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Quantum beats from nuciei excited by synchrotron pulses
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(Received 27 October 1977)

Synchrotron pulses will excite low-lying nuclear levels whose subsequent decay will exhibit
beats with frequencies equal to the nuclear hyperfine splittings. The highly collimated pulses in-

cident on very small enriched single crystals at a Bragg angle will result in an appreciable fraction
of the incident radiation in the spectral width of the nuclear resonance being coherently scattered
into a highly collimated bea~ which will exhibit beats corresponding to the difference frequencies
emitted by diAerent nuclei, and a decay parameter I, with marked time dependence.
PACS numbers 1977 76.80.+y 78.90.+t 61.10.Dp BK1006

I. INTRODUCTION

Ruby' first pointed out that the synchrotron radia-
tion from the storage rings SPEAR and DORIS should
be useful for exciting low-lying nuclear levels. To be
specific, SPEAR operating at 2.5 GeV and a current of
100 mA produces a Aux of about 10' photons/eV sec
mrad at 14.4-keV photon energy. ' Then by means of
a bent-crystal monochromator one should be able to
get a photon flux on a 1 & 1 mm target placed -10 m

from a tangent to the orbit of electrons of about 10"
photons/sec mm' at this energy with a bandwidth —1

eV and a collimation =10 (vertical) x 10 ' (hor-
izontal) sr. The width of the 14.4-keV "Fe level is

I =10 eV; therefore, in the synchrotron radiation
falling on the target there would be -10
photons/sec mm', which could excite this level. A na-
tural 100% "Co Mossbauer source gives -10'"
Mossbauer (y rays)/sec mm', and for the usual
Mossbauer-absorption experiments where only a

moderate collimation is necessary (say 0.1 sr) the na-
tural source would deliver a flux of about 10"/mm' sec
on a target as compared with -10"/mm'sec from the
storage ring, However, while the brightness of the na-
tural source is —10" photons/mm' sec sr (isotropic)
that of the synchrotron radiation is —10'"/mm' sec sr
(in the very narrow 10 '-sr collimation), and f'or ex-
periments involving coherent scattering and transmis-
sion through perfect crystals, and interferometry ex-
periments, where high collimation is necessary, the
synchrotron source will be superior to the best possi-
ble natural source. In addition with wigglers it has
been estimated that a 10' & increase of the synchro-
tron flux is attainable' and this would make it com-

. petitive with the natural source even for low collima-
tion experiments. Furthermore, the synchrotron spec-
trum is essentially white, and fluxes of the order of
those given above can be obtained for exciting any
low-lying levels from the nuclear ground state. Many
interesting nuclei have no convenient radioactive
parents (e.g. , '"K, "Ge,.. .) and the synchrotron source

should be particularly important for studying these
substances.

We have discussed elsewhere how filters may be
devised which will extract the uMossbauer slice" from
the white synchrotron radiation for use as a source of
Mossbauer y rays. Here we discuss certain new time-
diA'erential-perturbed-angular-correlation- (TDPAC)
type experiments-' which could be performed using
pulsed synchrotron sources leading to interesting new
results.

The synchrotron radiation from SPEAR or DORIS
operating in the single-bunch mode consists of sharp
pulses of about 10 ' -sec duration and about 10 '-sec
separation between pulses. ,

' Excited nuclear states of
energy less -100 keV commonly have lifetimes in the
range I ' =10 ' —10 ' sec. If the pulse, mono-
chrornatized to perhaps 1-eV bandwidth at the nuclear
transition, impinges upon a small -sample containing
the resonant nuclei then the electronically scattered x

rays, photoelectrons, etc. , will emerge promptly during
the 10 '"-sec pulse, while those processes involving
nuclear excitation will be delayed a mean time I
Therefore, bv using a timed detector which can recov-
er from the prompt pulse in a time short compared to
I ' the resonant and nonresonant events can be
separated temporally. '

There will be beats in the resonance radiation fol-
lowing the prompt pulse, both in the elastic and ine-
lastic scattered y rays and the internal conversion elec-
trons as well. Measurement of the beat frequencies
will give a direct determination of the hyperfine split-
tings of the individual nuclei, or of the energy shifts
between two dift'erent nuclei located in diferent chem-
ical or magnetic sites.

