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Scattering-theoretic method for defects in semiconductors. I.
Tight-binding description of vacancies in Si, Ge, and GaAs
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A technique for an accurate and efficient calculation of point-defect-induced changes in the electronic
structure of an otherwise perfect crystal is described. It is based on the Green s-function method introduced

by Koster and Slater and developed further by Callaway and coworkers, and achieves its efficiency and
convenience by avoiding the use of W'annier functions. The ef5ciency and accuracy of the method is
exhibited by calculating the states of a widely studied model system, namely, the ideal vacancy in covalent
solids, using semiempirical, but realistic, host energy-band structures. Results for the vacancy in Si, Ge,
and GaAs compare favorably with those obtained previously. In addition, a wealth of new information is
obtained. It is argued that the present method is the most efficient technique available for the study of deep-
level impurities and defects in semiconductors —the efficiency stemming from an exploitation of both the
short-range nature of the defect potential and the translational symmetry of the host crystal.

I. INTRODUCTION

/

The electronic structure of shallow impurities
is by now well understood in the framework of the
effective-mass theory. ' Recent extensions of that
theory allow the use of more realistic impurity
potentials and pseudopotentials and make possible
the study of moderately deep levels as well. ' 4 The
latter have energy levels which lie deep in the gap,
but their wave functions are still appreciably de-
localized so that effective-mass-like approxima-
tions apply. There exists, however, a large class
of impurities and defects with energy levels which
are deep in the gap and whose wave functions have
most of their amplitude in the vicinity of the cen-
tral cell. Effective-mass theory is not adequate
for such deep levels.

A large number of techniques have been proposed
for the study of deep impurities and other point
defects. ""We use a brief review' of soine of
these as a vehicle for presenting the essential
aspects of the physical problem which a success-
ful theory must accommodate. The first such as-
pect is the local environment of the impurity site.
The defect-molecule model for a vacancy in dia-
mond was introduced by Coulson and Kearsley' for
just this purpose. In this model, the vacancy wave
function was formed from the four dangling sp' hy-
brid orbitals on the four nearest neighbors. The
model was for a long time the only available de-
scription of the electronic structure of defects and
was used for several applications. ' '

The contemporary descendent of the defect-
molecule model is the use of finite molecular
clusters to simulate the impurity or defect and its
immediate environment. The most extensive
studies using such clusters were those of Messmer
and %atkins and co-workers' "who investigated

the vacancy, substitutional nitrogen, and the self-
interstitial in diamond. A wealth of information
was obtained. In pa, rticular, it was confirmed that
the wave function of a deep defect such as the va-
cancy may decay rather slowly, even if the defect
potential is very localized. As a consequence, it
was found for these systems that even clusters of
Vl atoms were not large enough to contain the
wave function sufficiently so as to eliminate un-
desirable surface-defect interactions which in-
troduce uncertainty in the determination of the
position of the bound-state energy levels.

Attempts to deal with the problems posed by the
cluster surfaces were made by a number of au-
thors" ' by saturating the. dangling bonds with hy-
drogen atoms. The surface states then move out of
the band gap into the bands, making the identifica-
tion of defect levels in the gap somewhat easier.
The most successful such calculations were carried
out using the self-consistent Xn-scattered-wave
method. "" An alternative way to deal with clus-
ter surfaces is to impose periodic boundary con-
ditions, which correspond to an infinite crystal
with a "superlattice" of defects. "" The surfa. ce-
defect interactions are thus replaced by defect-de-
fect interactions, which result in broadening of the
defect level into a band.

