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Interband absorption in a strongly correlated half-filled band Hubbard c&ain

Effect of long-range Coulomb interaction
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We study the effect of a weak long-range Coulomb interaction on the interband absorption in a strongly

correlated half-filled-band Hubbard chain such as low-dimensional charge-transfer organic salts by

introducing a small nearest-neighbor Coulomb repulsion (U&) to the Hubbard model. A long-range
interaction gives rise to an attractive potential well between the doubly occupied site and the hole and
distorts the interband absorption line shape for transitions to the upper Hubbard band. Also, it leads to
formation of, and additional transitions to, a bound excitonic state. With an increasing value of U„ the

intensity leaks gradually from the former transitions to the latter, while the total intensity is conserved.

I. INTRODUCTION

It seems that the electronic correlation is quite
strong in some of the narrow-band low-dimensional
charge-transfer organic salts such as chloranil-
alkali salts or TCNQ (tetracyanoquinodimethane)
compounds (e.g. , alkali-TCNQ)" although the
coupling strength in the latter systems is yet an
unsettled question in a strict sense. ' In these sys-
tems the charge transfer is usually complete' and
there is one excess electron per acceptor (i.e.,
TCNQ) site. The strength of the on-site Coulomb
interaction (U,) is deduced from the activation
energy of the dc conductivity or the position of the
interband absorption peak. One expects that im-
portant information about band structure can be
extracted from optical-absorption measurement.
If the strength of the electronic correlation is
larger than the bandwidth (defined as "unity" here-
after), the many-body aspect of the problem should
be treated carefully. The conventional single-
particle approach is not justified in general.

Recently I yo and Gallinar' studied the inter-band
absorption in a unidimensional, strongly corre-
lated (i.e., Uo» 1) half-filled Hubbard band' using
a rigorous perturbation method. In such a system
the Coulomb screening is not as efficient as in

metals and it is proper to consider the effect of
a long-range Coulomb interaction. For simplicity
we consider the effect of a weak nearest-neighbor
Coulomb repulsion (U, «Uo) on the inter-band
absorption at low temperatures (T«kgU„k~ is
Boltzmann's constant). It is found that, for a
finite value of U„ the absorption line shape be-
comes asymmetric and significantly distorted, al-
though the total intensity is unaffected. It is also
found that with an increasing value of U„ the
doubly occupied site (to be defined as "particle" )
and the hole form a sharper local (i.e., molecular)
state and "steals" the intensity gradually from

the absorption band of the extended states. In
particular, for the antiferromagnetic ground state,
the particle-hole bound state is formed for Uy

& & and below the bottom of the absorption band
of the extended states. The absorption band of the
latter states extends from a photon energy 0 ~
= Vp —1 to I~ = Up+1, with a width equal to twice
the hole bandwidth, and has a significantly dis-
torted line shape for a finite U, and for all spin

configurations.
In the Sec. II we set up the formulation for the

interband absorption using Up as a perturbation
parameter. In Sec. III the line shape is evaluated
for antif erromagnetic, ferromagnetic, and random
spin configurations. The paper is concluded in
Sec. IV.

II. FORMULATION

The Hamiltonian is given by

a=a, + v

with

(1a)

Hp Up ni f np f + Ul nini+y p

V = —f ~ (CI ~~~ cq~ + c~~cq~~~)
ka

(1b)

we' tanh (PSe/2)
on & QP

Qco

with

(2a,)

4(~) = (2b)

Here c,.t, (c„)creates (destroys) a state of spin o

at site i, n;, (= c;t c„)is the number operator and

n; =ni~+n;&. We assume that Up and U, are both
positive and Up —U, » t, where t is the transfer
integral. The real part of the conductivity is given
by'
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1
0 II =g'+g~E+ ~ ~ ~ P (6)

1
5 (d —ZO —HO

The subscript ~ in (5) indicates that only the con-
nected graphs (to be defined below) are included.
The thermodynamic average is taken with respect
to the antiferromagnetic ground state at zero tem-
perature and random spin configuration at high
temperatures. Inserting (6) in (5) and designating
the nth-order contribution in & as ((()„(&u), the
connected graphs for Q„(&u) represent processes
wherein a particle and a hole are created by the
velocity operator from states consisting of one
excess electron per site, make a total of n steps
by successive operations of the n transfer opera-
tors ~ without running into each other and then
recombine at a suitable site by the other velocity
operator, recovering the initial spin configuration.
We are, thus, ignoring those higher-order [in t/
(U, —U, )] virtual processes with more particle-
hole creations and recombinations. In the follow-
ing, three spin configurations are considered:
antiferromagnetic, random, and ferromagnetic
configurations. The latter can be achieved by
applying an external magnetic field.

