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Quantum beats from nuclei excited by synchrotron pulses
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Synchrotron pulses will excite low-lying nuclear levels whose subsequent decay will exhibit
beats with frequencies equal to the nuclear hyperfine splittings. The highly collimated pulses in-
cident on very small enriched single crystals at a Bragg angle will result in an appreciable fraction
of the incident radiation in the spectral width of the nuclear resonance being coherently scattered
into a highly collimated beam which will exhibit beats corresponding to the difference frequencies
emitted by different nuclei, and a decay parameter I', with marked time dependence.

PACS numbers 1977 76.80.+y 78.90.+1t 61.10.Dp BK 1006

I. INTRODUCTION

Ruby!' first pointed out that the synchrotron radia-
tion from the storage rings SPEAR and DORIS should
‘be useful for exciting low-lying nuclear levels. To be
specific, SPEAR operating at 2.5 GeV and a current of
100 mA produces a flux of about 10'? photons/eV sec
mrad at 14.4-keV photon energy.? Then by means of
a bent-crystal monochromator one should be able to
get a photon flux on a 1 X1 mm target placed ~10 m
from a tangent to the orbit of electrons of about 10!
photons/sec mm? at this energy with a bandwidth ~1
eV and a collimation =107 (vertical) x 1072 (hor-
izontal) sr. The width of the 14.4-keV *'Fe level is
' =10 eV; therefore, in the synchrotron radiation
falling on the target there would be ~10*
photons/sec mm?, which could excite this level. A na-
tural 100% *'Co Méssbauer source gives ~10'°
Méssbauer (y rays)/sec mm?, and for the usual
Mossbauer-absorption experiments where only a
moderate collimation is necessary (say 0.1 sr) the na-
tural source would deliver a flux of about 108/ mm?sec
on a target as compared with ~10*/mm?sec from the
storage ring. However, while the brightness of the na-
tural source is ~10° photons/mm?2secsr (isotropic)
that of the synchrotron radiation is ~10'"/mm?secsr
(in the very narrow 10 °-sr collimation), and for ex-
periments involving coherent scattering and transmis-
sion through perfect crystals, and interferometry ex-
periments, where high collimation is necessary, the
synchrotron source will be superior to the best possi-
ble natural source. In addition with wigglers it has
been estimated that a 10° X increase of the synchro-
tron flux is attainable’ and this would make it com-
petitive with the natural source even for low collima-
tion experiments. Furthermore, the synchrotron spec-
trum is essentially white, and fluxes of the order of
those given above can be obtained for exciting any
low-lying levels from the nuclear ground state. Many
interesting nuclei have no convenient radioactive
parents (e.g., K, "’Ge,...) and the synchrotron source
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should be particularly important for studying these
substances.

We have discussed elsewhere* how filters may be
devised which will extract the "Mdssbauer slice” from
the white synchrotron radiation for use as a source of
Mossbauer y rays. Here we discuss certain new time-
differential-perturbed-angular-correlation- (TDPAC)
type experiments® which could be performed using
pulsed synchrotron sources leading to interesting new
results.

The synchrotron radiation from SPEAR or DORIS
operating in the single-bunch mode consists of sharp
pulses of about 107 '%-sec duration and about 107°-sec
separation between pulses.” Excited nuclear states of
energy less ~100 keV commonly have lifetimes in the
range ™' =10"° — 107" sec. If the pulse, mono-
chromatized to perhaps 1-eV bandwidth at the nuclear
transition, impinges upon a small sample containing
the resonant nuclei then the electronically scattered x
rays, photoelectrons, etc., will emerge promptly during
the 107 '%sec pulse, while those processes involving
nuclear excitation will be delayed a mean time I' .
Therefore, by using a timed detector which can recov-
er from the prompt pulse in a time short compared to
I'"! the resonant and nonresonant events can be
separated temporally.'

