1ete thermodynamics of X,. Such complete analy-
sis is probably limited to N ~ 6, while selected
ground-state properties like p or ~ are readily
found up to N=10. The VB procedure thus pro-
vides a convenient and exact description of con-
figuration interaction in any subspace of the elec-
tron-hole Hamiltonian K, in (8).

III. MAGNETIC GAP

AND COLLECTIVE COULOMB INTERACTIONS

We have so far considered a fixed excitation en-
ergy -26 for producing a D'A pair. The neutral-
ionic interface at &/v 2 ~t ~=z, =0.53 +0.01 was ob-
tained by extrapolating the crossover z,(N) from
4 = 0 to k = m ground- state symmetry in rings of
N=4, 6, 8, and 10. For z&a„ the lattice is dia-
magnetic at O'K and has a gap ~ (z) for magnet-
ic excitation. For z ~ z„ the magnetic gap van-
ishes and the lattice is paramagnetic, with a finite
static susceptibility )((T) at T =O'K. The extra-
polation in Fig. 6 of AE (z) to z, in the limit N- ~
cannot be justified solely on the basis of the
nE„(z,N) computations. Since )((T) data offer the
simplest experimental test of the model, we con-
sider the behavior of 4E„(z) near z, in greater de-
tail.

A finite magnetic gap of ~26
~

occurs in the
t -0 lirkit of a neutral lattice. For large negative
z, we consequently expect ~ /v 2 ~t ~=2z to have

a limiting slope of -2, as indicated by the dashed
line in Fig. 6. The finite CT integral t does not
greatly change the behavior of 4E„(z) for z &z„
even in the region z -0 where the band width dom-
inates 26. This supports the extrapolation to
hE„(z,) = 0, although N-dependent behavior of

KgF —2Jo gs 's (26)

In this limit, the lattice is ionic and the spins s„
= —, at either D' or A sites are stabilized' via vir-
tual CT excitations favoring antiparallel, or sing-
let, pairs. The kinetic exchange J, &D is

J, =t'[(2&) '+ (U- 26) ']. (27)

The second term vanishes for 3C„since (8) in-
volves the U -~ limit and excludes D" or A'
sites. The regular Hubbard model, with E„=&D

in (11), reduces to X» in the limit U»t and has
J', =2f'/U. The reduction of R, to X„r is rigorous
for z»1. Griffiths" has computed X(0) exactly
for X„~with J,&0 and has explicitly demonstrated
triplet (and higher) states with hE„=O. Numeri-
cal computations for X„~by Bonner and Fisher"
show that ~ goes approximately as N ' for even
N up to N=10, the largest rings considered. There
is consequently rigorous evidence that ~„(z) for
the infinite chain vanishes for large positive z.

The reduction to X„~fails for partial CT y,
where ~ and t are comparable. The magnetic
gap can be expected on general grounds to open
up at z„where the ground state switches from
4=0 to 4=m. We have analyzed the related sing-
let-triplet gap ~':

(28)

in the k=s subspace. For z)z, , ~'(z) reduces
to aE„(z), since X„(z) is then the absolute ground

(z, N) for z )z, complicates the situation.
The difficulty is that N-dependences are inher-

ent in the ionic lattice. It can readily be shown
that for ~2& ~»t and ~U 2& ~»t,-the general elec-
tron-hole Hamiltonian K,„ in (10) reduces to a one-
dimensional Heisenberg antiferromagnet
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state. On the neutral side, however, ~'(z) is
smaller than 4E„(z}, since the singlet state &„(z)
is higher in energy than &»(z). The gap 4E'(z)
represents the singlet-triplet splitting for the
same spatial function and is expected to vanish
for both z - and z -- where CT stabilization
becomes ineffective. The singlet is always ex-
pected to be lower, as it affords an additional
ion pair for CT stabilization, and the maximum
value of ~'(z) is expected at z =0 where CT stab-
ilization is maximized.