The possibility of increasing the size of the sim-
ulating molecular cluster to accommodate the
poorly localized bound-state wave function in-
creased greatly with the advent of continued-frac-
tion" and other moment-based techniques for the
calculation of specialized properties, such as par-
tial state densities, of very large clusters (2500
atoms and more). In such large clusters, the de-
fect a.nd the surfaces are decoupled. The defect
states appear in the local density of states as
sharp, 5-function-like peaks, from which their
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energies can be obtained. Applications have so
far been made to ideal vacancies in germanium'
and silicon. "

All the methods discussed above have the com-
mon characteristic that they do not make use of the
fact that the energy levels and wave functions of
the unperturbed crystal can be conveniently ob-
tained in terms of a band-structure calculation.
An alternative method, which exploits the avail-
ability of perfect-crystal solutions, was orginally
proposed by Koster and Slater. ' Letting II be
the perfect crystal Hamiltonian and V the defect
potential, one has for the perturbed crystal

(H + V)(=Eg. (l)
For levels in the gaps, Eq. (l} may be written in
terms of the perfect-crystal Green's function
G'(E) as

p= Go(E)VJ. (2)

Equation (2} is then expanded in localized orbitals,
such as Wannier functions, in order to exploit the
restricted range of V. For a localized potential,
only a finite number of the potential matrix ele-
ments will be different from zero. Koster and
Slater showed that in order to find the energy of a
bound state, it is sufficient to expand Eq. (2} in the
finite basis in which the matrix V is nonzero, i.e.,
the size of the matrix is determined by the range
of the perturbation potentiaL not by the range of its
wave function, in contrast to all the methods de-
scribed above. This is the principal advantage of
the Koster-Slater approach, since, as mentioned
above, for many deep defects the wave function
is more extended than the perturbing potential.
For example, the range of the potential of a va-

0
cancy in silicon is" -3 A as compared to the range
of its wave function, which is -6 A. Another ma-
jor advantage of the method is that it automatically
yields bound states measured from the perfect-
crystal band edges, in contrast to cluster methods
in which band edges are not defined in an unam-
biguous manner. Finally, this method yields di-
rectly al1, the changes of the electronic properties
(e.g. , changes in densities of states, charge den-
sities, total energies, etc.), as compared with the
other methods in which the changes must be ob-
tained by subtracting the corresponding perturbed-
crystal and perfect-crystal quantities.

The method of Koster and Slater" has been de-
scribed more thoroughly in terms of the general
theory of Green's functions by Callaway. " The
first numerical applications of the method using
the full band structure of the host crystal were
made by Callaway and Hughes'4 for an unrelaxed
vacancy and divacancy in silicon. The calculations
consisted of two major steps, the evaluation of the
matrix elements of the Green function and of the

potential. The Green's-function matrix elements
have a rather simple form in the %'annier repre-
sentation, but the calculation of the matrix ele-
ments of V require an explicit knowledge of the
Wannier functions. The numerical determination
of Wannier functions turned out to be very tedious
and difficult. For this reason, only a few subse-
quent applications have been made. ""

More recently, Jaros and Brand' have carried
out numerical calculations" using a method simi-
lar in spirit to the Koster-Slater Green's func-
tion method, namely, the method originally intro-
duced by Bassani, Iadonisi, and Preziosi. " The
precise relationship between the two methods as
well as their relative merits will be discussed in

the Appendix.
In this paper we turn to reexamine and generalize

the Koster-Slater method and show that solutions
of the impurity problem can be obtained efficiently
if one foregoes the construction of Wannier func-
tions but, instead, uses a conveniently chosen ba-
sis set of localized states. We describe a general-
ized version of the Koster-Slater-Callaway equa-
tions using arbitrary localized basis sets and ap-
ply the method to a widely studied model problem,
namely, the ideal vacancy in Si, Ge, and GaAs, in
order to make possible unambiguous comparisons
with other methods. A similar model was first
studied by Lannoo and Lenglart" for a highly
simplified host band structure. In the present
work we use the more realistic tight-binding pa-
rametrization of the host energy bands obtained
by Pandey and Phillips. " Overall, the approxima-
tions used in constructing the Hamiltonian are
identical in spirit with those used with success by
Pandey and Phillips" and by Pandey et al. ,

"4 in
their study of sUrface states. Comparison with
experiment is still not feasible because lattice re-
laxation is not taken into account in this paper,
but from the point of view of methodology, the
present work describes in detail a method which
provides an exact and computationally efficient
solution to the problem of the ideal vacancy which
has been studied extensively in terms of small
and large clusters.

