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Absorption of electromagnetic radiation by free carriers is conditioned by their interaction with lattice

imperfections. Both individual carrier transitions and generation of collective plasma oscillations {plasmons)

may contribute to this absorption. Photon-ionized-impurity (defect)-plasmon processes at radiation

frequency close to plasma frequency are discussed in detail and shown to be important in polar

semiconductors with high static (lattice) dielectric constant and high carrier concentration. The theoretical

results are compared with the experimental data on plasmon generation in n-PbSe in infrared.

I. INTRODUCTION

In this paper (some of the results have already
been published in Ref. 1) we will consider a one-
component plasma in a cubic semiconductor, con-
sisting of free carriers (electrons or holes) of
scalar, energy-independent effective mass. We
will allow the existence of several equivalent band
extrema for the carriers.

Suppose the magnetic field is absent, the crystal
lattice is perfect and undeformed (as a conse-
quence, all charge-charge interactions involve on-
ly the high-frequency lattice dielectric constant),
and charges of ionized donors or/and acceptors
are smeared out to give a uniform charge density.
In such conditions, a very small dissipative part
of the free-carrier dielectric function (i.e., imag-
inary part, corresponding to conductivity) exists
only because of finite radiation wavelength. ' ' If
the radiation electric field is assumed to be uni-
form, as mill be done in the following, the high-
frequency conductivity vanishes and so does the
free-carrier absorption. ' ' The plasma response
to the oscillating electric field is then purely re-
active. This follows from the fact that the uni-
form electric field influences only the center-of-
mass position and velocity but not the relative
positions or velocities of the interacting carriers.
Therefore it cannot excite the system of carriers.
In particular, there is no contribution to free-
carrier absorption from carrier-carrier or car-
rier-plasmon interactions, in contrary to some
published calculations' " in which the influence
of the radiation electric field on the carrier-plas-
mon interaction was erroneously omitted. ' ' The
situation is not changed even by the presence of a
smooth surface of the crystal, parallel to the radi-
ation electric field.

Carrier-carrier interaction may give some free-

carrier absorption in the case of energy-dependent
effective mass (nonparabolic band). ""'" lt is
well known, however, that the main contribution to
free-carrier absorption is given by interactions
with crystal imperf ections or deformations. These
interactions supply a sink for the carrier momen-
tum and make tQe conservation of energy and mo-
mentum possible. Free-carrier absorption con-
sists then in individual-carrier excitations (indi-
vidual-carrier scattering), as well as in collective-
carrier excitations (plasmon generation). The
former contribution was studied extensively, using
both classical (Drude theory) or quantum approach
(see e.g. , Ref. 10). In this paper we will be con-

,cerned with the latter contribution mhich mas dis-
cussed less frequently up to now.

It should be noted that we are not interested
here in magnetoplasma. We will also omit all
photon —long-wavelength-plasmon processes con-
nected with the finite dimensions of the semi-
conductor sample, as volume-plasmon generation
at oblique incidence of light on a thin layer" "or
surface-plasmon generation on a rough surface. "'"
Only the contribution of short-wavelength-plasmon
generation to the high-frequency bulk conductivity
(i.e. to energy dissipation) will be treated. Qf
course, this dissipation may, in turn, broaden the
line of resonance consisting, e.g. , in volume-
plasmon generation in a thin layer, mentioned be-
fore.

Photon-plasmon processes were studied, as a
rule, in the more general framework of photon-
plasma- imperfection (def ormat ion) interactions,
in which also individual-carrier excitations were
taken into account. Both nondegenerate and de-
generate plasmas were considered. Usually, a
theory is formulated starting from the knowledge
of dielectric function for free carriers in perfect
(and undeformed) crystal. For the case of plasma-
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ion interactions in homopolar semiconductors, a
theory was developed by Ron and Tzoar"" using
the analogy with gaseous plasma. The contri-
bution of photon-plasmon-ion processes to free-
carrier absorption was shown to be only a small
fraction of the contribution given by photon-in-
dividual-carrier-ion processes. " The former
contribution seems to be more important in semi-
metals. " The case of plasma-optical-phonon in-
teraction in polar semiconductors was also inves-
tigated. "'" The most general formulation of the
theory is due to McCumber who took into account
simultaneously plasma-ion, plasma-acoustic-
phonon, and plasma-optical-phonon interactions
in polar semiconductors. " Dissipation processes
involving plasmons were not, however, observed
experimentally till recently.