The 4= m subspaces for N =4 contain only two
states for either S=l or S=O, as shown in Table
I, and yield quadratic equations for &„(z,4) and
A»(z, 4). Thus we have

4E'(z, 4)/v 2 It I= (z'+3)'~'- (z'+2)'~' (29)

z (z,f) —= 5(0)/v2ltI z fy(z» (30)

where z, is seen from (3) to depend only on the
molecular difference I~-A„ if, for simplicity, we
assume that the Madelung energy M, the nearest-
neighbor interactions M„and t are comparable
for several complexes. Such an interpretation of
(30) is not required, however, and the basic point
remains the y dependence of &.

The f=0 curve y(z) in Fig. 7 suffices for con-
structing the other y(z„f) vs z, curves shown.
Long-range Coulomb interactions merely renor-
malize & in the Hartree approximation, thus shift-

which indeed has a maximum at z =0, vanishes
at z -+~, and is always positive. %e find that
tzE '(O, N) decreases with increasing N and goes
as 0.75N '~' for %=6, 8, and 10. The smaller
values at 4E'(y0. 5,N) decrease more rapidly and
can be fit to 0.67N ' '. For large I'z I, the de-
crease of 4E '(m, N) eventually follows the N ' be-
havior of the linear Heisenberg AF. These re-
sults support the previous assertion that the mag-
netic gap dE (z) opens up at z, for the infinite
lattice.

We now turn to the collective effects arising from
long- range, three-dimensional Coulomb interac-
tions. The Hartree approximation indicated in (2)
amounts to a y dependence in ~. The variation of
I~ or A„ for a series of complexes with small
CT integral t is expected to produce a discontin-
uous charge in y, in contrast to the smooth y(z)
behavior in Fig. 7 found on extrapolating the
y(z, N) curves in Fig. 3. Such collective effects
depend on the extra stabilization m =M —M, in
(2) arising from embedding DA dimers self-con-
sistently in the partly ionic lattice. ' In reduced
units, we define f =m/v 2 It I

and only consider
f& 0, when collective long-range interactions tend
to stabilize the ionic lattice. Rearr'anging (2)
gives

I.O

0.5

0.0-0.8
I

0,0 Z+ f/2
I.O

FIG. 7. Degree of CT y (zp j) vs zp+ g f for collective
interactions f=m/&2 t( in Eq. (30). The f= 0 curve of
y (z) is the N ~ extrapolation of the y (z,N) curves in
Fig. 3. The discontinuity in'Y(zo f) for f&f,= 1.4 is dis-
cussed in the text.

Discontinuities at the neutral-ionic interface
occur for f&f„when z, (z,f) is not a single-valued
function of z. Since the derivative, y (z), is seen
in Fig. 7 to have a.maximum at z„ the first dis-
continuity occurs at z, for f, given by

Szo
&z

c =1-fy'(z ) =0. (31)

The value y'(z, ) =0.71 y0.05 is estimated from Fig.
7 or from the second t derivative of A»(z)/N and
&„(z)/N. The resulting f, = 1.4 + 0.1 is the largest
m/a%It

I
for which y(zc,f) is continuous, with an

infinite slope at z,(z„f,). Any f&f„ including de-
stabilizing collective interactions leading to f& 0,
have y(z„f) smoothly varying from 0 to 1 as z,
goes from -~ to. + ~. The neutral-ionic interface
for f&f, is at z,(z„f,). The degree of CT y, the
magnetic gap AE„(z), and the ground-state sym-
metry previously found for f=0 remain unchanged
for fsf, . Small collective effects merely give
more rapid variations in y as a function of zo.

Any m &0 leads to a discontinuity in y(z, ) in the
limit t -0, in agreement with the exact result of
a step function for y' when the sites do not overlap.
For f&f„ there are two values z, and z, &z, that

ing from z = 5/v 2 It I
to z, in (30). For a given val-

ue off, z, and y(z), we use (30) to compute z, and
plot the result in Fig. 7 as a function of zo+ ,'f, —

which conveniently places the rapid change of

f
y(z„f) in the same region for different values of



Z. G. SOOS AND S. 18

satisfy (31). The larger root z, must be larger
than z, since y'(z) decreases above z, and thus
allows a solution to (31) with z, &z,. The ionic
ground state again has 4 =w symmetry. The dis-
continuity is y(z, ) —y(z'), where z ' is defined by

z,(z„f)=z' —fy(z'). (32)