The outline of the development is as follows. In
Sec. II, the Green's-function method is described.
This section is mainly based on papers-of Koster
and Slater" and Callaway, "and is included here
primarily for completeness, but all results are
explicitly given in terms of any complete ortho-
normal set of states. Section III contains material
specific to ideal vacancies in the tight-binding ap-
proximation. Numerical solutions are obtained for
Si, Ge, and GaAs and compared to other calcula-
tions. Our main conclusions are summarized in
Sec. IV.
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g = (E —H ) 'Vg= G (E)Vg

or, equivalently,

[I —G'(E) V] g = 0 .

(4)

(5)

&his last equation indicates that nontrivial solu-
tions exist only when the operator 1 —G'V does
not have an inverse, i.e. , when its determinant is
zero. This requirement may be seen by expanding

g in any complete orthonormal set of states P in
the form

(6)

and taking matrix elements of G' and V in the same
basis. Equation (5) becomes a set of linear alge-
braic equations

g L5... g 'G..„( E)v.....]c..=
0,

which has nontrivial solutions when

«tll 5- —Z G'--(E)v.-- II=' ~

~tl

The Green's function matrix G', (Z) is given by

c'...(z)=&~I(z H')-'I~ &.

or, more conveniently, by

( ) p (tx ink)(nk In')
( )

nk nk

where E'„-„are the eigenvalues of H', i.e. , the
perfect-crystal energy bands.

Equation (8) is the condition that must be satis-
fied for a bound state to exist. If the functions P
are localized about atomic sites and the perturba-
tion potential V has a finite range, the matrix ele-
ment V ~ will be nonzero only if both P and P ~

overlap with the potential. The potential matrix
can then be schematically written as

fv 0)
— (0 oi'

II. GREEN'S-FUNCTION METHOD

The Green's function method is based on formal
scattering theory'. In this section, the basic equa-
tions of the method will be given in a generalized
form in terms of arbitrary basis set of localized
functions. This form will be used in the remainder
of the paper for numerical calculations.

We concentrate first on states within the band
gaps, where the Green's operator for the perfect
crystal is real and unambiguously defined by

I

G (E) = (E —H ) '
~ (3)

The Schrodinger equation for the imperfect crystal,
na.mely, Eq. (1), can then be written as

where V denotes the nonvanishing part of the ma-
trix. After writing the matrix of the Green func-
tion G' as

(G'„(E) G,', (Z) )
G'z =i

(G'(E) G'(E)i
the matrix of the operator 1 —G'(E)V becomes

fI G,',-(E)v 0)
!—' )- i Go, (z)v

From (13) it is now evident that

G', „(z)v

(12)

(13)

(14)

so that the size of the determinant reduces to the
size of the nonzero part of the potential matrix. "

Solution of the corresponding subset of linear
algebraic equations yields a subset of the coeffi-
cients C . The remaining coefficients are given
by

C, = P g G',.(E.)V...C... (15)

G'(E) = lim (E -H, +ig) ', (16)

and Eq. (4) is replaced by the Lippmann-Schwin-
ger" equation

g„-„=g'„I+ lim G'(E+ig) Vg„~,

where g'"„ is a perfect-crystal Bloch function,
namely, @ solution of

H o(0 E&„qo

(n and k are not conserved in the perturbed crys-
tal, but are convenient labels for the scattering
states. ) In turn, Eq. (5) is replaced by

(18)

I.I —G'(E) V]|t -.= 0'~.