Here we are interested only in photon-plasmon-
ionized-impurity (defect) processes in polar semi-
conductors, and not in the contribution given by
individual- car rie r excitations. High-order pro-
cesses involving plasmons, e.g. , photon-plas-
mon-free-carrier-impurity processes, ' ' "are
not considered. We also limit our considerations
to the -case of plasma frequency much higher or
much lower than the I 0-phonon frequency to de-
couple the plasmon modes from the I 0 modes.
Because of that we can use a much simpler model
of plasma and assure the physical insight in the
process of plasmon generation. For the sake of
definiteness we consider only electron plasma.
Of course, all results hold also for hole plasma.

In Sec. H we derive a formula for the contribu-
tion to the power absorption given by photon-plas-
mon processes following from the interaction of
plasma with an arbitrary time-independent per-
turbation in a nonideal (or/and deformed) crystal.
In Sec. III we apply this general formula to the
case of photon-plasmon-ionized-impurity (defect)
processes. The result is discussed in Sec. IV and
it is shown that the contribution of these processes
may be comparable with the contribution from in-
dividual-carrier processes in polar semiconduc-
tors with high static lattice dielectric constant and
high carrier concentration.

In the last years experimental evidence was ob-
tained for the contribution to free-carrier absorp™
tion in the infrared given by photon-short-wave-
length-plasmon processes in n-type PbSe," and
n-type Pb, „Sn„Se." In Sec. IV we compare our
results with experimental findings for n-PbSe.

II. GENERAL FORMALISM FOR PLASMON GENERATION

I et us consider an electron plasma in a semi-
conductor, of density N, electrons per unit volume.

r~& a+

for degenerate plasma, or the condition

(2)

(3)

for nondegenerate (Maxwell) plasma. a*„=K'-„/e'm*
is the effective Bohr radius for the electron of the
charge -e and effective mass m* in the medium of
the dielectric constant e„. c„ is the high-fre-
quency dielectric constant of the considered cry-
stal. rD„=1/qD„ is the Debye screening radius for
the medium of the dielectric constant e„.

Iri the following the static screening of potentials
due to crystal imperfections by the electron plas-
ma will play a role. To justify the usual screening
formula we have to assume

+e ~ 0

where r„ is the Debye-HQckel screening radius
with the dielectric constant of the medium taken
equal to e„ the low-frequency dielectric constarit
of the considered crystal, i.e.,

q,', = 1/r', , = (4we'/e, )(dE, /dEr) .

Er is the Fermi level (measured from the bottom
of the conduction band).

For nondegenerate plasma x„=rD„where x~,
is the Debye screening radius with the dielectric
constant c„ i.e.,

q2~, = 1/r2~, =4me'R, /e, keT .
Because of e, ~ e„, condition (4}for nondegenerate
plasma is weaker than condition (3). For degen-
erate plasma r,o =r ~.„o, where y~„o is the Thomas-
Fermi screening radius with the dielectric con-
stant e, i.e.,

q,'.p, =l/r'„=(e„/e, )(12m/w)'~'(a*„r, ) '. (7)

Therefore, condition (4) for degenerate plasma
can be written in the form

r, ~(e,/e„)(n/12w)'~'a„* .

Depending one and the ratio e,/e„, this condition
may be weaker or stronger than condition (2).

We limit now our considerations to the case

(d q (Op~(0) ++ (0 g p q

The number of equivalent conduction-band minima
among which these electrons are distributed is zo,
and the minima are assumed to be spherical and
parabolic.

If we want to use the weak-coupling theory of
plasma, we have to assume that the mean inter-
electron distance

r.= (3/4~x, )'"
fulfills the condition
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where e and v~o are the radiation and LO-phonon
frequencies, respectively. By v~„(q) we denote
the frequency of a plasmon with wave vector q in
the medium of dielectric constant e„; therefore,
~~„(0) is the plasma, frequency

+~2„(0)= 4me'N, /e „no* .
Under the assumption (9), plasmons are de-

coupled from LQ phonons and plasmon frequency
in the considered semiconductor is approximately
&u~„(q). If no optical phonons are present, the
ionic (polar) part of the crystal polarization (i.e.,
this connected with the difference c, —e„) and the
corresponding polarization charge density p(r) are
constant in time.