We see from (30) and (31) that z, (z,f) decreases
with increasing z between z, and z„so that
z,(z„f) is smaller than z,(z„f). Now (32) leads
to z '&z, since z, occurs at the smaller z value
satisfying (31}. Thus the neutral ground state at
z' is clearly in the k =0 subspace. A curve of
y(z„f) with f&f, =1.4 is shown in Fig. 7. The neu-
tral. -ionic transition now occurs at

z,(z„f)= z. fy(z2)- (33)

IV. DISCUSSION

The motivation for more careful computations
of the magnetic gap is the puzzling )f(T) behavior'
of several strong CT complexes like
(TMPD}"'(TCNQ)" . Here TMPD is the z-donor
NNN' N'- tetramenthyl-p- phenylenediamine and
TCNQ is the z-acceptor tetracyanoquinodimethane.
Infrared and optical data" point to an ion-radical
solid, while the center of inversion at each D and
A site in the crystal structure" requires a single
CT integral t along the stack. Instead of the gap-
less Bonner-Fisher behavior" of )((T), however,
the EPR intensity" from 200 to 300 K goes as

X(T)~e ' "r (34)

with a large magnetic gap ~ =0.075 +0.008 eV.
This clearly rules out a y-1 interpretation based
on the Heisenberg AF (26), whereas the crystal
structure and absence of fine-structure rule out
the suggestion" of an alternating stack with un-
equal CT integrals.

The TMPD complex with the weaker acceptor
chloranil also has an activated" y(T), with ~
in Eq. (34) about 0.13 eV and a crystal structure"
with D's and A's at centers of inversion. The 1:1
complex" of p-phenylenediamine and chloranil
also has mixed regular stacks and ~=0.13 y0.01
eV between 250 and 330 K. There is some evi-

The disco'ntinuity in the partial CT y is y(z, ) —y(z ').
The magnetic gap ~ (z„f) and static susceptibil. —

ity )f(T) vanish discontinuously, since the cross-
over from 0 =0 to k = m ground states at zo(z„f)
has a finite change in slope. The neutral-ionic
interface for f&f, thus involves a first-order
phase change, while the change is second order
for f~f, . As expected, collective effects can pro-
duce discontinuities on varying such single-site
parameters as z„which depends on I~-A„.

dence for phase transitions"'" at lower temper-
ature, where in any case the inevitable occur-
rence" of mechanical defects such as "finite
chains" or of chemical impurities spoils the
simple exponential in (34) for kT «~.

The present results for partial CT show that
a finite magnetic gap of the order of jt j

occurs
without introducing dimerization, spin- phonon
coupling, or charge-density waves. The hE„/
v 2 jt j

results in Fig. 6 follow directly from the
CT Hamiltonian R, in (8). Various estimates of
jf j

in CT complexes" and in ion-radical crystals"
0.1 to0.3eV. Taking jtj 0.20eV

-2200 K and assuming, for the moment, that col-
lective effects lead to f&f„we see from Fig. 7

that the TMPD-TCNQ gap of 0.075 eV implies ~„/
v2 jt j-0.25 and y-0.6. The larger ~ -0.13 eV
in the weaker complexes TMPD-chloranil or
phenylenediamine- chloranil give y- 0.5, which is
still quite ionic. A slightly larger value of jf j

gives higher values of the partial CT y, although
less than y, =0.68 p0.01 where ~ -0.

Several recent attempts" '4 to catalog the vari-
ous contributions to the binding energies of neu-
tral and ionic organic lattices underscore the dif-
ficulties of quantitative treatments. Thus we have
lumped all 'differential site contributions into the
term M —(In —A„) and all collective effects into
(M —M, )y. Some crystal terms may not scale as
y and thus require more than a renormalization
of SATE M My which in any case rep re sents a
Hartree approximation and misses lattice relaxa-
tion,"various polarization contributions, and
Coulomb exchange. " It is clear that strong donors
and acceptors in mixed stacks satisfy' the inequal-
ity M & I~-A„ leading to an ionic lattice and that
the crystal stabilization per pair, m =M —M„ is
given by m s1 eV. Again taking &2jf j-0.3 eV.
we see that f=m/v 2 jt j can easily be of the order
of 1-3, quite possibly exceeding f,=1.4+0.1. Now

