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Cluster—Bethe-lattice treatment for the U, center in alkali halides*
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A cluster-Bethe-lattice calculation for the electronic density of states of a U, center in the rocksalt structure
is presented for a simple one-orbital Hamiltonian. The parameters involved in the Hamiltonian are given
values based on qualitative arguments for Na, K, Rb chlorides and bromides and the proton contact term is
calculated for these sets of parameters, in fair agreement with experimental data.

I. INTRODUCTION

Recently, a very simple theoretical approach—
the cluster-Bethe-lattice method—was proposed
for the study of several properties of solids. It
has been successfully applied to a variety of prob-
lems, such as the electronic density of states in -
crystalline and amorphous solids,!'? alloys,®* and
spin-wave spectra in dilute ferromagnets.®

This approach is, in the choice of basis func-
tions, equivalent to a linear-combination-of-atom-
ic-orbitals (LCAO) method, and has the advantage
of treating not only a limited number of atoms,
but the whole crystal by means of a boundary con-
dition which consists of attaching a Bethe lattice to
each of the atoms in the frontier of a chosen clus-
ter. A Bethe lattice (or Cayley tree) is a topologi-
cal construction: an infinitely connected system
of atoms of fixed coordination number, such that
every atom is equivalent and there are no rings
of bonds in the system.

Such approach is very convenient to study de-
fects in solids, since in a simple analytic manner,
it is possible to treat exactly a cluster containing
a limited number of atoms surrounding the defect,
and due to the chosen boundary condition, the ap-
proximate bulk states are obtained simultaneously.

This method was recently used to study @ cen-
ters (vacancy states) in alkali halides,® but no ex-
perimental comparison was attempted. In the
present work, another type of defect in alkali
halides, the U, center (interstitial hydrogen atom),
is treated by the same method.

The U, center is simple enough so that a lot of
theoretical work has been done to describe its
electronic structure.”'®* The usual approach to
describe the wave function is based on a one-elec-
tron formalism—basically using the Heitler-Lon-
don method,”® or a LCAO-molecular-orbital ap-
proach,®!® in a spin-restricted scheme. The mul-
tiple-scattering method in the Xa approximation
has been recently used to study the electronic
structure of the interstitial hydrogen atom in KC1,**
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and in alkaline-earth fluorides.'®* These methods
are cluster-type, and are not able to account for
band states.'®

As discussed above, the cluster—Bethe-lattice
approach is capable to represent band states as
well as localized-impurity states. In the choice
of the Hamiltonian, we restrict our basis to s-like
orbitals localized at anion and cation sites, and
introduce a hydrogen 1s orbital. Of course this is
a limitation of the model Hamiltonian, and we
shall not attempt to use it for a detailed descrip-
tion of the alkali-halide electronic structure.

In Sec. II we define the Hamiltonian for the U,
center in alkali halides, and give a brief review of
the theory. The results for the local density of
states are in Sec. III. In Sec. IV we present quali-
tative arguments for the choice of the parameters
introduced in the Hamiltonian, and using these
particular values, we are able to account for the
experimentally observed proton contact interaction
in several alkali halides.

II. THEORY

We describe the perfect heteropolar crystal by
the following Hamiltonian:

Ho=2A Y [+ 7 S |1, )
i i#j

nearest

neighbors
where |i) is an s-like orbital localized on site i;
V is the hopping integral between nearest neigh-
bors. The origin of energies is taken in such a
way that the diagonal element of H; is +A or —-A
according to whether 7 is a cation or an anion site.
The defect perturbs the crystal, so that the model
Hamiltonian for the system can be taken as

H=H,+H', \ @)
H= 1| 000 ]+ V37 ([0} |+ |10 ])
+7-5 ([0 |+ 0 ), ®)
B=1
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where |0> is the interstitial hydrogen 1s orbital,
the sum in a (B) is taken over the four cation
(anion) sites nearest to the impurity, V* (V) is
the hopping integral between the hydrogen orbital
and one of its neighboring cation (anion) orbitals.
Since the U, center is a neutral defect, and accord-
ing to the choice for the origin of energies dis-
cussed above, it is reasonable to assume A,=0.
Our cluster consists of the interstitial hydrogen
atom together with its eight nearest neighbors.
Each cation (anion) in the cluster has coordination
number 7: three links are with anions (cations) in
the cluster, one is with the impurity and the three
heteropolar Bethe lattices attached to it simulate
the rest of the crystal (see Fig. 1).