There will be beats in the resonance radiation fol-
lowing the prompt pulse, both in the elastic and ine-
lastic scattered y rays and the internal conversion elec-
trons as well. Measurement of the beat frequencies
will give a direct determination of the hyperfine split-
tings of the individual nuclei, or of the energy shifts
between two different nuclei located in different chem-
ical or magnetic sites.

In the usual TDPAC experiments beats are ob-
served following the population of, say, a first-excited
state by the radiative decay of a broad higher state;
the beat frequencies give the splittings of the excited
state. The present method promises to be much more
powerful for a variety of reasons. First the pulse gives
a direct excitation of the nuclei from their ground
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state. This obviates the need for radioactive sources.
More important is this: The synchrotron pulse excites
several nuclear excited state sublevels suddenly and
coherently which then "oscillate" at their various na-
tural frequencies giving beats at the difference fre-
quencies in the decay probabilities in various direc-
tions. The excitation amplitude of this initial state is,
for a particular nucleus, independent of the state of
atomic binding and the temperature since the synchro-
tron spectrum is white over many electron velts.
However if the recoilless probability, the Mossbauer f,
is appreciable then there will be appreciable coherent
elastic scattering which will exhibit beats resulting
from the interference of waves emitted by different nu-
clei (while if f'is small recoil effects will largely wipe
out the interference in waves emitted by different nu-
clei, and the usual TDPAC theory applies).>-¢

The new and important element in the synchrotron
pulse experiment is that the very well collimated pulse
produces a spatially coherent excitation of the
resonant nuclei in a crystal, and if the pulse direction
is set for a Bragg reflection then the Bragg reflected
wave will exhibit beats, the measurements of which
will give the difference frequencies of the resonance
transitions. If the mosaic spread of the crystal is
<107 rad, then the reflected beam will have a colli-
mation d Q =10"°—10"7 sr and a very small detector
(area ~1 mm? located ~1 m from the target) can be
used giving a large signal-to-noise ratio. If fand the
concentration of resonant nculei in the crystal are
large then an appreciable fraction of the incident photons
in the resonance width will be coherently reflected. In
fact, as we shall see, because of the very low "entro-
py," or high brightness, of the incident pulse the very
highly collimated coherently scattered vy rays may exceed
in number those normally expected (in ~41 sr) for in-
coherent scatterers, and even for small crystals become
comparable to or larger than the number of internal
conversion electrons.

The theory for the beats in the (spatially) in-
coherent processes is parallel to that developed for or-
dinary TDPAC experiments, that for the coherent
scattering is new.

II. SPATIALLY INCOHERENT PROCESSES

To avoid needless complexity we shall consider a
nuclear dipole transition (£1 or M1). For simplicity,
we shall neglect relaxation effects and assume that the
ground and excited states are split by static hyperfine
(Zeeman, quadrupole) fields. Suppose the nucleus is
initially in the mth sublevel of its ground state |gm),
and represents the amplitude of the synchrotron pulse
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incident on the nucleus by F(r) with F(1) =0 for

t <0 and ¢ > 7, then the amplitude C,,, () that the
nth sublevel of the excited state |en) has been excited
at the end of the pulse is
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where & is the dipole operator (F=E for £1 and
F =B for M1 transitions) and w,,, = €,, — €,.., Where
the €’s are the energies of the indicated states. In (1)
we have assumed that 't << 1.

We now write w,,, =wy+4,,,, where w, is the mean
transition frequency and A,,, is the splitting. Then if
A, 7 << 1 for all nand m, (1) becomes

C,.(1)= -’%eﬂe“? j;) (en| iilgm)

Iw,
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This assumption is made because it is true for most
transitions of interest and because it simplifies the for-
malism somewhat. The synchrotron pulse consists of
many photons emitted by the mam} electrons in the
bunch incoherently one with the other. The pulse
from a given electron has a width ~\_/¢
~107%/3 x107'°~ 107" sec,? or if this radiation is
filtered to about 1 eV, this coherence time becomes
~107" << 7 ~107" sec. The probability of a given
process should be computed starting from (1) where F
represents a one-photon amplitude with a duration of
the order of the coherence time, and the result
summed over all of the photons occurring in the pulse
of duration 7, which, with the assumption (2), just
amounts to multiplying by the number of photons in
the pulse.