Fig. 7 shows that the degree of CT changes dis-
continuously from the diamagnetic region with
finite hE to the paramagnetic regime with ~
=0. For f&f„ there is less charge transfer in
the region of finite ~ . In view of the uncertain-
ties in the model parameters, in the Hartree
approximation for collective interactions, and
in the absence of discontinuous neutral-ionic trans-
itions, it is premature to go beyond the observa-
tion that ~„slightly smaller than jt j

is quite
consistent with y-0.4-0.6 in mixed regular CT
crystals. The application of pressure, which
should increase ~t j

more rapidly than the other
parameters, may clarify whether borderline com-
plexes undergo continuous or discontinuous neu-
tral-ionic transitions.

1:1 CT complexes of NN'- substituted phena-
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FIG. 9. Ground-state energy per site, in units of
W2 i t i, relative to the neutral vacuum state for: the
regular stack, based partly on N ~ extrapolation in
Table G, the isolated dimer Eq. (36), the Noel state
approximation, Eq. (38) of spinless D' and A. sites and
the it ~

0 limit of no CT stabilization.

FIG. 8. Magnetic gap n. E~(z)/W2 gati for: the regular
stack, based on N ~ extrapolations from Fig. 6, the
isolated dimer, Eq. (25), and the gati limit of no CT
stabilization.

zines and TCNQ span the neutral- ionic interface. '"
The infrared" and EPR (Ref. 27) of the hydromethyl-
phenazine (HMP) complex is characteristic' of mixed
ion- radical stacks. The dimethylphenazine com-
plex is largely neutral at 300 K and is the first
CT complex to show triplet spin-exciton split-
tings. " Both HMP- TCNQ and dimethylphenazine-
TCNQ crystallize"'" in mixed alternating stacks,
with different CT integrals . . .t,t,t,t, . . . between
successive DA sites. The limit ty )) t2 corresponds
to isolated dimers and can be treated self-consis-
tently, ' while the opposite limit t, =t, has been con-
sidered in this paper. The magnetic gap for an
isolated dimer (with t, =t and t, =0) is

CkE (z)/v 2 it i= (z'+1)'(" —z. (3&)

As shown in Fig. 8, AE~(z) and hE„(z) for t, =t,
=t are quite similar on the neutral side of negative
z, where ~/~2IIt

i
vs z has a slope of -2 in the

limit i(t i-0. Thus turning on t, from t, = 0 to t, =t
in a mixed alternating stack hardly changes the
magnetic gap for z(z, . There is a qualitative
change for z &z„where the dimer has a finite
gap and the mixed regular stack has no gap.
Thus we can use either l.imit in Fig. 8 to discuss
the magnetic gap" ~=0.60+0.10 eV in dimethyl-
phenazine- TCNQ between -270 and 370 K. Again
taking the stronger, intradimer, CT integral as
&2it, i-0.3 eV, we find z --0.7 and the partial
CT to be z(0.2. The system is indeed largely
neutral.

The similarity of ~ in Fig. 8 for the regular

lattice Ro in (8) and for isolated dimers with the
same t, = ]t

i
also shows up in the ground-state en-

ergy per site. For dimers, we have

)(~(z) = a[(z'+1)'i'+z]

for the singlet ground-state energy per site, in
units of —v 2 it i. The ground-state energy )(„(z)/N
or )(0( z) N/for the regular lattice is given in Table
ZI for various rings, including N-~ extrapolations.
The results for the dimer and the regular stack
are compared in Fig. 9. Changing t, from 0 in the
dimer to it i

in the regular chain is again seen
to be a relatively small effect. Figure 9 also
shows the ground-state energy per site ~)(( )g/ N
for the approximation to X, with spinless D' or
A sites,

)(z)(/N = v 2 E(m )/sm + ag,

y~(z) = a[1+zmK(m)/v 27('],
(38)