In the usual TDPAC experiments beats are ob-
served following the population of, say, a first-excited
state by the radiative decay of a broad higher state;
the beat frequencies give the splittings of the excited
state. The present method promises to be much more
powerful for a variety of reasons. First the pulse gives
a direct excitation of the nuclei from their ground
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state. This obviates the need for radioactive sources.
More important is this: The synchrotron pulse excites
several nuclear excited state sublevels suddenly and
coherently which then "oscillate" at their various na-
tural frequencies giving beats at the diA'erence f're-

quencies in the decay probabilities in various direc-
tions. The excitation amplitude of this initial state is,
for a particular nucleus, ' independent of the state of
atomic binding and the temperature since the synchro-
tron spectrum is white over many electron volts.
However if the recoilless probability, the Mossbauer f;
is appreciable then there will be appreciable coherent
elastic scattering which will exhibit beats resulting
from the interference of waves emitted by different nu-
clei (while if f is small recoil eA'ects will largely wipe
out the interference in waves emitted by dift'erent nu-
clei, and the usual TDPAC theory applies). '"

The new and important element in the synchrotron
pulse experiment is that the very well collimated pulse
produces a spatially coherent excitation of' the
resonant nuclei in a crystal, and if the pulse direction
is set for a Bragg reflection then the Bragg reflected
wive will exhibit beats, the measurements of which
will give the diA'erence frequencies of the resonance
transitions. If the mosaic spread of the crystal is
&10 ' rad, then the reflected beam will have a colli-
mation JO =10 ' —10 ' sr and a very small detector
(area —I mm' located —I m from the target) can be
used giving a large signal-to-noise ratio. If f and the
concentration of resonant nculei in the crystal are
large then arz app(eciable fi.action of'the irrcide(rt photo(rs
i(r the resonance width will be cohere(rtly reflected. In
fact, as we shall see, because of the very low "entro-

py,
" or high brightness, of the incident pulse the iery

highly colli(nated coherently scattered y rays (rrap exceed/

in nutnber those not tnolly expected (in —4rr sr) for in
cohererrt scatterers, and even f'or small crystals be«onre

c o(nparable to or la(ge( than the tru(nbe( of' internal
co/r lters(OIz electrolzs.

The theory for the beats in the (spatially) in-

coherent processes is parallel to that developed for or-
dinary TDPAC experiments, that for the coherent
scattering is new.

incident on the nucleus by F(t) with F(t) =0 for
t & 0 and t ) r, then the amplitude C„„,(r) that the
nth sublevel of the excited state len) has been excited
at the end of the pulse is

C„„,(r) =+—e "'
&en l p, lgin)

x e "'" F(t) dt

where tL is the dipole operator (F. = E for El and
F =8 for Ml transitions) and Oi„„, = e„,, —e„,„,, where
the e's are the energies of the indicated states. In (1)
we have assumed that I ~ && 1.

%e now write ~„„,=zoo+A„„„where cu() is the mean
transition frequency and 4„„, is the splitting. Then if
A„„,r « I for all n and in, (1) becomes

xe ' F(t) dt

This assumption is made because it is true for most
transitions of interest and because it simplifies the for-
malism somewhat. The synchrotron. pulse consists of
many photons emitted by the many electrons in the
bunch incoherently one with the other. The pulse
from a given electron has a width -h.

, /c—10 '/3 x10 "—10 '" sec, ' or if this radiation is
filtered to about 1 eV, this coherence time becomes—10 ' « 7 —10 ' sec. The probability of a given
process should be computed starting from (I) where F
represents a one-photon amplitude with a duration of
the order of the coherence time, and the result
summed over all of the photons occurring in the pulse
of duration r, which, with the assumption (2), just
amounts to multiplying by the number of photons in

the pulse.
From (2) we now have

(3)

II. SPATIALLY INCOHERENT PROCESSES

To avoid needless complexity we shall consider a

nuclear dipole transition (El or Ml). For simplicity,
we shall neglect relaxation eAects and assume that the
ground and excited states are split by static hyperfine
(Zeeman, quadrupole) fields. Suppose the nucleus is
initially in the i»th sublevel of its ground state lgtn),
and represents the amplitude of the synchrotron pulse

as the excited state amplitude, where

p +oo

F„, = J F(t)e "'dr

The results (I)—(3) were obtained neglecting the vi-
brational amplitude of the nucleus r, and the fact that
the vibrational state of the crystal lx) might change
when the quantum was absorbed. The transition am-
plitude for lg, m lxo) len) lx, ) is, in analogy to (1),

l x()) dt
c
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where no is the pulse propagation direction, and where strictly rather than ko= c DUO»p in (4), we should have
no(co„„,+ E;—Eo)c ', but since On&