From (2) we now have
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as the excited state amplitude, where

e
Fo,= f% F()e' ™ ar
The results (1) —(3) were obtained neglecting the vi-
brational amplitude of the nucleus T, and the fact that
the vibrational state of the crystal |X) might change
when the quantum was absorbed. The transition am-
plitude for |g,m|Xy) = |en)|x,) is, in analogy to (1),

| Xo) dt

"i() T
¢

(4)



18 QUANTUM BEATS FROM NUCLEI EXCITED BY SYNCHROTRON... 167

where 7, is the pulse propagation direction, and where strictly rather than ko= ¢ 'wgh, in (4), we should have
Aol +E,.~E0)£“', but since wy~ 10* eV, E,— E, < 107! eV, the difference is negligible, and similarly
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+E,—E, szO to good approximation. The extension of (3) is now
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where 1(¢) is the step function, and where we neglect 7 (we assume I'r << 1 and A,,,7 << 1). The relative ampli-
tudes for the excitation of the various states |en) are independent of the nuclear motions.

The probability per second for emitting a photon in direction A, with the nucleus going to the ground state |gm')
is now given by the usual dipole radiation formula (see Appendix A)
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where ﬁl is the component of i perpendicular to 7,
and in (6) we again have neglected A, and E; — E,
relative to wy. The interpretation of (6) is familiar
from the theory of angular correlation.” The radiation
rate in a given direction is independent of the nuclear
motion and is proportional to the square of the per-
pendicular component of the transition-matrix ele-
ment of the dipole moment operator between [¢.)
and |gm’) [which appears within the first brackets

in (6)]. The magnitude of the transition matrix ele-
ment of the dipole moment decreases as e '/ but its
direction precesses, and as a consequence the cross
tems in the square of the sum in (6) do not vanish
and give rise to beats (frequencies, €, — €, in the ra-
diation emitted in a given direction.

Suppose the hyperfine field is axially symmetric.
Take the symmetry axis to be Z, and n and m to be the
magnetic quantum numbers of an excited state and
ground state, respectively. Then
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where u, (p =0, +1) is a component of % in the
spherical basis, C is the Wigner coefficient, and I', is
the partial width for y emission. Substituting (7) into
(6) we obtain
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where é,,p =+1,0 are the usual unit vectors in the
spherical basis.
As a particular example take jo= ]7, i =% (e.g.,
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STFe); furthermore, let ﬁ“'o be perpendicular to Z say in
the § direction (the synchrotron radiation is over 90%
polarized in the plane of the orbit) then the scattered
radiation in the x-y plane can, with a little algebra be
shown to be
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where « is the internal-conversion coefficient, @ is the
azimuthal angle, and A(n,n') =i '(e, —¢,). The fac-
tor

(c/4m’ W wo) | F,, 217 T/2(1 + )]

is the photon flux (cm ) in the energy range

wI'/2(1 + «) in the pulse. (A similar expression can
be obtained for the TDPAC internal conversion electron
distribution.) If the quadrupole splitting were negligi-
ble, then the two frequencies in (9) would be the
same and one would obtain a 42% sinusoidal beat am-
plitude, rather than two 21% sinusoids. In this case of
spatially incoherent scattering, there is only interference
between transitions to the same ground state Igm’)
and so the beat frequencies reflect only the splitting of
the excited state.

I1I. COHERENT SCATTERING

We now compute the coherent elastic scattering.
Consider a nucleus whose equilibrium position is R .