As it was already mentioned, we are interested
here only in collective-carrier excitations. There-
fore, it is natural to use the "jelly model" to des-
cribe plasmons and their interactions with high-
frequency perturbations. To justify this model,
however, we have to make some assumptions.
Namely, we have to assume that the excited plas-
ma modes correspond to wave numbers q roughly
equal to or smaller than both 2/r, and q, „, the
inverse of the Debye-HQckel screening radius with
the dielectric constant e„. The former assumption
is weaker than (or roughly equivalent to) the latter
for nondegenerate plasma because of the already
assumed condition (3). For degenerate plasma, it
is also weaker (or roughly equivalent) because of
condition (2), providing m&4 [compare Eq. (7)
with e, replaced by e„, i.e., the inverse of the
Thomas- Fermi s creening radius with the dielec-
tric constant c„, q»„]. Therefore, we have to
assume only that

In our considerations we will neglect Landau
damping of the generated plasmons. In nondegen-
erate plasma Landau damping is weak if qs(1/2v 3)
x q~ ." In degenerate plasma (and for q &2/r„
which was already assumed) Landau damping is
absent for q s&u~„(0)/2vz = (1/2W3)q»„, at least if
5~~„(0) is not much higher than E~ (u~ is the elec, -
tron velocity at the Fermi level). Therefore for
both cases we will use the condition [stronger than
condition (11)]

( 19(res ~

We use the dispersion relation for plasmons

(13)

which follows from both Vlasov equation and the
random-phase approximation (neglecting higher-
order terms and the electron exchange effect").
(u ') is the mean square of electron velocity. For
degenerate plasma this yields

UPp (g) =cog, ( 0) + 5gp lj

and for nondegenerate plasma

(o~„(q) = (v~2„(0) + (3k~T/m')q' .

(14)

Using Eqs. (14) and (15) one can show that the
condition (12) is roughly equivalent to

(0)/& (0)] —1 &

for both degenerate and nondegenerate plasmas.
In the following, we will replace ~~„(q) by v in
condition (16), as only plasmons with ~~„(q) =&a

are generated by the radiation field.
The procedure of calculating high-frequency con-

ductivity given by plasmon processes and then ad-
ding the free-carrier conductivity calculated as if
the collective excitations do not exist at all, may
be justified only if the ratio of the number of
plasma modes to the total number of degrees of
freedom of the electron system is small. This
ratio is usually, in fact, of the order of 1% in

metals and highly doped semiconductors. " Also
calculating the number of plasma modes allowed
by our conditions (12), (2), and (3), and dividing

by 3@„we obtain a ratio not exceeding a few per-
cent or few per mil for degenerate and nondegen-
erate plasma, respectively.

Considering plasma dynamics it is convenient
to introduce two artificial, mutually compensating
uniform charge derisities +eN, and -eN, . Our
model consists now, first of all, of an "ideal
plasma" in the medium of dielectric constant e„
[assumption (9)], i.e. , of electrons and uniform
charge density +eN, .

There are two perturbations of this ideal plasma.
The first is connected with the electron potential
energy in the presence of crystal imperfections,
e.g. , neutral or ionized impurities, defects, dis-
locations, etc. (in this paper we are interested
only in time-independent imperfections). The
mean electric charge density of these crystal im-
perfections is +eN, (from the electric neutrality
requirement). We denote the electron potential
energy in the presence of crystal imperfections
and of the uniform charge density eN, (in the-
medium of dielectric constant e„) by U(r).

The second perturbation of the ideal plasma is
the field given by the polarization charge density
p(r). Of course, the average of this charge den-
sity vanishes. Because of assumption (9), p(r) is
constant in time. The electron potential energy
due to the charge density p(r) (in the medium of
dielectric constant e„) will be denoted by U~(r).

As we are interested only in high-frequency con-
ductivity due to generation of plasmons of wave-
lengths shorter than that of radiation, we can as-
sume that the radiation electric field is uniform,
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i.e., is of the form

Re[E exp(-tet )], (17)

where E is a complex vector. It is then conven-
ient to introduce a noninertial reference system
("interaction represent ati on")4 "'"' 30

r' = r —(e/m*uP) Re[E exp(-i(et )] . (18)

+ (e/m*ur')Re[E exp(-i~t))

[V U(r') + V U~(r')] . (19)

The collective-excita. tion part of the ideal plasma
Hamiltonian (in the noninertial ref erence system)
can be written in the form

In the presence of electric field (17), the motion
of electrons of the ideal plasma in the noninertial
reference system (18) is exactly the same as the
motion in the rest reference system in the absence
of radiation. In other words, in the noninertial
reference system (18) the electron-radiation in-
teraction is eliminated from the ideal-plasma
Hamiltonian.