—10' eV, E, —Eo +10 ' eV, the difference is negligible, and similarly
F + E, —E„=F„ to good approximation. The extension of (3) is now

jtIH

r

'le») g(x, (e' ' "l~o)e ' [&,)l(r),
lf /

(s)

where 1(t) is the step function, and where we neglect r (we assume I'r (& 1 and h„„,r (& I). The relative ampli-
tudes for the excitation of the various states ~en) are independent of the nuclear motions.

The probability per second for emitting a photon in direction Ii, with the nucleus going to the ground state ~gm')
is now given by the usual dipole radiation formula (see Appendix A)

3 2 2

', gp, ,"„„p,„„, F„,,e
''""'" ' '

g g(x, [e
'"' ")X,)(XI)e' ''(xo)e ' "

where p, is the component of p. perpendicular to n, ,
and in (6) we again have neglected 5„„,and E, —L,
relative to coo. The interpretation of (6) is familiar
from the theory of angular correlation. ' The radiation
rate in a given direction is independent of the nuclear
motion and is proportional to the square of the per-
pendicular component of the transition-matrix ele-
ment of the dipole moment operator between

~
i[i, .)

and ]gm') [which appears within the first brackets
in (6)]. The magnitude of the transition matrix ele-
ment of the dipole moment decreases as e ' '" but its
direction precesses, and as a consequence the cross
tems in the square of the sum in (6) do not vanish
and give rise to beats (frequencies, e„—e„) in the ra-

diation emitted in a given direction,
Suppose the hyper0ne field is axially symmetric.

Take the symmetry axis to be z, and n and m to be the
magnetic quantum numbers of an excited state and
ground state, respectively. Then

(en~@,„~gm) =[—(1 /ko)]'j C(jol j~ ,mpn), '(7)
where p,„(p =0, +1) is a component of P in the
spherical basis, C is the Wigner coeScient, and I, is

the partial width for y emission. Substituting (7) into
(6) we obtain

2
Ipjjr 'ij& , 9 ~ y

dAdt 32~ h ko

x g e„„,. „, C(jol j~', m';p + m —m')

2

x ep F,„C(jolj),mp) e'

"Fe); furthermore, let F„be perpendicular to .""
say in

the y direction (the synchrotron radiation is over 90'/n

polarized in the plane of the orbit) then the scattered
radiation in the x-y plane can, with a little algebra be
shown to be

1

dP 7 &o e
)E () I

dII dr 8 (I +o.) 4rr'ji'0) '"0 I +a 2

x —e [I + [g [cos(jt3ji ~ j —ir 2P)

+ cos(b ) ji 3j,j —2(p) ] ]

where o. is the internal-conversion coeScient, q? is the
azimuthal angle, and h(n, n') = ji '(e„—e„) The f'a.c-
tor

is the photon flux (cm ') in the energy range
rrI /2(1+0) in the pulse. (A similar expression can
be obtained for the TDPAC internal conversion electron
distribution. ) If the quadrupole splitting were negligi-
ble, then the two frequencies in (9) would be the
same and one would obtain a 42% sinusoidal beat am-

plitude, rather than two 21'/o sinusoids. In this case of
spatially incoherent scattering, there is only interference
between transitions to the same ground state ~igm')

and so the beat frequencies reflect only the splitting of
the excited state.

III. COHERENT SCATTERING

~here e„,p =+1,0 are the usual unit vectors in the
spherical basis.

l . 3
As a particular example take jo = —, , j~ = —, (e.g. ,

We now compute the coherent elastic scattering.
Consider a nucleus whose equilibrium position is R .
We now compute the amplitude
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l g, m, ) ~ xo) ~
e, n, ) ~ xo)

The scattered photon potential at a point r and time t is proportional to (see Appendix A)

—i (.l —i I./2) I-' R, +f,
A (r, t) = —e ""' (exp i &0—„„,—i I"t—t

——' —'

)
C

l
t

I" +iit &R +r lie R +r 1

X dt' (F t' —ti —' —'

) e
l

—i(& —i I /2)(' —i(k —k ) R —i k . r
nnr e / 0 i (e f i)