‘We now compute the amplitude
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The scattered photon potential at a point T and time ¢ is proportional to (see Appendix A)
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where t* =t —r/c is the retarded time at the origin, K,: A;wec™!, and the brackets indicate expected values for the
crystal vibrational state |X0}. The wave from R, is retarded an extra time (Ao —7,) - R*,/(.. Generally the crystal thick-
ness will satisfy 2//c << #/T" and the waves from all points of the crystal will be recieved before appreciable decay
takes place. We now have for the elastic scattered E(£1) or B(M1) field

—ilw -t/
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where f=e¢ (e”‘?/ 'H) <e"‘o":> is the Mdssbauer factor, more complicated than that of the incoherent
and where we have neglected the transit time through processes, necessarily, sincel it Yiflds more informa-
the crystal, for simplicity, and F(T,1) is the "Feyn- tion. For example for the 5 — 3 dipole transition
man field" representing a scattered photon.® Our par- considered above there are six allowed transitions and
ticular interest is in the (spatially) coherent scattering SiX @um’s. | Meon(r, k) |2¢"" will then, in the general
(Bragg scattering). Let there be several sites, R, +T7., case, contain 15 Fourier components. If there is
in each unit cell, «=0,1,... . Then we have (see Ap- negligible quadrupole splitting, degeneracy reduces
pendix A) this to seven, and further reduction results from prop-
— _ — — erly choosing the polarization of the incident pulse.
Feonlr,1) = (k¢ /P Meon (%K) S (k) (12) . However, even in the general case, the difference fre-
where quencies are simple functions of the magnetic mo-
_ ments and quadrupole moments of the two states and
ML, (LK) = L_Cr by o Lenm e =2 , the magnetic field and the electric field gradient at the
kE2jy+1 50 nucleus and should allow for simple analysis of the
1 - ,lé‘? data.
X i () () - F, € ‘o Of course, beats with frequency w,, — @, m' % m
’ result from the interference of waves emitted by
(13) different nuclei in the crystal, and if there are several
is the analog of the x-ray structure factor, Kk =K, — Ko, sites in the unit cell then beats with frequ.ency
C is the fraction of sites occupied by resonant nuclei, @ (@) =, (), Of' # a are du.e to the interference
and finally of waves from nuclei located at sites « and‘ o'. The
o latter is of some interest. Let us simplify and assume
S(K) = E e “ik-R; ) that there are two unsplit sites at R, and R, +T with
crystal transition frequenciegwo and oy + A, respectively.
If a thin crystal is set at a Bragg angle, then the Then it is clear that Mo, takes the form
reflected imensity_will be proportional to the square of 5{,"/“0’(1'+(,»,<m —?-?))e—r//z
the form factor | Mo|? [see Eq. (14) or (A10)}. This
will result in beats corresponding to the difference fre- and the Bragg scattered intensity is of the form
quencies of all the allowed transitions w,,,, from Al +cos{Ar +k-T)le ", so that obviously one can
which the splittings of the excited and ground states determine the chenrical shift A between the two sites,
may be found, whereas the beats in the incoherent and, by measuring at several reflections, determine T
scattering and the internal conversion electron intensi- as well. ‘
ty give only the excited-state splitting. The time It is interesting to note that the scattered intensity

dependence of the ‘Bragg scattered intensity will be actually is nor of the form Ae [l +cos(Ar +k-7)].
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Even for very small crystals (e.g., less than 1 um
thick) when they are excited at a Bragg angle the
coherent radiation width T, (see below) becomes
comparable to (perhaps larger than) the incoherent
width® (incoherent scattering, internal conversion),
but in this simple example Tcop o< 4 (1 +cosAr), vary-
ing from 24 to zero, and rather than e~ with T con-
stant there should appear e/, where

(1) =Tipeon+ .+ (T./tA) [sin(Af +K-T)
‘ —sin(k-1)]

multiplying the coherent and incoherent decay proba-
bilities.