To compute (!!)„(~),assume that the particle and
the hole approach each other to the neighboring
sites ~+1 times in the course of the above-des-
cribed nth-order excursion. One then has, from
(5) to (7),

t„(tt) = tm(&) P tt, (tt t) (g, t) )v"(8)

where e Bnd Q are the electronic charge and +he

volume of the sample, respectively, and P
=(k2T) '. The correlation function Q(7) is given
by

Q(T) =(v(T-) v(0)+ v(0) v(T)) .
The velocity operator is given by

ita
t)+ i)) it) i(t t'+).tt) t

ga

where a is the lattice constant. Note that we are
concerned only with charge-transfer absorption.
The angular brackets in (3) represent the canonical
thermodynamic average and v(T) is in the Heisen-
berg representation.

To the lowest order in t/Uo the correlation func-
tion P(&u) can be written in the form'.

(!)(~)= (I/v) lm(vG v)„
where Im indicates the imaginary part of the
quantity that follows and the full Green's function
is given by

~., m =&.~n,
where

(10)

n/'g ~/a (s/2
A„= Q Q P(k, —k, ) ), (11)

~I=0 ~2=0 1 2/

where („")=n! /[(n —k)!k! ]. The quantity A„has
been obtained by Lyo and Gallinar' by using a ran-
dom walk generating function and is given by

where

dx Q(x, P)(2x)",

1 1-
w(1 —x2)l 2 2p[(I +P)2/4p x2]

(12)

Inserting (10) and (12) in (8), one obtains

4(~) =-2N &ta

(k
1

x dx Q(x, P)
0

x Im g~ got' " g~t'

tl =8V Btf (14)

The free Green's function g is given by g, =[5~
—i0 —(U, —U,)] ' when the particle and the hole
are nearest neighbors and by go=(k(() —20- U) '
otherwise. H is the number of lattice sites and n
is even. W„ is the average number of such ex-
cursions. It is seen that the particle and hole
attract each.other with the potential energy 0,
at neighboring sites. One then expects the possi-
bility of formation of bound states.

Define Q„as the average number of subclass
graphs mhere the hole is fixed at its original site
and only the particle moves. These subclass
graphs contain n/2 forward-going steps and s/2
backward-going steps. One now replaces ky of the
forward steps of the particle by backward steps
of the hole, as mell as k, of the backward steps
of the particle by forward steps of the hole, the
relative motion between the hole and the particle
remaining the same for arbitrary 4, and 4, . How-
ever, in this case, the final position of the hole
(where the recombination occurs by the velocity
operator) is at k=k, -k, steps away from the
original site. The recombination then occurs at
this final site by the other velocity operator. It is
readily seen that the original spin configuration can
be restored only if one has an antiferromagnetic
spin arrangement from the original site of the
hole (say x=0) to the (k+1) st site. This proba-
ability is given by

p!2!+y (9)

where P = 1, P =
& and P = 0, respectively, for anti-

ferromagnetic, random, and ferromagnetic spin
configurations. One then has



S. K. LYO

where t' =2tx.
The quantity in the large parentheses in (14} is

identical to the diagonal element of the Green's
function:

'0 H -H'
0

(15)

where i0, 1) designates an antiferromagnetic state
vector with the hole at x=0 and the particle at
x = 1. The operator H' transfers only the particle
between adjacent sites with a matrix elements
given by t' =2tx, while the pa.rticle-hole recom-
bination is forbidden. The absorption is then pro-
portional to the thermal average of the local den-
sity of particle-hole states. One can readily
evaluate (15), using a forward-going self-energy
summation method employed by Brinkman and
Rice': The Green's function G'(&u) is written as

where e(x) is a unit step function and

a, = e2a2tpN//kU, Q.