The local density of states (LDOS) at the impuri-
ty site is obtained from the diagonal matrix ele-
ment of the Green’s function (0|G|0), which can
be evaluated with the use of Dyson’s equation, as
extensively discussed in previous papers':?:5

\

EG|Gl)=0,,+3 GlH[R)E|G]5). @)
k

Two types of contributions to the LDOS are ob-
tained: states in the continuum are given by

No(E) = —(1/7) Im ({0 |G | 0)) (5)

and localized or d-function states exist at the poles
of (0|G|0). The weight of a pole at energy E =P
at any particular site i, is®

W, (P)=res; (G |G|i) . (6)

Expressions (5) and (6) are normalized so that the
integrated density of states at each site is 1.

For the chosen cluster, the diagonal matrix ele-
ment {0|G|0) can be obtained from the following

FIG. 1. Cluster of atoms in the rocksalt structure,
with an interstitial hydrogen impurity, labeled 0. A
Bethe lattice is connected to the three dangling bonds of
each atom.
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set of linear equations: ,

(E-A)0|G|0)=1+4V* & |G |0)+4V~(~|G]0),

(EFA-3¢*)(x|G|0)=V=0]|G|0)+3V(x|G|0oy. (1)
The solution of (7) for <0 IG |O) is

(0|G|o)

_ E‘E--9V?
TEBE-=9V?) —4[(VPE -+ (VPE*+6VV'V]’

®)

where
E*=E -\ -3¢*,
E"=E+A-3¢", )
E,=E-A,, ’

and |+)(]-)) represent the orbital at a cation
(anion) site. The field operators ¢* (¢~) depend
only on the properties of the Bethe lattice and sim-
ulate mathematically the effect of an heteropolar
Bethe lattice acting along one link on a positive
(negative) ion. In the case of the alkali halides,
they are?

E
1 [E,E,(E.E 1 20V 2)]|/2 10
07) = g (5, BELEE 2OV

where E,=E+A and E,=E - A.

The choice of the sign of the square root is dis-
cussed in Refs. 1, 2, and 6. It is easily shown
that ¢*(E) and ¢~(E) must have the same sign. For
the energy regions where no(E) is a continuum, the
plus sign is chosen when E < ~A and the minus sign
when E>A so that the density of states is posi-
tive; in the gap the plus sign must be chosen,
while in the two regions outside the energy bands
the minus sign is the correct one.

¢*(E) =% <E2¢[E1E2(E1E2 - 20V2)]1/2> ’

III. RESULTS

The LDOS at the impurity obtained from (5), (6),
and (8) consists essentially of two bands with a
gap between E =xA and outer edges at E =+(A®
+20V2)Y2 as given by the Bethe lattice, and one
localized state in the gap. The position as well as
the weight of this state are determined by the pa-
rameters V* and V-, Equations (3)and (8) clearly
show that in the no-coupling limit, i.e., V*=V"=0,
the LDOS at the defect consists only of a & function
of weight 1 at A, and no bands. The coupling via
V* and V- causes a change in the energy and the
weight of the localized state: this state appears
also at the ionic sites, decaying rapidly into the
bulk. The relevant parameters for the defect
model calculation are obviously V* and V=, there-
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fore the value of A must be specified. Since A is
the diagonal matrix element of H,, its value must
be larger (but of the same order of magnitude)
than the value of the nearest neighbors hopping
integral V. We choose A =2V and for the model
we are proposing, small changes in A are not rel-
evant.

Calculations have been done for several values
of the parameters involved in the problem.

A typical energy dependence of the LDOS at the
impurity is shown in Fig. 2, which corresponds to
V*=0.2, V"=0.4, and A =2, in units of V. Note
that states in the continuum present sharp peaks
at the four band edges. The peaks at +A corre-
spond to pure anion and cation states,? and since
the perturbation term H’ does not introduce any
change to the diagonal terms of H,(A,=0), they
are present for all values of V* and V" these
peaks decrease in intensity as V* and V" increase,
and they do not split off the continuum as in the
case of the vacancy,® so that only one pole exists
in the gap. The peaks at the outer edges increase
in intensity as V* and V'~ increase, up to some
critical sets of values (for each V*there is a critical
V- and vice versa), for which d-function states
split off the outer band edges. A small increase
in the value of V* or V- from the set chosen in
Fig. 3 causes a state to split from the upper band
edge [E =(24)'/?], and this is the reason why an
extremely sharp peak appears at this position.
For example, for V*=0.2 and V-=0.6, a pole of
weight 7.2 X103 appears just above the upper
band, and another one of weight 1.1 X 10"® just be-

7(E)
0.9
== =
0.2 V‘=0-2
v 0.4
W,=0,937
o.if
1=0.030 I=‘°)-°3.3
-6 -4 -2 o 2 4 - E

FIG. 2. Local density of states at the hydrogen site -
for the cluster—Bethe-lattice system in Fig. 1, for A
=2, V*=0.2, and V" =0.4, in units of V. The vertical
line represents a §-function state of weight W,=0.937,
and the areas under the curves are indicated. A small
increase in the value of V¥ or V= from the chosen set
causes a state to split from the upper band edge [E
= (24)1/ 2] and that is why an extremely sharp peak ap-
pears there.
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FIG. 3. Dependence of the weight of the pole at the
hydrogen site on the parameters V* and V", given in
units of V.

low the lower band. For other sets of values,

only one-of these states may be present. Of course
for |V“| and |V-|>1, these states are quite far
from the band edges, and their weights are not so
small.