I

ko r —6~/+ no
(e " ')F„l t' —— R,

C
(10)

where I' = I —r/e is the retarded time at the origin, k, = n, oloe ', and the brackets indicate expected values for the
crystal vibrational state

~ Xo). The wave from R, is retarded an extra time (iio —Ii, ) R, i, Generally the crystal thick-
ness will satisf'y 2//e (( h/I' and the waves from all points of the crystal will be recieved before appreciable decay
takes place. We now have for the elastic scattered E(E1) or B(M1) field

-i (&u —i I'/2) t'
II III

I I

—i k/ r I'ko r,
where f = e (e ' ') (e ') is the Mossbauer factor,
and where we have neglected the transit time through
the crystal, for simplicity, and F„,~(r, t) is the "Feyn-
man field" representing a scattered photon. Our par-
ticular interest is in the (spatially) coherent scattering
(Bragg scattering). Let there be several sites, R, +r„,
in each unit cell, n =0, 1, . . . . Then we have (see Ap-
pendix A)

F,.„„(r,t) =- (/&(~&/r)M, .„„(t',k)S(k)

where

i Cf' —i [ ( ) — I'/2[t
M,.„„ t k = —— ' — e

lr 2/0+1, „„„,

&& Ii„„,(n) p„„,(n) F„, e,

is the analog of the x-ray structure factor, k = k, —ko,
C is the fraction of sites occupied by resonant nuclei,
and fiAally

S(k)= $ e
'

crystal

If a thin crystal is set at a Bragg angle, then the
reAected intensity will be proportional to the square of
the form factor

~
M,.„h~' [see Eq. (14) or (A10)l. This

will result in beats corresponding to the diA'erence fre-
quencies of all the allowed transitions m„„„from
which the splittings of the excited and ground states
may be found, whereas the beats in the incoherent
scattering and the internal conversion electron intensi-

ty give only the excited-state splitting. The time
dependence of the 'Bragg scattered intensity will be

I

more complicated than that of' the incoherent
processes, necessarily, since it yields more inforrna-

t.loA. For example for the —. —, dipole transition

considered above there are six allowed transitions and
six &0,»»'s.

l M«h(t, k) ~'e' ' will then, in the general
case, contalA 15 Four lcr components. If thcrc ls

negligible quadrupole splitting, degeneracy reduces
this to seven, and further reduction results from prop-
erly choosing the polarization of the incident pulse.

, However, even in the general case, the diA'crcncc fre-
ucAclcs arc simple fuActlons of thc 1TiagActlc ITlo-

ments and quadrupole moments of the two states and
the magnetic field and the electric field gradient at the
nucleus and should allow for simple analysis of the
data.

Of course„beats with frequency cu„„, —co„„,, m' A ni

result from the interference of waves emitted by
diferent nuclei in the crystal, and if there are several
sites in the unit cell then beats with frequency
cou„, (n) —co„„,(n'), n' A n are due to the interference
of waves from nuclei located at sites o. and n'. The
latter is of some interest. Let us simplify and assume
that there are two unsplit sites at R, and R, + r with
transition frequencies ~0 and no+ 6, rcspectively-.
Then it is clear that M,.„h takes the form

0'~ —i (At —k. r )& —I' t/2

aud the Bragg scattered intensity is of the form
A [1 +cos(kt +k r )Ie, so tlla't obviously olle can
determine the chemical shift 5 between the two sites,
and, by measuring at several reflections, determine r
as well.

It is interesting to note that the scattered intensity
actually is not ol' the form Ae ' '[1+cos(ht +k r)].
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multiplying the coherent and incoherent decay proba-
bilities.

The coherent scattering —
I

F„.„„I'is only appreciable
[see Eq. (12)] when k = r, a reciprocal-lattice vector
for the crystal. Let a thin crystal be set at a Bragg an-
gle to the synchrotron pulse. If 5(=10 ') is the angu-
lar spread of the incident radiation and 5 is the mosaic
spread of the crystal, then in the Born approximation
the number of quanta Bragg scattered per second is
approximately'

(r) o
I (

dt 2m A

n„X3

X
(sin28) (5'+ I') '"

where Vis the crystal volume illuminated by the

(14)