The coherent scattering ~| Fp|? is only appreciable
[see Eq. (12)] when k =7, a reciprocal-lattice vector
for the crystal. Let a thin crystal be set at a Bragg an-
gle to the synchrotron pulse. If 8(=107%) is the angu-
lar spread of the incident radiation and A is the mosaic
spread of the crystal, then in the Born approximation
the number of quanta Bragg scattered per second is
approximately'®

pulse, ny is the number of unit cells per unit volume,
and 0 is the Bragg angle. The last factor in (14),

n N3/ (8% + A2 25in20, arises from the fact that the
coherent scattering from a small perfect crystallite is
near zero unless the incident wave vector Ko is within
the Bragg reflection width &' of a set of Bragg planes.
It is easily shown' that |S (K, —Ko)|? integrated over
the direction of k, and averaged over the direction of
the incident beam kg is 4 Vng if koa >> 1 (where a is
the interatomic distance) independent of the spatial
distribution of the scatterers. For a "gas" of scatterers,
we have

(ko) Ef IS (k, —E0|2d2/2/ =4mn V=3 ,

independent of kAo;Abut for a crystal, 3(ko) is nearly
zero except when kg is near a Bragg angle where it
then attains a value 3(K;) = 3A0/8' >> 3, where

A6 >> &' is a mean spacing between Bragg directions.
Formula (14) was derived assuming 8 or A > &'. In
short, atoms do not scatter independently in a crystal;
they interfere with each other, as we all know; and
near a Bragg angle, the effective scattering cross sec-

_ 3

apP(7) _ _k_o_' Moon (7,0) |2 Vny tion per atom is much larger than the mean atomic

dt 2wk scattering cross section.
1, A3 We now specialize and suppose for simplicity only
(sm29) (5 +A)12 (14) one atom per unit cell, and again as in (7) that the
hyperfine field is uniaxial, we then have from (7), (8),
where V is the crystal volume» illuminated by the and (13),
-J
Mcloh—iil‘l e 38,8,% - F, C2(jyLjyimp)e " irr (15)
E4 kg 2]0+1 o

pom

P 1.3
or specializing to jo=5, /i=7,
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(16)

For illustrative purposes suppose the quantization axis Z is perpendicular to the scattering plane and that 13("0 is in

the # direction, then from (14)—(16) we obtain

dPun(1) _ C2f 2o\ x2 |Fo,l

dt (sin20) (82 +A)'2 2(1 +a)? 4m? ”2

P [WF] [1 +cos(wip =@y ip)tle™" . amn
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On the other hand, by squaring C,;,., [Eq. (4)], summing over n and f, averaging over m and using (7), we obtain

2L
477*2 |F(|)0| (ZWI‘) r

dPincoh(’) —
— —-e
1+a 472k%, k&

dt

no

(18)

for the rate of incoherent processes (internal conversion plus incoherent scattering), and for the ratio of (17) to

(18),

Fcuh/rincoh =

[1/87(1 + )1 [Cf2noa*/(sin26) (82 + AY) 21 (1 +cosAwt) ,

(19)
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where Aw = w31/ — w-1/2.-12. For example, for
100% °'Fe taking Cf2noA\*/sin26 = 107", the mosaic
spread A=1073, and 1 + a =10, we have

(rmh/rinmh)ch = 0‘4(1 +COSAU)1) » (20)

and rather than exp(—TI't) multiplying (17) and (18)
there should appear

e~ exp—T,|1 +0.4 40450401 QU
Awt

where Ty, =T (for this case of large a).

Now (17) and (18) were derived using the Born ap-
proximation and the above results are strictly valid
only for very thin crystals. We have shown else-
where! that in the case of high-concentration 'Fe a
few-thousand-layer crystal will reflect approximately
25% of the "resonance slice” of synchrotron pulse in-
cident at a Bragg angle, and so for even such a thin
crystal the Born approximation is not very reliable for
quantitative predictions, for which one must use the
multiple scattering® or "dynamical theory."'?
Nevertheless, the above results are qualitatively
correct. For a very thin crystal with small mosaic
spread, (i) an appreciable fraction of the resonance ra-
diation will be coherently reflected (in d Q =107 sr
for the case considered), (ii) the coherently scattered
fraction can be much larger than 1/(1 +«), and (iii)
the coherently scattered fraction, and thus I..,/I, will
exhibit beats and the decay will not be exponential but
(approximately) of the form (21).