In Fig. 2, we also give the numerically integrated
density of states for each band, and the weight of
the pole at energy P =-0.029. The sum of these
three values equals 1, which is the normalization
condition. The position and weight of the pole in
the gap depend not only on the absolute values of
V* and V-, but also on their relative sign. From
(8), (9), and (10), we notice the following symme-
try property of the poles P and residues W, of
(0|G o) for A,=0:

WV, V=, P) =W (~V*, -V",P)
=Wy(-V-, V*, -P) v
=Wy (V=, =V*, =P). (11)
Therefore, we just calculate the poles and resi-
dues of (O[GIO) for positive values of the parame-~
ters, the other possibilities are easily obtained
from this one. The position of the pole in the gap

is near A, =0 for small values of V* and V-; it ap-
proaches the upper band edge for V*>> V" in agree-



a)/al=Wy—1[Eq. (13)]. The weight W; is calculated for values of the parameters V* and
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TABLE I. Theoretical and experimental (Ref. 17) values of 7

V" estimated from qualitative arguments.
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ment with simple perturbation-theory arguments.
The behavior of its weight (W,) at the impurity as
a function of the parameters is plotted in Fig. 3.
For a fixed V*, W, increases slightly with V=, up
to a value for which W, is maximum, thereafter
W, decreases monotonically, tending to zero as its
position approaches the band. The value of V- for
which W, is maximum increases with V*,

The physical nature of the three possible poles
that appear in the LDOS at the impurity can be
understood in a very simple qualitative way. The
pole in the gap is due to the pure hydrogen state
|0), whose position A, and weight 1 are modified
by the interaction with the crystal via V* and V-,
As |V“| and | V-| get bigger, this localized state
penetrates more into the crystal, consequently
W, decreases, and bulk states penetrate more
into the impurity site, increasing the integrated
density of states in the continuum. The poles out-
side the bands appear when ]V"[ and IV'I are
large enough to perturb a bulk state as to cause
its eigenenergy to be outside of the continuum.
The nature of the state depends on the values of
V*and V-; it is more extended when its energy is
near the edge of the band, and for big |V"| or
|V‘] , its energy is far from the bands region, and
it is essentially localized at the impurity and a
few layers of neighbors around it.

0.2

RbBr

0.3

0.15

0.964 0.959
-3.6%
~5.03%

0.1
0.968

0.956 0.951

0.175 0.225
-4.4%
-5.88%

KBr
0.325

0.125
0.961

NaBr
0.350
0.25
0.948 0.942
-5.2%
-8.29%

0.2

0.15
0.953

IV. PROTON CONTACT TERM IN ALKALI HALIDES

In order to propose a physical model for the U,
center in alkali halides, we must establish a cri-
terion to choose the parameters appearing in the
Hamiltonian.? For this kind of defect, H’ in Eq.
(3) can be regarded as a small perturbation with
respect to H; i.e., |V*l and ]V‘[ are expected to
be of the order of 4 A. Once the criterion is
established, it is possible to use the results for
the electronic LDOS at the impurity site and to re-
late it to the proton isotropic hyperfine parameter
in a spin-restricted scheme

RbC1
0.25

0.15 0.2
0.972 0.967
-2.8%
-2.58%

0.1
0.976

0.966 0.960

0.175 0.225
-3.4%
-3.01%

KCl1
0.275

0.125
0.970

aﬂ=%”g“3gp“n|‘1’(fp) E, (12)

where g is the free-electron g factor, g, is the
proton g factor, u, is the Bohr magneton, u, is
the nuclear magneton, and 'fp is the proton posi-
tion. Since the method used here does not yield
¥(T) directly, we are only able to obtain relative
values of a; the results are given relative to the
free hydrogen isotropic parameter: a%=1420 MHz.