Because of the presence of g'„-„on the right-hand
side of Eq. (19), solutions exist at all energies
within the energy bands of the perfect crystal.
The wave function P corresponding to a solution
at E=E„'; is not, of course, equal to tt'-„. Simi-
larly, the density of states is altered in the vici-
nity of the defect. If we let D(E) denote the deter-
minant defined by Eq. (14), i.e. ,

D(z) = «t Ill —G'(E) VII ~ (20)

it may be shown that the change in the density of
states is given by

where E„ is the energy of the vth bound state in the
gap.

We turn now to examine the 'effect of the pertur-
bation V on the states within the energy bands of
the perfect crystal. The definition of G' is now

generalized to



SCATTERING-THEORETIC METHOD FOR DEFECTS IN. . .

1 d6(E)
w dE (21)

where the quantity 5(E), known as the phase shift,
is defined by

5(E) = —tan '[1mD(E)/Re D(E)]. (22)

It is clear from Eq. (22} that 5(E} goes through
an odd multiple of —,

' v every time Re D(E) = 0. 6(E)
may then be expanded about such an energy, which
we label E,. The result is"

tan6(E) = I'/2(E E,)
where

I' = 2 Im D(EO) /Re D '(Eo) .

(23)

In (24), the prime denotes differentiation with re-
spect to energy. In the region close to E„bÃ(E)
becomes

~X(E)= ——=7
2w (E-E,}'+-,'I' ' (26)

This characteristic Breit-signer form indicates
that for I"& 0 one has a resonance or a peak in
dN(E) with a half-width I', whereas for I'&0 one
has an antiresonance or a dip in &N(E) with a half-

From the analytical properties of D(E), one can
deduce" the important sum rule

&N E =0. (26)

When the states in the gaps are counted separately
from changes in the density of states within the
bands, (26}becomes

4N E =-N~, (27)

where K, is the total number of bound states in the
gaps. The relations (26) and (27) are the solid-
state analog of Levinson's theorem. "

A. Perfect crystal

In the empirical tight-binding method, the Hamil-
tonian H' describing the perfect crystal is defined
directly in terms of its matrix elements with re-
spect to a basis set of atomiclike functions
y (r —R,):

III. IDEAL VACANCIES IN Si, Ge, AND GaAs

In this section, we will apply the Green's-func-
tion method described in the previous section to
study the ideal vacancy in Si, Ge, and GaAs. The
term "ideal" will be defined more precisely in sub-
section B below.

If'=Z Z ~~.,»:.„'&~., ~. (28)
0. f 0,'j'

R,. denotes the atomic positions and + labels
atomiclike orbitals on each atom. The Bloch func-
tions are then expanded in terms of the Q (r, R&).
Translational symmetry reduces the size of the
resultant secular matrix to the number of orbitals
in the unit cell. The secular matrix depends on the
wave vector k and is entirely defined in terms of
the H', »., without the need for explicit forms for
the P . The eigenvalues of the secular matrix at
each k are the energy bands.

In the present study, s and p atomiclike orbitals
were used, which, combined with the fact that Si,
Ge, and GaAs have two atoms in the unit cell, yield
an 8 & 8 secular matrix at each k. Four valence
bands and the four lowest conduction bands are,
therefore, obtained. In such a representation, the
most accurate parameterization of the energy
bands of those materials available in the litera-
ture is that of Pandey and Phillips. ""which re-
tains only first- and second-nearest-neighbor in-
teractions and neglects all the overlap matrix ele-
ments. This yarametrjzatjon has been very suc-
cessful in describing surface states of the same
materials. "

B. Ideal-vacancy equations

Let us denote the perturbed-crystal Hamiltonian

by H, and the perfect-crystal Hamiltonian by H,
as in Sec. II. The ideal vacancy is then defined in

a manner identical to that used in the various ex-
tended-Huckel calculatjons, ' ~' and jn the tjght-
b jnd jng method us jng large clusters. ' To w jt,
an atom is removed from the perfect crystal,
leaving all other atoms at the same positions; the
atomiclike orbitals are retained on all other
atoms, and their interactions are assumed unal-
tered.