1V. CONCLUSION

In this paper we have presented the basic theory for
the quantum beats which will be observed when nuclei
with low-lying excited states are excited by a synchro-
tron pulse. A new and important effect will be ob-
served when the pulse is incident at a Bragg angle on
a good single crystal: beats will be observed in the
(spatially) coherently emitted vy rays, and if the con-
centration of the resonant nuclei is high, and the
Méssbauer factor f is appreciable, then an appreciable
fraction of the incident photons in the spectral width
of the nuclear level will be reflected into a very small
solid angle. From the beat frequencies the differences
of all the nuclear transition frequencies can be deter-
mined, including, if there are more than one resonant
nuclei per unit cell, the isomer shifts between the
sites. In addition, if the coherently scattered waves
are appreciable compared to the incoherent decay
modes then the decay "constant” I' will be strongly
time dependent for both the coherent and incoherent
(e.g., internal conversion) processes.
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APPENDIX A

Here we outline, in more detail, the derivation of
the basic equations.(6) and (10).

Becauseé the temporal duration of the incident radia-
tion pulse is short compared to the lifetime of the nu-
clear resonance, it is legitimate to regard the forma-
tion of the intermediate excited state |, ) and its sub-
sequent decay as two independerit quantum-
mechanical processes.!> Consequently, we can use the
general theory for y emission given in Paper I11A %

As in Eq. (1) of HIIA, if the initial state of the cry-
stal |yo) corresponds to the Méssbauer nucleus at R
being in an excited state and the remaining Mdssbauer
nuclei being-in their ground states, then the photon
potential 4,(z) at the space-time point z due to a
transition to a final crystal state N;v,) corresponding to
all Mdssbauer nuclei being in their ground states is
given by

4, =c W, 3 [ dx DI D)
!

(A1)

where J? (x,/) is the source transition current of the
I th nucleus, and D,,.(z,x) is the photon propagator,
which if we neglect scattering is given by the free pho-

ton propagator D% (z,x),

) 4 ’
D9 (z,x) =—4mg,, f Tid;k)—;(kf —kitie)™!

xexpilK- (Z—¢)—ks(t.—t,)]

(A2)

where in our metric, goo =+1, g =&, =&-=—1, and
all other components equal 0. As discussed in IIIA,
the source transition current J{ (x,/) is given to excel-
lent approximation by

I =" 0 (%)

« e-/(uoﬂl G, 77,)1 (t—1) (A3)
where j\” (X) is the current-density operator for the
atom /, T' is the width of the excited Mossbauer level,
and H, is the Hamiltonian for the complete crystal
with electromagnetic interactions replaced by instan-
taneous Coulomb and magnetic interactions. In (A3)
it is assumed that the excited nuclear state was pro-
duced at 1. = 1,. For a synchrotron pulse arriving at
the origin at + =0, then 7, =c¢"'4,-R,, where Ay is the
direction of propagation of the pulse. :

Using the time-dependent perturbation theory lead-
ing to Eq. (5), the initial excited state produced at R;
at t =1, by the synchrotron pulse is
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Here 1* =1 — R /c is the retarded time at the origin, kK, = A, (wy+ £, — E/ )¢~
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where

Ko = ﬁo(wo + E_/ - E())C_I = ﬁowocil

Substituting (A4) and (A2) into (A1) and carrying
out the ¢, integration gives for the transverse part of.
the photon potential produced by the transition

/o) R,
= ol X, | STy X, (X ' /lx
(X,le XS ,{e )
ot LK, Ky T
T xele XY (xple 0 T xg)

(AS)

! and in the second line of (AS5) we

have made the £1 dipole approximation j,(—k,") ——iwoi [for an M1 transition, we should of course take
J1(=k,) — ik, x]. Also in carrying out the time integrals, we have dropped correction terms which are of order

I'/wy and hence quite negligible.