On the other hand, in the noninertial reference
system the electron potential energy U+ U~ is no
more time independent. Assuming a weak radia-
tion field and expanding up to the linear term in
E, we obtain

U(r', t) + U (r', t) = U(r') + U (r')

P, =Q'h(u, (q)(blab~+-,'),
where b ~ and b q are the creation and annihilation
operators, respectively, for the plasmon mode of
the wave vector q. The summation is over all
plasmon modes (q= 0 is excluded). The (I vectors
of plasmon modes are distributed in k space with
the density (2v) 'V, where V is the volume of the
crystal (or rather of the periodicity box).

The part of plasma Hamiltonian describing the
interaction of plasmon modes with crystal imper-
fections and polarization charges (in the nonin-
terial reference system) is obtained as follows.
Let us denote by d(r') the change of electron den-
sity in the point r' due to plasmon modes. Using
the "jelly model" [and replacing ~~„(0) by &u~„(q)]
one obtains for small values of q

(20)

d(P) g [hN, /2Vm*e~ (q)]' '

xq[ —i exp(i(I ~ r') b-„+H.c.]. (21)

As we are interested only in calculating radiation-
induced transitions (in the lowest order), we take
into account only the last term of expression (19).
Based on the jelly model, we multiply it by ex-
pression (21) and integrate over V. V is assumed
to be the periodicity box also for U and U~. The
resulting perturbation H' can be written in the
fGrm

P' = —[Se'N, /2Vm*'e')' ' Re [E exp(-i&et)] ' p q&u~„' '(q)(l exp(i(l ~ r')[U(r') + U~(r')]d'x' b-„+H. c.
V

(22)

We obtain the net power absorbed by the mode (I being initially in the state n multiplying h&u~„(q) by the
difference of transition rates for n-n+1 and n-n —1 transitions (only these transitions are allowedby the
perturbation H ). The result is independent of n. Summing it over all modes (I we obtain the total power
absorption P in the volume V of the crystal, due to plasmon processes:

p =(ve'Ne/4vm*'(u') 2 5(~ —(up-(q)) q'I E ~ (II2 exp(iq ~ r)[U(r)+ U~(r)] d'z (23)

By definition,

t). U~(r) = (4me/e „)p(r) . (25)

III. IONIZED IMPURITIES {DEFECTS)IN POLAR
SEMICONDUCTORS

In this paper we are interested only in the case
of U(r) given by ionized impurities or ionized point

We have replaced r' by r in the integral over V.
It should be noted that (for (Ic 0)

exp(i(l r)[U(r)+ U~(r)] d'x

= —q
' exp(iq ~ r)[b, U(r)+AU~(r)] d'r . (24)

(26)

Therefore we have

z))(fj =(4~e'/e )(N. +Q z, Q ))(F —H, )),
l =].

l

where the sum over R, denotes the summation

defects (and by the uniform charge density —eN, ).
Suppose there are S types of such ions in semi-
conductor. Z, e and N, (1 =1, . . . , S) are the charge
and concentration of the l-type ion, respectively
(Z, may be a positive or negative integer). Neu-
trality requirement yields the condition

S

Q ZgN, =N, .



FREE-CARRIER ABSORPTION BY PHOTON-IONIZED. . .

over positions of I-type ions (VN, ions in volume
V).

The polarization charge density p(r) is

p(r) = [(~.—~ )/4vl &q ..(r) . (28)

q„(r) denotes the macroscopic electric potential
in the absence of radiation field and plasma os-
cillations, i.e. , the potential produced by ionized
impurities (defects) in the medium of dielectric
constant e, and in the presence of free carriers.
Thus y„(r) is the potential (e„/e, )U(r)/(-e)
screened by free carriers in the medium of dielec-
tric constant e,. This yields (for |ix0)

exp(iq ~ r)y„(r) d 'r

= -[e„(e,—e„)/4vee, ][1+(q„/q)'] '

exp(ill ~ r)b, U(r) d 'r . (30)