A useful illustration of the model is given in Fig.
1(a), where the matrix H' of the infinite perfect
crystal is partitioned in four blocks. The size of
H~ is equal to the number of n, of orbitals on the
atom to be removed, which we refer to as atom X.
In the present case of s and p orbitals on each
atom, np=4 so that H~ is a 4X4 submatrix. The
matrix H for the ideal vacancy is defined by (see
Fig. 1)

(29)

The cluster calculations that were discussed in
Sec. I correspond to truncating H~. In the present
method, H~ will be retained as an infinite matrix.

In order to cast the above model in a form suit-
able for the Green's-function equations described
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HA HB

A

Hp=

X HA

HB

Hl

(E.l O

HB

(b)

where M =
HX + E,I

perturbation at the site of the atom to be removed.
It does not affect any other Hamiltonian matrix
elements. This assumption is equivalent to re-
moving an atom without altering the nearby matrix
elements, as commonly done in cluster calcula-
tions of the vacancy. ) By symmetry the s and p
orbitals on the central atom do not mix so that
the relevant "X"block of the matrix 1-G'(E) V is
diagonal. Consequently, the determinant of
1 G'(E—) Vis ze'ro whenever

G' (E)=1/E, (31)

(c)

FIG. l. Schematic illustration for the derivation of
the matrix V for ideal vacancies. See text.

in Sec. II, we must identify V, which is defined by
the operator equation

V=H-H (30)

In order to obtain a matrix representation for V,
one must define H to be of the same dimension as
H'. One such possibility is to take H to be H„de-
fined schematically in Fig. 1(b). E, is an arbitrary
energy and I is the unit matrix of the same order
as Hxo. Note that H, has exactly the same eigen-
values as H~, plus an n, -fold degenerate eigen-
value at E, which is to be ignored as spurious ex-
cept for purposes of satisfying Levinson's theore~.
(E, would best be chosen outside the range of in-
terest). This form of H would allow one to con-
struct V and proceed with the solution of the
Green's function equations. The size of V would,
however, be determined by the form of H'„, which
in turn depends on the number of nearest-neighbor
interactions one includes in H . In the case of
the Pandey-Phillips" parameterization, the re-
sultant V would be 56&& 56. Note that the physical
meaning of V is to cut off the interactions of atom
X with all other atoms in the crystals, which is
equivalent to removing it.

An alternative and more advantageous way to ob-
tain a matrix representation of V is to take H equal
to H„as defined schematically in Fig. 1(c), where
E, and I are as before. In the limit as E,-~, g,
has precisely the sap' eigenvalues as H~, plus
an n, -fold degenerate eigenvalue at infinity, which
is again to be ignored as spurious except for satis-
fying Levinson's theorem. The perturbation matrix
V is now diagonal and only ~0 && n~, i.e., 4 x 4,
which is a substantial reduction. Physically, V,
instead of cutting off the interactions of atom X
with the other atoms, places the energies of the
orbitals on atom X at infinity so that the interac-
tions represented in Fig. 1 by H ~ produce no
coupling whatsoever. (V is an infinite potential

where o, is any of the orbitals on atom X. In the
limit of Eo-~, (31) becomes

G (E) =0. (32)

When a is the s orbital on atom X, the zeros of
G' (E) in the regions of the band gaps correspond
to bound states of A, symmetry, whereas when n
is one of three p orbitals on atom X, the zeros of
G' (E) in the regions of the band gaps correspond
to bound states of T, symmetry. Furthermore,
the ideal vacancy in the s-p approximation (no d
or f orbitals) introduces no bound states of sym-
metry other than A, and T,.