Even for very small crystals (e.g. , less than 1 tt, m

thick) when they are excited at a Bragg angle the
coherent radiation width I',,„(see below) becomes
comparable to (perhaps larger than) the incoherent
width (incoherent scattering, internal conversion),
but in this simple example I'„.„„ccA (I +cosh/), vary-

ing from 2A to zero, and rather than e ' with V con-
stant there should appear e ' "', where

r(t) =r,„„..„+r,. +(I, /tA)[sin(ht+k r)

—sin(k. r)]

pulse, np is the number of unit cells per unit volume,
and 8 is the Bragg angle. The last factor in (14),
n„X'/(5'+ 5')' 'sin28, arises from the fact that the
coherent scattering from a small perfect crystallite is
near zero unless the incident wave vector kp is within
the Bragg reflection width 5' of a set of Bragg planes.
It is easily shown" that IS(k/ —ko) I' integrated over
the direction of k& and averaged over the direction of
the incident beam ko is 4tt Vno if koa » I (where a is

the interatomic distance) independent of the spatial
distribution of the scatterers. For a "gas" of scatterers,
we have

X(k,) =—J) IS(k/ k, I'—d'// =4~a, V = X—,
independent of ko, but for a crystal, X(ko) is nearly
zero except when kp is near a Bragg angle where it

then attains a value X(ko) = X68/5' » X, where
40 » 5' is a mean spacing between Bragg directions.
Formula (14) was derived assuming 8 or b, & O'. In
short, atoms do not scatter independently in a crystal;
they interfere with each other, as we all know; and
near a Bragg angle, the effective scattering cross sec-
tion per atom is much larger than the mean atomic
scattering cross section.

%e now specialize and suppose for simplicity only
one atom per unit cell, and again as in (7) that the
hyperfine field is uniaxial, we then have from (7), (8),
and (13),

e
—r(/2 e e « 'F C2(/ I j . /ttp)e n& P, P+i3" C~ J —/tu I

k3 2 +y j' / pJp /tt, /tt

or specializing to gp 2' J[ 2'

(15)

M,.,„=A [—(x+/y)(e ' '' + —e ' )(x+/y) + —(x —/y)(e ' + —e ' ' ')(x —/y)

z (e '"'I/2. I/2 + e
—

I /2. —I /2 )z] . F3' olp
(16)

For illustrative purposes suppose the quantization axis:" is perpendicular to the scattering plane and that F,„ is intop

the z direction, then from (14)—(16) we obtain

2

dt (si1128)(5'+ 5')'" 2(1+a)' 47r'tt'k, 2 tr
(17)

On the other hand, by squaring C„,„„, [Eq. (4)], summing over n and f, averaging over m and using (7), we obtain

dp, „,.„(t) 4 &t I+,I'( —,'7r&) „
Ct 1+a 4+2f2k„

=np —e '' (18)

for the rate of incoherent processes (internal conversion plus incoherent scattering), and for the ratio of (17) to
(18),

I',.„„/I;„„„=[1/87r(l + n)] [Cf'nod/(sin28) (6'+ 5') '/'] (I +coshcot) (19)
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where hen = ~I/2 ~/q
—cu ~/2 ~/q. For example, for

100% '7Fe taking Cfznoh. '/sin20 = 10 ', the mosaic
spread 4 = 10 ', and 1 + n = 10, we -have

(I egg/I jpcop) 5'7
' 0,4 (1 + cos EQ) 1) (20)

and rather than exp( —I' t) multiplying (17) and (18)
there should appear

1

e '""=exp —1;„,.t 1+0.4+0.4
cof

't i

where I;„,. = I' (for this case of large a).
Now (17) and (18) were derived using the Born ap-

proximation and the above results are strictly valid

only for very thin crystals. We have shown else-
where4 that in the case of high-concentration "Fe a
few-thousand-layer crystal will reflect approximat. ,ly

25'/0 of the "resonance slice" of synchrotron pulse in-

cident at a Bragg angle, and so for even such a thin
crystal the Born approximation is not very reliable for
quantitative predictions, for which one must use the
multiple scattering' or "dynamical theory. "~'

Nevertheless, the above results are qualitatively
correct. For a very thin crystal with small mosaic
spread, (i) an appreciable fraction of the resonance ra-

diation will be coherently reflected (in d 0 =10 ' sr
for the case considered), (ii) the coherently scattered
fraction can be much larger than 1/(1 +u), and (iii)
the coherently scattered fraction, and thus I",,&/I', will

exhibit beats and the decay will not be exponential but
(approximately) of the form (21).