(-c„/e e,)[1 +(q„/q)'] ' exp(ill ~ r)V(r) d'r .
V

(29)

From Eqs. (28) and (29) it follows

Using Eqs. (24), (25), (27), and (30), we obtain from Eq. (23)

(31)

(32)

S
4m' 'N I

p = —, „',Q 5((o-u) „(Q))(E (tl/C)['[I- (c, -e„)e,'[I (q„/q)'] '}' QZ, exp(&q R, )vP„m*'u'- 1=1 g EV
1

We assume the perfectly uncorrelated and random distribution of ionized impurities (defects) in the cry-
stal and replace the last term on the right-hand side of Eq. (31) by its average value (for q x 0)

$ S
2

Z) exp(iq R ) =V+ Zg N, .
i l =I cF av

Replacing now the summation over q by integration and using Eq. (13) we find

P =[«-&&-(0)D/96&'&. &~') ' '] lE I'~ '[~' —~,' (o)] "(1-(e,—e„)e,'[1+q,', (v') [~'-co,'„(0)]-'] ')'

for &u&v~„(0), and P =0 for &u~e~„(0). D is defined

D = Z) Ng N,

It depends, therefore, only on concentration ratios and ion charges. It follows from Eq. (26) that D& 1.
The power absorption p is related to the real part of high-frequency conductivity a given by plasmon

processes by the formula

P = -,
'

V [ E ]' Reer .
In the Drude theory of free-carrier absorption, if

(35)

(d&&T ',
where r is the momentum relaxation time, the real part of conductivity is

Rec = [a „v~„(0)/4w&u']7

Using Eqs. (35) and (37) we can present the formula (33) in a simpler form:
g-& = [(g~ (0)D/12'~ (p') &~'] [1 [~ (0)/~]2] '~2

&&[I-[1-(~ /~. )](1+[@!.(0')/~& (o)][[~/~& (o)]' —I} ') '1'

(36)

(37)

(38)

for cu &&u~„(0), and 7. ' =0 for co ~&~„(0).
It should be stressed that in our problem the relation (37) is nothing but the definition (for given Res or

P) of a frequency-dependent, "collective" momentum-relaxation time ~ corresponding to plasmon proces-
ses. Gf course, it has nothing to do with some averages over energy-dependent relaxation times for in-
dividual carrier scattering. Moreover, frequency dependence of relaxation time violates the dispersion
relations of Drude theory. Therefore, it would be inaccurate to use the Drude formula for Imo with the
relaxation time defined by Eq. (37).

As the real parts of high-frequency conductivities are additive, also v corresponding to plasmon pro-
cesses is additive to those given by other momentum-relaxation processes (in particular, individual car-
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rier scatterings).
The condition (36), is not only necessary for justifying the simple form (3'I) of Rea in the Drude t'heory.

It is also necessary for justifying our weak-perturbation treatment, as it can be seen from the following
argument. The mean kinetic energy of plasma moving in the electric field (17}is

(Ve'N, /4m "«')
( E (' . (39)

The ratio of p, multiplied by the period 2w/«, to the expression (39) should be small. From Eqs. (35) and

(37), this ratio, equals 47//«r, thus yielding condition (36).
It is interesting to observe that 7 ' given by Eq. (38) may involve the constant 5 only through (v') and .

q„ in the case of quantum (degenerate) statistics of electrons. In principle, therefore, our result is a
class leal one.

In the case of nondegenerate plasma q„=qa, and

(v') =3keT/m* .
Using Eqs. (6), (10), and (40), we obtain from Eq. (38)

7 = (D/3' '}«~„(0)(qv„&,)'[1-[«~„(0)/«] ' j ' ' [1 —[1—(e „/&o)] (1+ 3(e „/eo)([«/«, „(0)]'-lj-'}-']'

(40)

(41)

where qv„ is given by the formula (6) with e, replaced by e„, and r, is given by definition (1).
In the case of degenerate plasma q„=q~p, and

(v') =-', ve .
Using Eqs. (1), (7}, (10), (42), and

23/2~ mes/aE 3/2/3v 2@a
e p

we obtain from Eq. (38)

~ ' = (5'/'mD/O'O' 'M )«(0)[k'«~„(0)/I.„]' (1—[«~„(0)/«] 'j ' '

&[1-[1-(e /e. )](1+-:'(e /e. )/[«/«&-(0)]' —lj ') '1'

(42)

(43)

(44)

Suppose that D is of the order of I. It follows
from assumption (3) and Eq. (41) that the condition
(36) is fulfilled in the case of nondegenerate plas-
ma. For degenerate plasma, Eq. (44) 'yields the
same result, at least if h«~„(0) is not much higher
thanE .