As for the regions within the energy bands, the
zeros of Re G' (E) correspond to resonances and
antiresonances. The complete change in the den-
sity of states is given by (21) where

5(E) = -tan 'tim G' (E)/Re G'„(E)j. (33)

-j. /2

C, =G„(E„) gG'„(E„), I~o (34)

where I =(X,j) is a composite index and l =0 de-
notes orbitals on atom X. C, is identically zero
for all bound states. The index X stands for an
appropriately symmetrized combination of orbi-
tals on the shells surrounding atom X.

Before concluding this subsection, it is im-
portant to emphasize that the zeros of G' (E) are
the exact bound-state eigenvalues of the infinite
matrix H~. As we shall see in the next subsec-
tion, they can be obtained numerically to arbitrary
accuracy with relatively small and rather modest
computational effoit.

C. Calculations

For numerical calculations of the energy levels
of the ideal vacancy, we need to compute the

Once more, the changes in the density of Ay and T2
states are given separately by G'„(E) and G'„(E),
whereas the states of other T„symmetries remain
unchanged.

Finally, the coefficients C, of the vth bound-state
wavefunctions are given by
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Green's-function matrix elements G'„(E) and

G»(E) on the atom X. We let n = s or p and
address the issue of computing G' (E) for ener-
gies both within the energy bands and the band
gaps. Equation (10) is then generalized to read

~ (n Ink)(nk In')
Q ~(Ej

This expression may also be written as

be internally consistent. Having evaluated
Re G~„(E) and Re G»(E), their zeros within the
ba,nd gaps were located and identified a.s bound
states. The changes in the densities of states
within the energy bands were then evaluated using
Eqs. (21) and (33).

A general result of these calculations is par-
ticularly interesting. As we just saw, the bound
states in the gap are determined by

G', (E) = lim
6 ~Q+

dE'
A.,(z'), (36}

A (E')
(42)

where the quantity A(E), known as the spectral-
density operator, "is defined by

A(z) = Q l~k)6(z-E'. )(»I
nk

so that its matrix elements appearing in (36) are
given by

A...(z)=g (n~nk)(nk~n')6(z z'„-„), (38)

Finally, using the Dirac identity

f(t) dt f(t) dt
/+i'

where P stands for "principal value, " (36) becomes

G', (E) = P —, dz' —tv A~ ~ (E).A .(E')
(4o)

' f(t') dt,
' f(t') —f(t) dt,

—f(t) ln (41)

which is valid for a&t &b. The integral on the
right-hand side of (41) is now regular and can be
computed by Simpson's rule. In evaluating the
real part of the Green's functions by carrying out
the principal-value integral in Eq. (40), the inte-
grals must be evaluated over the whole range of
the eight energy bands in order for the theory to

For our present purposes, A„(E) and A ~(E) are
standard s-like and p-like partial densities of
states, respectively, and therefore positive defi-
nite quantities. A.» is identical for p„, p„and p, .
The sum over the Brillouin zone is reduced by
symmetry to a, sum over the irreducible —,', th of the
zone and can be evaluated using one of several stand-
ard techniques. For the present calculations, the
method of Gilat and Raubenheimer" "was U.sed.

Once A„(E) and A ~(E) were evaluated, the real
parts of G'„(E) and G~»(E) were obtained by carry-
ing out the principal-value integrals, as indicated
in Eq. (40}. Principal-value integrals were evalu-
ated using the identity"

where n = s or p and A (E') is positive definite.
The integral is over all the bands, so that, for
bound states in the fundamental gap, (42) becomes

A(E')
valence

A(E')
onduction

(43)

g~
6 N(E) dE = -M, (44)

where M is the number of valence electrons that
were removed, i.e., 4 for Si and Ge, 3 for a Ga
vacancy in GaAs, and 5 for an As vacancy in
GaAs. Using (44), it was determined that the T,

where both integrals are positive for all values of
E. Equation (43) reveals that, for the ideal va-
cancy, the bound states in the gap arise from a
sensitive balance between valence- and conduc-
tion-band quantities, so that both sets of bands are
needed with equal accuracy. Note that if the con-
duction bands were left out, no bound states would
result. This conclusion is of course specific to
the model of the ideal vacancy used in this work,
and does not necessarily remain true for other
types of perturbation.