The absorption band for o'„' extends from @~
= (U, —1) to (U, +1) and its width equals twice the
hole band width. This absorption is due to the
excitation of electrons into the upper Hubbard
band.

An additional contribution to the absorption (to
be designated by a superscript a) is obtained from
a pole in the region 0 (x (-u:

fm G"(+) =2116[u+2U, —(u x2)' ], x( —u (22)

or, equivalently,

lm G"(&d) =47r(u+2U, )((u)5(x' —x ')

G'(&u) = 1
A 111 —(U0- U, ) —Z(u) ' (16)

where

x2
——[-4U,(u+U, )]' ' (24)

The self-energy Z,'(&u) is given by (z is the coordi-
nation number, i.e., z =2)

~(~) =(z —1)t"[g.'- ~(~)] '.
The factor (z —1) represents the number of for-
ward-going paths at each lattice point. Setting
4t =1, and defining u=@~—V„one finds

1, —2U, (u& —U,

h(u) =

0, otherwise

Using (2), (14), (15), and (23), one finds

(25)

z(e) = 2[u- sgn(u}(u' —x')' ] . (18) az(&u) = "
Q(xo, P)(u+2U, )((u)e(1 —x,) .

Xo
(26)

The line-shape function for the inter-band transi-
tion is then found from (2), (14)-(16), and (18), and
is evaluated in Sec. III.

III. INTERBAND ABSORPTION

This absorption arises from transitions to local
particle-hole states, as is seen from the behavior
o s ~ &(u + U, ) in the limit U, » 1.

Theabsorptionisthen given by the sum of o~
and &„' found in (20) and (26), respectively. The
integrated absorption is defined by

Designating the contributions from the cut x) iu i in (18}by a superscript 5, one finds from (16)

2(x2 u2)1/2
(19)

Q(x, P)(x2 —u2)1t2
o„'(~)=~,e(1 —iu() '. . . dx,

(20)

o'„'((u) du.

It is shown in Appendix A that the total integrated
absorption satisfies a sum rule:

(28)

This follows also directly from (2) and (3) for a
general weak long-range interaction, if one uses
the relationship Jp(e) d&11=$(r =0)/h. The inte-
grated intensity I' is given by (Appendix A):

(29)
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1.0
Ji

I ~ ~ ~ ~ o's(~) =2v~, jl —1/(2U, )']6(u+ U, +I/4U, )6(U, ——,'),
P=I (20a)

and

o',(1 —u')" ~'e(l —Iu ()

(u +2 U, )' —u' + 1

0. 5

0
0 0. 5 1.0 1.5 2. 5

U1

FIG. 1. Plot of the ratio I,/It, t~ » &&.

It is seen from (26) and (29) that, as U, becomes
larger (i.e., U, »-,'), the absorption band for o's

splits off the absorption band of 0~, takes up most
of the intensity, and becomes resonant at u = - U,
with a sharp width -1/4U, . For a small value of
U„one has

40„&, & -P.
p p j 2

In Fig. 1, we plot I'/I„„, as a function of U, .
For the antiferromagnetic ground state (P =1),

I' vanishes and no local state is formed for U,
Using Q(x, 1) = &(I —x- 0), one finds from (20)

and (26),

At U, =2, a sharp local absorption emerges from
the bottom of. the absorption band of o~. In Fig. 2

the absorption li.ne shape of 0~ is shown for the
antiferromagnetic spin configuration for several
values of 0,. For U, =0, the line shape is sym-
metric with a maximum at u =0. As U, grows,
the peak moves to the left. At U, = &, the peak
diverges as (u+1) ' '. As U, becomes larger than
—,', the intensity starts to leak out and the height
of the peak decreases. Note that the line shape
is significantly distorted even for a small value
U, =0.1.

For a random spin configuration with Uy:0 the
line shape is symmetric with a logarithmic di-
vergence' at u =-0. For a finite value of 0„ the
divergence is replaced by a finite peak for o~
and the line shape behaves in a similar way as
in the antiferromagnetic case: With U, increasing,
the position of the peak moves toward the bottom
of the band and it U, = 2 it diverges as &&

~(1+M) '~'. The height of the peak decreases as
U, increases further, while the intensity leaks
out continually to &~ -absorption. According to
(26) the latter is nonvanishing only for —(U,
+ U ) &u &- U, where U„ is the smaller of I/4U,
and Uy Note that o~ diverges at its upper edge
as (u + U, ) ' ~' for all values of U, and as (u + U,
+1/4U;) ' ' at its lower edge for U, ~ ~.