Here ft, f„are the Fermion operators cts, c„s for
even n and ct, c„ for odd n. This amounts' to re-
stricting the CT excitations of X, to having P spins
at odd, or D, sites and n spins at even, or A,
sites. The corresponding ionic lattice resembles
the Neel state. . .D'pA nD'pA a. . . . This model
was introduced by Krugler, Montgomery, and
McConnell" in the first discussion of the neutral-
ionic interface. Although X„spoils the magnetic
properties by suppressing the spin degeneracy of
the ion-radicals, it has the important virtue of
being exactly soluble. "'" The ground-state ener-
gy per site in units of —&2iIt i

and degree of CT
are, respectively,
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where m'=2/(2+z') and K(m), E(m) are complete
elliptic integrals of the first and second kind. 'The

first point is that &~-(z)/N in Fig. 9 is seen to be
a poorer approximation than -&~(z)/N, so that the
simple dimer limit is preferable' to the Neel
state. The second point is that p„(z) clearly re-
duces to y„(0)= —,

' and is symmetric about z =0,
thus confirming that the asymmetry of ) (z) in Fig.
3 has to do with the spin degeneracy of A o and D'o.

It should be noted that the y-1 limit of alternat-
ing stacks reduces to the alternating" Heisenberg
AF, which has a magnetic gap that reduces to J~
in (2'7) in the limit of isolated dimers. However,
~„-0.6 eV requires ~t ~a l eV in either (27) or
(36) if an ionic lattice with z»1 is postulated.
Thus it is the magnitude, rather than the occur-
rence, of hE that suggests a largely neutral
ground state for dimethylphenazine- TCNQ. The
absence of hyperfine structure in the triplet spin-
exciton spectra" then shows that dimethylphena-
zine-TCNQ does not correspond to isolated trip-
lets, but has mobile triplet states with unpaired
electrons on adjacent D' and A ion- radicals. Re-
solved fine structure remains the simplest mag-
netic feature of alternating chains.

We have discussed room-temperature g(T) data
in terms of purely ground-state properties. The
thermodynamics of R, can, of course, be found

explicitly for small ring N =6, as pointed out in
Sec. II. For large magnetic gap ~ »kT, as is
the case for the CT complexes considered, the
thermal equilibrium population of excited states
is quite low. Ground-state results then suffice.
Indeed, it is likely that lower-temperature results
are dominated by mechanical or chemical impur-
ities even in carefully prepared samples. The de-
scription of systems with AE =0, by contrast, re-
quires a more complete knowledge of the energy
spectrum of X,.

The most, striking property" of dimethylphena-
zine-TCNQ is the reversible onset of paramagne-
tism above 370'K, where the triplet spin-exciton
fine- structure collapses. " The rather small value

of y-0.2 suggested by the large magnetic gap is,
in fact, smaller than expected if there is to be a
neutral-ion transition around 370 'K. Further con-
ducitivity and single crystal EPR experiments are
in progress to clarify the high-temperature behav-
ior of dimethylphenazine-TCNQ. The present theo-
retical work on the neutral-ionic interface has
primarily focused on developing the first rigorous
model for intermediate y and for the behavior of

The model provides a consistent picture for
the neutral-ionic interface, but it may not be com-
plete enough for real CT complexes.

The CT Hamiltonian (8) also describes CT exci-
tations and conducting states. We have deliberate-
ly omitted these. CT excitations involve higher
energies in the S = 0, k = 0 subspa, ces and thus re-
quire going beyond the rapid iterative procedure
for finding the ground state in any {S,k] subspace.
Conducting states are expected in subspaces with
degenerate wavevector k in (9). Transport prop-
erties probably will require explicit consideration
of both intramolecular and lattice phonons, as well
as more accurate treatment of the Coulomb inter-
actions. As has already been emphasized in con-
nection with the deferred thermodynamics of K„
we have concentrated on two ground-state proper-
ties, the degree of CT y(z) and the magnetic gap
dE„(z), for arbitrary values of z = &/v 2 ~t

~

when
D" and A' sites are excluded. Both y(z) and
hE (z) have been computed for finite rings of
N=4, 6, 8, 10 and extrapolated to N-~ by a novel
application of VB techniques.

Note added in proof. Resonance Raman'4 on
TCNQ vibrations shows that TMPD "TCNQ "is
less than completely ionic, with y-0.7, in good
agreement with theory.
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