All our considerations were based on assumption
(9). I et us now assume the opposite. More pre-
cisely, we assume for a while

«, «»(0) ««~o, (45)

where «»(0) is the plasma frequency in the med-
ium of dielectric constant cp and ~go' 'is the TO-
phonon frequency. Also under thi's assumption
plasmonlike modes [of frequencies «»(q)] do ex-
ist. However, these plasmons are accompanied
by an oscillating ionic (polar} crystal polarization.
Moreover, in the presence of radiation electric
field, the ionic (polar) polarization due to the
screened field of ionized impurities (defects} is
not constant in time. The assumptions (2) and (3)
remain unchanged, and assumption (4}[i.e. , as-
sumption (8)] can be omitted. In all other con-
siderations and results only low-frequency dielec-
tric constant ep appears. Therefore we have to
replace throughout our calculations e„by e„
«~„(0) by «»(0), etc. , and to put p(r) and I/J, (r)
equal to zero.

IV. DISCUSSION AND COMPARISON WITH EXPERIMENT

Let us discuss first the dependence of D.on the
kind of ionized impurities (point defects) present
in the crystal. As it was mentioned already, D~ 1.
It follows also from Eq. (26) that D =1 only if all
Z, =+1. If all Z, =Z (Z&0), then D =Z. Suppose,
finally, that there are both positive and negative
ionized impurities (defects) of the charges Ze
(Z&0) and -Ze and concentrations N, and N, re-
spectively (ZN, —ZN =N, ). Denoting

K=N /N+ (46)

(K is the compensation ratio if all donors and ac-
ceptors are ionized) we have

(47)

For both nondegenerate [Eq. (41)] and degenerate
[Eq. (44)] plasmas, changing the electron con-
centration N, we change the (d scale for v. ', as it
depends on the ratio «/«~„(0). The magnitude of
v ' (for fixed D) is proportional to N, in the non-
degenerate case but independent of N, in the case
of degeneracy.

For given m*, c„, e„D, and N, , v ' is tem-
perature independent for degenerate plasma, and
proportional to T ' ' for nondegenerate plasma.

The most interesting role is played in the gen-
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eral expression for T ' [E&I. (38)] by q„, the in-
verse of the Debye-HQckel static screening raditis.
It is so, however, only for E'p+6 If Ep 6 the
last factor on the right-band side of E&I. (38) is
e&lual identically to 1. If inequality (45) is assumed
instead of (9), r ' does not involve q„ for any
actual value of e„/e, . It is clear, therefore, that
the lastfactor of 7. ' is due to the time-iridepen-
dent ionic (polar) polarization charge density
p(r) which depends on q„[E&I. (30)]. If the last
factor of 7 ' is dropped, &d= ~~ (0), a=c
D = Z, and m* is the free-electron mass, our
formulas (41) and (44) coincide with the results of
Dawson and Oberman" and of Ron and Tzoar, "'"
respectively.

It follows from E&ls. (27) and (30) that p(r) is of the
form I

S

p(r) = Q Q Z, q(r —It, ),
l=)

Rg

where

'g(r) = [(~ —~-)A, ]

xe [-5(r) + (q,',/47&)(q„r) ' exp(-q„y)]. (49)

The total charge corresponding to the charge den-
sity q(r) vanishes.

Formula (48) means that each ionized impurity
(ionized point defect) is accompanied by the charge
density Z, q constant in time. This charge density
reduces the point charge of the ion by the factor
e„/e„and the "substracted" charge [(e,—e„)/e,]
x Z, e is smeared over a volume of the radius of the
order of x„. It follows that for the interacting
plasmon of wavelength much larger than r„(i.e.,
for q«q„) the net charge density given by the ion
and by Z, q can be approximated by a point charge
Z, e as if ep would be equal to e . On the other
hand, if q»q„,: the interacting plasmon feels only
the reduced point-charge density of tbe ion (e„/c, )
xZ, e5(r). Using E&I. (13), one can observe that for
q«q„[i.e., &v close to &d&,„(0)]the last factor of
~ ' is equal to 1, while it is (e„/e, )' for q» q„."
In the former case 7 ' involves only the high-fre-
quency dielectric constant e„. Paradoxically,
therefore, the free-carrier screening increases
7 ' (for q&q„).