2. 0
b I

R

CTp

1.0

0
-1.0 1.0

FIG. 2. Plot of the line-shape function for the anti-
ferromagnetic ground state for several values of U~.

IV. CONCLUSION

We have examined the effect of a long-range Cou-
lomb interaction on the interband absorption in a
strongly correlated half-filled Hubbard band by
introducing a small (U, «U, ) nearest-neighbor
Coulomb repulsion to the Hubbard Hamiltonian.
The long-range Coulomb interaction gives rise to
an effective attractive potential well between the
particle and the hole. This distorts the interband
absorption line shape for transitions to the upper
Hubbard band and introduces additional transitions
to the bound particle-hole states. With an increas-
ing value of U„ the intensity leaks from the former
to the latter, while the total intensity is conserved.
For the antiferromagqetic spin configuration, the
local state is formed only when the depth of the
potential we11 satisfies U, ~ —,

' and emerges below
the bottom of the upper Hubbard band. In princi-'

ple, one can take into account the effect of a
general long-range interaction by modifying H„
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in (15}accordingly. It is found that a weak long-
range interaction does not affect the total intensity
of the interband absorption.

The present theory is intended as a first step
toward understanding the interband absorption in
some of the low-dimensional charge-transfer com-
plex such as alkali- TCNQ' ' and chloranil-alkali
salts, where strong electronic correlation seems
to play a. vital role. The effect of electronic
coupling to intramolecular vibration or excitation
is left out for a future study. Most of the low-
dimensional systems undergo a dimerization at
low temperatures. The effect of dimerization on
interband absorption is under investigation by ex-
tending the present theory. A preliminary result
for the antiferromagnetic ground state (with U,
=0) shows that upon dimerization a main sharp
(&-function) absorption peak appears at the center
of a gap (i.e., at u =0) between two additional ab-
sorption bands extending from u =+ 2( ( f

~

—
( t '

()

to u =+2(( t [+ )
t'(). Here t (t') is the intra-

(inter-)dimer transfer integral. The former cor-
responds to transitions to intradimer bound ex-
citonic state and the latter to extended states. The
intensity of transitions to extended states is pro-
portional to (f '/f )'. The total intensity changes
upon dimerization by a factor [(ta)'+(f 'fi')']/
2(ta)' from the value given in (28). Here a and a'
are intradimer and interdimer spacings, re-
spectively. Finally, to make an order of magnitude
estimate for o'o in (28), one finds a reasonable
value

APPENDIX

In this appendix we evaluate I' and I' defined
in (27) and derive the sum rule (28). Inserting
(20) in (27) and changing the limits of the two-di-
mensional integration, we have

Q(x, p)(x' —u')' ~'
I p dX dQ 40 (A1)

Transforming u=xcos8, and carrying out the 0
integration, one finds

j.I' = o, dx Q(x, p) x'f(x, U,),
0

where,

v/8U2, , x&2',
~/2x' x&2U .

Hence, for U,

b FO'oI' = ', Q(x, p)x'dx, U, ~ —,',
0

which yields

I' = xo,(1+P)/16U'„U, ~ —,'.

(A2)

(AS)

(A6)

I =
2 xP 4U~ -x dx

80& 0
(A6)

where 'g ls the smaller of 2+~ and 1. Comblnmg
(A4) and (A6}, and using

On the other hand, inserting (26) in (27), one finds

oo =4.86 x 10'(t/Uo)(aro/b') (Gem) '

for the antiferromagnetic ground state, where ro
= 5 A a,nd ab' is the volume of the unit cell. a and b

0
are measured in units of A. In this paper we have
ignored the effect of phonon broadening. The
latter is expected to smear out the sharp re-
sonances of interband transitions.
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Q(x, p) dx=1,

one obtains

For U, ~2, (A2) and (AS) yield

~mo' m~v

2 8V'
2Uj

Q(x, p)(4U', —x') dx

which leads, in view of (A6), to

(A7)

(A8a)

(A9)
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I'+I =2mo, V, ~2.
The second part of (29) follows from a straight-
forward evaluation of (A6).
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