For the coherent elastic scattering we have |X,) =|X,) =X}, m/ =

cally scattered wave from all sites is
AY(R,0) =712—1(1*) Se
1

Il/

X ((Xolem

which gives Eq. (10) with the appropriate propor-
tionality factors. F(R,?) in Eq. (11) and subse-
quent equations is then the E(£1) or B(M1) field
obtained from A, in the usual manner, i.e.,
F(R,I) =—(1/¢)(®A/81).(E1), or F(R,1) =V

x A (M1). Taking the coherent average over
initial nuclear ground states m, and over the frac-
tion of sites occupied by the resonant isotopes and
over initial crystal vibration states |X0), gives the
coherent elastic'wave

Fon(R, 1) = (kG /RYML, (1% K)S(K) (A7)

in the notation of Eqgs. (12) and (13).

For the spacially incoherent processes, the photon
flux [probability/cm?/sec of finding a photon at
(R,n)] is given by Eq. (41), of 111 A,?

n(R,1) = —2“"—’M ; (AR50 =]

SURR0=/I) . (AP

27T ﬁw() r

AR Y ~ilw -
(klfk‘0)~R, wq ze "y
fic

Ty (¢ L™ T X))

m;, and k, =k, so in this case the total elasti-

.
—1 =
H'ul,u,#u//nl : F"'O

(A6)

r

Here A, is given by (AS5), the angular brackets refer
to an average over the ensemble representing the ini-
tial state of the crystal, and the sum is over all final
phonon states |X,-), and over final nuclear ground
states m,’, giving

kg
27 i3

-

n(R,t) = e

eyt l([*)
X E < 2“/1:, HI/J‘H m : w i > R2 B
m/ n

(A9)

which is the basis of Eq. (6). The ensemble average
() will be over initial nuclear ground states which
reduces to (2o +1)7! 2,,”‘

For the coherent elastic scattering, the scattered pho-
ton flux is given by (c/2rrfw0)| Feonl?, or, making use
of (A7),
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l(t*)
RZ

ITC(,h(R,I) =

feon (1% KPS (KD |2

(A10)

Averaging over the angular spread of the incident syn-
chrotron radiation and over the mosaic spread of the
crystal gives Eq. (14).

An alternative method for deriving these results is
to treat the problem purely as a scattering problem,
using the general theoretical treatment given in Papers
I and I} In particular, with the vector potenual of
the incident pulse given by

A = [@@e v do (A1D)

the coherent elastic wave is given by Eq. (24) of I,}

A“’h(Rr)—Efdw

e (kR — (ul)

(K =k R,
xe /0 TCMEN (K, koyw)

xal(w) . (A12)

Here
EXM M (K Ko 0) € = foon(K 1, €/3Ko, &0)
is the coherent elastic scattering amplitude for scatter-

ing the photon |k, &) - |k,, &) by the nucleus and
is given for an arbitrary multipole transition by Eq. (4)

of II (taking the coherent averge of the elastic scatter-

ing amplitude). For an E'1 transition this gives expli-
citly

2,2
k§Ce ™t (D

.f‘mh(E/’ é/;Eoy &) = 2ot 1

€/ My ,lL” m, €0
> AE T (Al3)

.y (w,,/,,,/ w) - _I r

while for an M1 transition
(&) (&) — (K, x &) (kyx & i)

Approximating the incident pulse as a Lorentzian hav-
ing a width y > 1 eV >> T, centered about the
resonant frequency o, then.

() =200t )] 1

and (A12) and (A13) give

2,2
l(t ) koCe 0
AN (R,1) = S(K)
l 2jo+1
.—l((u“,“,l 0 -
X I T .
/1[2” € "L’”I”/M”l’”/ F("O ,
&
(A14

which is equivalent to (A7). Here

I’k|)€[)(El)
iKyx &(M1)

= f F(e ™ ar

w =F,), and we
m; 0

ﬁ =27ra')(w‘,)

“0

as before (and we have taken F

have dropped the scattered wave contribution propor-
tional to e™*"" which emerges promptly and carries
only I'/y of the total reflected energy.
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