APPENDIX A

c

Here we outline, in more detail, the derivation of
the basic equations. (6) and (10).

Because the temporal duration of the incident radia-
tion pulse is short compared to the lifetime of the nu-

clear resonance, it is legitimate to regard the forrna-
tion of the intermediate excited state lP, .) and its sub-

sequent decay as two independent quantum-
mechanical processes. " Consequently, we can use the
general theory for y emission given in Paper IIIA.

As in Eq. (1) of IIIA, if the initial state of the cry-
stal i/0) corresponds to the Mossbauer nucleus at R,
being in an excited state and the remaining Mossbauer
nuclei being in their ground states, then the photon
potential A„(z) at the space-time point z due to a

transition to a final crystal state lPq) corresponding to
all Mossbauer nuclei being in their ground states is

given by

A„(z)'=c '(yil $ )d'x D„,, (z,x)J,", (x i)lyo)

(Al)

where J,', (x, i) is the source transition current of the
i th nucleus, and D„, (z,x) is th, e photon propagator,
which if we neglect scattering is given by the free pho-
ton propagator D~+,' (z,x),

6' /&D', .'(z, x) =—47rg, . J (k2 —k2+ie)
u~

IV. CONCLUSION

In this paper we have presented the basic theory for
the quantum beats which will be observed when nuclei
with low-lying excited states are excited by a synchro-
tron pulse. A new and important eA'ect will be ob-
served when the pulse is incident at a Bragg angle on
a good single crystal: beats will be observed in the
(spatially) coherently emitted y rays, and if the con-
centration of the resonant nuclei is high, and the
Mossbauer factor f is appreciable, then an appreciable
fraction of the incident photons in the spectral width

of the nuclear level will be reflected into a ver'y small

solid angle. From the beat frequencies the differences
of all the nuclear transition frequencies can be deter-
mined, including, if there are more than one resonant
nuclei per unit cell, the isomer shifts between the
sites. In addition, if the coherently scattered waves
are appreciable compared to the incoherent decay
modes then the decay "constant" I will be strongly
time dependent for both the coherent and incoherent
(e.g. , internal con. ersion) processes.
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&& expi[k (z —p) kq(r —r,,)]—

(A2)

where in our metric, gpp =+1, g, = g, ,
=g- =—1, and

all other components equal 0. As discussed in IIIA,
the source transition current Jo (x, i) is given to excel-
lent approximation by

J,, (x, i) = e 'j„"'(x)
—(Wp —i t /2).(i, —T, )

(A3)

where. j„'"(x) is the current-density operator for the

atom l, I is the width of the excited Mossbauer level,
and Hp is the Hamiltonian for the complete crystal
with electromagnetic interactions replaced by instan-
taneous Coulomb anti magnetic interactions. In (A3)
it is assumed that the excited nuclear state was pro-
duced at t,. = ~I. For a synchrotron pulse arriving at
the origin at t =0, then v& =c '~p R&, v here ~p is the
direction of propagation of the pulse.

Using the time-dependent perturbation theory lead-

ing to Eq. (5), the initial excited state produced at RI
at t = r/ by the synchrotron pulse is
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1

lp, (I)& = g —e ' ' Xl »» 'F-, Ie ntt&

./ II
I

I

&& (Xt I
e

I Xp) I Xt) (A4)

kp = np(pip + Et Ep) c npptpc

Substituting (A4) and (A2) into (Al) and carrying
out the t,. integration gives for the transverse part of
the photon potential produced by the transition

A, (R, I) = —1 t" + (z/ R(

R c
tip Ri

c

-I((u, —I I /2)l'
( ~

.
~

.
)II( l)I( I

'

(
— 'p

g« '&gmt'I J».ti'"(x)e '
Ie»1& —'I „„,. F„,„e

' " (x, le
' ' 'IX, &&x, le ' 'Ixt)

I —Al' I

R c

Pip

hc
I

-I(&J —II /2)I

P'I))( ll(g II(l))( olp (AS)

Here t = t —R /c is the retarded time at the origin, k,
'

ttt (p=ip+ E, —E, ')c, and in the second line of (AS) we

have made the El dipole approximation j~(—k, ') i pi—ptt. [for an jtf1 transition, we should of course take

I i ( k, ) i k, && It, ]. Also in carrying out the time integrals, we have dropped correction terms which are of order
I'/Pip and hence quite negligible.