It should be noted that the inverse of relaxation
time corresponding to scattering of individual elec-
trons on ionized i.mpurities is proportional to cp

This type of scattering dominates usually at low
temperatures. Therefore, it follows from our
previous discussion that the plasmon generation
may compete with individual-carrier scatterings
in giving the free-carrier absorption only in polar
semi. conductors with ep» c„, at rather high con-
centrations [cf, condition (9)], low temperatures,

and high D values.
For the degenerate plasma and e,»e, 7. ' given

by E&I. (44) has the maximum at

&d,„-=u) ~„(0)[l+ (3» „/1Oe„)] .
There is

7 '(&u,„)=- (157&D/2'zu)(u, „(0)

(5o)
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FIG. 1. Damping (v ) in two strongly degenerated
samples of n-PbSe at 30 K, as determined by two fit-
ting methods (see Ref. 25), compared with damping
calculated from Eq. (44). Samples characteristics are
N, =3..33, 3.34&&10~8 cm 3, X+=33 and 55 meV, and

her& (0) = 36.3 and 48.9 meV, for samples B and C,
respectively.

i.e., plasmon generation decreases mith increas-
ing ~p only like e, ' '.

In the last years experimental evidence mas ob-
tained for the plasmon-generation contribution to
free- carrier absorption in semiconductors. It
was observed, first of;all, that the value of v

'

measured by optical methods in n-type PbSe at
low temperatures is nearly two orders of magni-
tude higher than the value determined from dc
measurements. " A similar discrepancy was ob-
served in p-PbSe, "and it seems to be present also
in n-PbTe. " However, it was not observed in an
n-PbSe sample with very low dc mobility, i.e. ,
very short dc relaxation time. '6

For n-PbSe, this effect was interpreted by in-
elastic scattering of individual carriers at high
frequencies, in particular by optical phonons. ""
Then, T '(e) defined as in the present paper was
obtained by fitting the experimental magnetore-
flectivity curves and discussed in detail. " ~ '(v)
seems to be a superposition of a rather flat curve
which can be interpreted by individual electron-
optical-phonon(s) processes, and of a bump with an

edge corresponding to &u~„(0) (Fig. 1), which may
be given by plasmon-generation pz'ocesses. ~ A
similar shape of ~ '(&v) was observed also in n-

type Pb, „Sn,Se meed crystals. "
It is mell known that lead chalcogenides are

semiconductors with very high cp of the order of
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10'. Therefore, one can expect the plasmon gen-
eration to be important in these materials. They
do not fit mell the model used in the present paper,
Rs filell' foul' COIldllcf1011-ilalld 1IlinilI1R (located Rt

L points) are nonparabolic and anisotropic. Also
the experiment performed in the magnetic field
does not correspond mell to the situation con-
sidered in this paper. Nevertheless, it is worth-
while to check if the orders of magnitude of the
expected and observed effects are the same. Using
the parameters sr=4, c„=26, c, =323, and D=V
[as, according to Eq. (O'I), for Z = I, K = 0.7 5, or
Z=2, K=0.56], we have calculated T ' from Eq.
(44) for two of the samples studied in Ref. 25.
These theoretical plots are presented in Fig. 1.
It should be noted that the dependence of the maxi-
mal theoretical value of 7 ' on N, mhich can be
seen on Fig. 1 follows from the nonparabolicity of
the band, i.e. , from the fact that +~4„(0)/E~z is not
independent of N, .

In the considered material assumption (6) is
weaker than assumption (2). The latter inequality
is mell fulfilled for both samples. As keno =19

meV, assumption (9) is rather poorly fulfilled.
We have calculated the theoretical values of 7 '

only for the frequency range limited by the in-
equality (16) [in which e~„(q) is replaced by ~] .
It should be noted that there exists evidence for
twofold charged defects, at least in PbTe, and
for rather high compensations. ' ' It seems,
therefore, that the used value of D is of the pro-
per order.

It can be observed on Fig. 1 that the calculated
v ' given by the photon-plasmon-ionized-impurity
(defect) processes is roughly of the same magni-
tude as the bump on the experimental curve, for
both samples. However, more accurate measure-
ments are needed.
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