Calculations have been carried out for the ideal
vacancy in Si, Ge, and GaAs. Figure 2 shows the
real and imaginary parts of the Green's functions
for Si. The positions of the bound states within the
gaps of all three materials are given in Table I.
The corresponding changes in the densities of
states are given in Figs. 3-6. In the case of GaAs,
no bound states were found in the so-called anti-
symmetric gap of the valence bands in the case of
the As vacancy. The Ga vacancy in GaAs, how-
ever, introduces A, and T, bound states at -10.05
and -10.02 eV, respectively. (The gap begins at
-10.09 eV.) In all cases, Levinson's theorem is
satisfied, if the states at infinity discussed in Sec.
III B are taken into account. In particular, when
the changes of densities of states of all symmetries
are summed up, the integral of &N(E) over the en-
tire energy range, including the bound states is
-8 (including spin degeneracy), corresponding to
the + 8 states at infinity. The Fermi level Ez in
the perturbed crystal is then determined from
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FIG. 3. Changes in the density of states induced by
an ideal vacancy in Si. (Bound states in the gap not
shown. See Table I.)

level in the gaps of Si and Ge is occupied by two
electrons, an indication that a Jahn-Teller dis-
tortion is inevitable in agreement with experimen-
tal observations. " In the ease of the Ga vacancy
in GaAs, the T, level in the gap (almost coincident
with the valence-band top) is occupied by three
electrons and is again unstable with respect to
Jahn-Teller distortions. In the case of the As
vacancy, the T, level is very near the bottom of
the conduction band and would contain only one
electron.

TABLE I. Bound-state energies introduced in the fun-
damental gap by the ideal vacancy in Si, Ge, and GaAs.
Energies in eV and measured from the top of the valence
bands. A& and T2 denote the symmetries of the bound
state.

A& T2

Si
Ge
GaAs:VG,
GaAs &As 0.7l

0.27
O.ll
0.02
1.47

FIG. 2. Real and imaginary parts of G~~ (E) and GN, (E)
of Si. D. Comparison with other methods

As we stated in Sec. I, the results of the present
calculations cannot be compared with experimental
data, largely because the crystal surrounding a
vacancy undergoes Jahn- Teller distortions, which
have not been included in the theory. We there-
fore turn to a comparison of our results with those
obtained by others for ideal vacancies. A direct
comparison can be made with the results of Kauf-
fer, Pecheur, and Gerl" and of Joannopoulos and
Mele." These authors define the ideal vacancy
in an identical way (see Sec. GIB), except that they
use different parameterization for the energy
bands, and of course, different methods for com-
puting the vacancy-induced changes in the elec-
tronic structure of the host. In order to compare
the relative accuracy and merits of different
methods, we have repeated our calculations using
the parameters employed by Kauffer et a/. for Si.
We have obtained the same T, bound state in the
gap (0.18 eV compared ' with 0.12 eV of Kauffer
et al. ) and A, resonances (at —0.80 and -V.2V eV
compared with -0.88 and -7.2'7 eV, respectively,
of Kauffer et al. ) but we also obtain an antireso-
nance at 6.45 eV and other structure (Fig. 7). Note
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FIG. 4. Changes in the density of states induced by
an ideal vacancy in Ge. (Bound states in the gap not
shown. See Table.,I.)

FIG. 5. Changes in the density of states induced by
an ideal Ga vacancy in GaAs. (Bound states in the gap
not shown. See Table I.)

that the antiresonances required to satisfy Levin-
son's theorem are not identified by Kauffer et ai.