For the present one-orbital-per-site model, in
these crystals the lower band is doubly occupied,
the upper band is empty, and the localized state
is singly occupied. Since spin polarization is not
taken into account here the whole contribution to
Eq. (12) comes from the unpaired electron wave
function, so that

0.25

0.959 0.952
—4.1%

0.3
0.2
-4.77%

NaCl

0.15
0.964

(@Y —a)/al?
2See Ref. 17

V-
V+
W,
Wy—1
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ay/al=W,. (13)

Our choice of normalization relative to the free
hydrogen atom implies necessarily a ,,/a‘},< 1. This
is the case for the compounds we are interested in
therefore the choice is adequate.

We now present very simple arguments based on
lattice parameters and ionic radii'”!® leading to
the trend of V* and V- for two families of alkali
halides: (i) NaCl, KCl, RbCl; and (ii) NaBr, KBr,
RbBr. Within each family, the lattice parameter
increases with the alkali atomic number, being
smaller for the Na halide. The absolute value
of the hydrogen-halogen hopping integral (V-) is
expected to decrease with the distance between
them, since their radii remain essentially con-
stant, so that in each family IV"I should decrease
from the Na to the Rb halides. This qualitatively
accounts for the trend of V- in each family. Two
different contributions must be considered for the

“behavior of |V'] as we change families: the in-
crease in the ionic radius, which increases [V‘l ,
and the increase in the lattice parameter, which
decreases it from each cloride to the correspond-
ing bromide. From the values presented in the
literature,’”!® we notice that the increase of the
ionic radius is roughly twice the increase in the
lattice parameter for each of the three members
of the families, therefore the former effect must
dominate: |V-| increases from the chlorides to the
bromides. Since the cation radius is always small-
er than the anion radius, |V*I<IV‘| in all cases:
we make no other assumptions about the trend of
V*. Finally, we keep A =2V unchanged for all the
crystals, and express all energies in units of V.

We use the value of the proton contact term in
NaCl to guess reasonable values for V* and V- for
this crystal, assuming they have the same sign.
Based on the above arguments we obtain values for
the parameters in the other compounds and calcu-
late W, for all of them. Results are shown in
Table I, together with the experimental value!” for
@% —ay)/a%. The experimentally observed trend
can be understood completely by the behavior of
V-: for each compound we vary V* over a relative-
ly wide range of values, just keeping it smaller
than V-, and the results are not as sensitive to
this change in V* as to much smaller changes in
V-. Within each family, V- is decreased from the
Na to the Rb halides so that V- is roughly propor-
tional to the inverse of the lattice parameter: the
product of the lattice parameter by V- is ~0.8 A
for the chlorides and ~1 A for the bromides. The
increase in V- from NaCl to NaBr is taken arbi-
trarily.

There is no a priori reason to choose V* and V-
to have the same sign (results in Table I do not

change if they are both taken negative). From (11),
we see that W, depends not only on the absolute
values but also on the relative signs of V*and V-.
We calculated W, for V* and V- with opposite
signs, keeping the same absolute values as in
Table I: all the results change by less than 0.3%
therefore for this range of values, the relative
sign of the parameters does not affect our conclu-
sions. )

V. CONCLUSIONS

Using a very simple theoretical method, and a
model Hamiltonian involving parameters which
are estimated by purely qualitative arguments, we
are able to obtain a fairly good quantitative de-
scription for the proton contact interaction in
several alkali halides.

The limitations of the present approximations be-
come apparent when we try to apply the same
scheme to calculate the Fermi contact term for the
other nuclei.

The whole contribution for this term still comes
from the unpaired electron, because we do not in-
clude in the Hamiltonian parameters to simulate
spin polarization, which could differentiate spin-
up and spin-down bands. Thus, as the lower band
is fully occupied, there is no contribution for the
contact term from the extended states. We have
calculated the weight of the pole at the first shell
of hydrogen neighbors, and thus the contribution
for the contact term arising from the impurity
state. We have obtained the correct order of
magnitude for the contact term in the cation nu-
clei, but in the case of the anion, our results are
orders of magnitude smaller than the experimen-
tal ones, showing that the former agreement must
be regarded as purely accidental. To neglect the
contribution for the contact interaction due to spin
polarization is a reasonable approximation for the
proton, but not for the other nuclei.

The present results regarding the energy posi-
tion of the localized level site with respectto the s
bands in the crystal (see Fig. 2) are in good agree-
ment with calculations for the electronic structure
of this defect using different schemes!®!?; this
supports our choice for the parameter A,. Since

* our basis is restricted to s-like orbitals, we

cannot expect to reproduce the experimentally ob-
served optical transitions: any realistic treatment
of such properties should include the p states. Im-
provements on the present model can be obtained
by the inclusion of p states to our basis, as well
as the consideration of spin-polarization effects.
Such improvements would considerably increase
the number of parameters involved in the calcula-
tion, without modifying significantly the results
reported in this work.
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