For the coherent elastic scattering we have IX,) = IX, ) =
I Xp), mi' ——trit, and k, = kp, so in this case the total elasti-

cally scattered wave from all sites is

A,"(R,t) =—1(t') $e ' ' ' —
' $eR, tc

(

-I (0J, —I I'/2) I'

I III( l)(I l)(l)I( 0)p

x ((xple ' 'lx, ) (x„le " 'lx,)), (A6)

which gives Eq. (10) with the appropriate propor-
tionality factors. F(R, t) in Eq. (11) and subse-
quent equations is then the E(El) or B(M1) field

obtained from A& in the usual manner, i.e, ,
F(RI) =—(1,/c)(BA/fit) (El), or F.(R, I) = V
x A (Ml). Taking the coherent average over
initial nuclear ground states m( and over the frac-
tion of sites occupied by the resonant isotopes and
over initial crystal vibration states IXp), gives the
coherent elastic wave

(A7)

n(R, I) = g (I A (Ri, t;0 f')I )
2m Ac

g &I F(R,I;0-f') I'&2' Ao)p

F,.„„(R,t) = (k„'/R) M~„„(t',k) S( k)

in the notation of Eqs. (12) and (13).
For the spacially incoherent processes, the photon

flux [probability/cm'/sec of finding a photon at
(R, t)) is given by Eq. (41), of ill A, "

r
Here A1 is given by (AS), the angular brackets refer
to an average over the ensemble representing the ini-
tial state of the crystal, and the sum is over all final
phonon states

I X, ), and over final nuclear ground
states ~n(', giving

3
/Cp

n(R, t) = e ''
2m' h

1( ')
I I

II I
(

II
(

(A9)

which is the basis of Eq. (6). The ensemble average

( ) will be over initial nuclear ground states which
reduces to (2jp+1)

For the coherent elastic scattering, the scattered pho-
ton flux is given by (c/211 Itp1p) I F,.„hl', or, making use
of (A'7),
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»,„h(R, /) = ', " l~,'.h «', k) I'Is(k) I'
t. ()h

R 2

(A10)

Averaging over the angular spread of the incident syn-
chrotron radiation and over the mosaic spread of the
crystal gives Eq. (14).

An alternative method for deriving these results is
to treat the problem purely as a scattering problem,
using the general theoretical treatment given in Papers
I and II." !n particular, with the vector potential of
the incident pulse given by

t-o2Ce ' &' '

fcnh(k/ &/'ko eo) =
2;jo+1

PE

+ (' P' 111 /I I iI 111 +0

1

ll, ili (Cl/gi gi Cl/) / I
(A13)

while for an M1 transition

(e/ /t/, )(/&, eo) (k, x f/ p, )(ko x eo /L/, )

Approximating the incident pulse as a Lorentzian hav-

ing a width y & 1 eV )& I, centered about the
resonant frequency ~o, then-

A(i) = Jr a'( )e '""d (A11) a "(o&) ~ i [27r(o/ —o&o.+ iy))

and (A12) and (A13) give
the coherent elastic wave is given by Eq. (24) of I,~

ei (/ R —uji)3"""(R,/) = $ 'I do&
R

/

-I'(k —k ) R,xe ~ (k k 'o&)

t oCe-" &' )
. 2 .2

A,'""(R, /) = S ( k )
R 2jo+

-/((u —
/ I'//2) I"

/ / ~~ ~
FI '/II/II(I /I(&II/ t&O

Here

x a,", (/o) (A12)
which is equivalent to (A7). Here

(A14,
'

( k / ko o/) e' (' 'oh ( k/' E/' ko 'e)o

is the coherent elastic scattering amplitude for scatter-
ing the photon

l
ko, eo) —

l kl r e/) by the nucleus and
is given for an arbitrary multipole transition by Eq. (4)
of II (taking the coherent averge of the elastic scatter-
ing amplitude). For an El transition this gives expli-
citly

ik()eo(EI)
F„, =2mao(o&o)' — . , =

J~i F(1)e'
n&O

( ko && eo(M1

as before (and we have taken F =—F ), and we
/I( /11(

have dropped the scattered wave contribution propor-
tional to e " which emerges promptly and carries
only I'/y of the total reflected energy.
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