Furthermore, the present method is considerably
more straightforward. Note that the three meth-
ods, ours, that of Kauffer et al. , and that of Joan-
nopoulos and Mele, all require the evaluation of a
single matrix element of a Green's function as a
function of energy. In the present method, the
relevant Green's function is that of the perfect
crystal, which can be calculated by the very ef-
ficient Brillouin-zone integration routines, ex-
ploiting translational symmetry. In contrast, in
the methods of Refs. 20 and 21, the relevant
Green's function is that corresponding to the im-
perfect crystal. The latter is a much more com-
plicated quantity and requires the use of more
cumbersome techniques originally- developed for
amorphous materials, which lack periodicity al-
together. Furthermore, the present technique
yields directly the defect-induced change in the
density of states &N(E), whereas the other two
techniques yield the total local density of states
of the perturbed crystal and &N(E) must be ob-
tained by subtracting two rather similar quanti-
ties, which increases the inherent uncertainty.

Finally, we should remark that the above numer-

ical results for the ideal vacancy were obtained
using tight-binding Hamiltonians which give a good
description of the bulk valence bands and a rather
poor description of the conduction bands. Since
both sets of bands play an important role in de-
termining the bound states in the gap [cf. Eq. (43)],
such tight-binding Hamiltonians do not necessarily
provide a realistic description of the vacancy
states. Nevertheless, the present results com-
pare qualitatively very well with the results ob-
tained for similar systems by Louie et al."and
by Jaros and Brand, whp used mpre rigprpus
pseudopotential band structures. In particular,
the number and positions of the band states in the
gaps are very similar. On the other hand, the
present method produces a more detailed picture
of resonances and antiresonances.

IV. CONCLUSIONS

The main conclusion of this paper is that the
Koster-Slater Green's-function technique, which
was found to be very cumbersome by Callaway
and co-workers who used the Wannier represen-
tation, becomes very efficient and accurate when
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conventional LCAO representations are used. The
method has substantial advantages over small- or
large-cluster techniques, primarily because it
exploits both the short-range nature of defect po-
tentials and the translational symmetry of the host
crystal. These advantages are also present when
first-principles LCAO energy-band calculations
are used to describe the host crystal. The results
of such calculations will be reported elsewhere.
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APPENDIX

FIG. 7. Changes in the density of states of an ideal
vacancy in Si using the tight-binding parametrization
of Kauffer et gl. (Ref. 21). Notice the similarities
between this figure and Fig. 3.

the impurity wave function g in terms of Bloch
functions and following with a number of transfor-
mations„We show here that the same determinant
may be obtained by starting with the general
Green's function results of Sec. II. As we saw in
that section, bound states in the band gaps corre-
spond to zeros of

D(E}= det II' - G'(E) VII ~

Let now V= V, V, as in the method of Bassani et al.
(Originally, Bassani et af. assumed V, = V, = V'~',
but Jaros and Brand generalized the theory to ar-
bitrary V, and V, satisfying V= V,V,.} Substituting
in (Al}, we observe immediately that the deter
minant

(A2)

has the same zeros as D(E). If we express D(E)
in terms of a set of functions g, so that

In this Appendix, we discuss the method intro-
duced by Bassani, Iadonisi, and ~Preziosi, "which
has recently been used extensively by Jaros and
Brand. The basic determinantal relationship of
the method was originally derived by expanding

and note that

(~lv Gov lm )-g (m~ v ~ "k)(&&~ v ~~')
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we recover the determinant obtained by Bassani
et a/. This derivation establishes a direct rela-
tionship between the method of Bassani et al, and
the standard Green's-function formulation, and at
the same time it reveals an inherent drawback of
the former. Note that in Eq. (A4) the sums over k
depend on the perturbation and must be repeated
for each impurity or defect. In contrast, Eq. (10)

shows that in the standard Green's-function formu-
1.ations, the sums over k do not depend on the per-
turbation and must, therefore, be done only once
for each material. Since these sums are by far
the most time-consuming aspect of the calcula-
tions, the standard Green's-function technique ap-
pears to be more convenient for numerical work.
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