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The behavior of shock waves in one-dimensional chains has been explored in a series of molecular-dynamics

computer experiments. Three "realistic" nearest-neighbor pair potentials were considered —Lennard-Jones 6-

12, Toda, and Morse —as weB as three truncated forms —harmonic, cubic, and quartic. Over a wide range
of shock strengths the. particle velocity profiles and shock speeds for a given form of potential can be
characterized in strength by av, where a is the cubic anharmonicity coefficient and v is the particle velocity
in units of the long-wavelength sound speed. For strong shocks (av y 1), steady hird-i'od-like velocity
profiles are observed for the "realistic" potentials and the quartic truncated form, but not for the harmonic
or cubic forms. The shock thickness in the harmonic chain grows as the cube root of time, while the shock
thickness in the anharmonic chain grows linearly with time, in proportion to shock strength. This evolution
of the shock thickness is unaffected by initial equilibration of the chain at finite temperature. If either a
heavy- or light-mass defect is included, the shock wave is reflected and the relaxation process is slowed
behind the defect.

I. INTRODUCTION

There have been several previous molecular-
dyn3, mics studies of the nature of sho'ck waves in
one, two, and three dimensions. -' ' The motivation
for the current work is to understand the various
mechanisms that determine the width of a shock
wave in a solid and the final state of the material
behind the shock front.

In our view, a shock wave propagating through a
solid consists of three highly coupled processes:
initial elastic response, thermal equilibration, and
plastic stress relaxation. First, the initial elastic
excitation of the material by a wave front propagat-
ing at the shock velocity can be characterized by
a rise time, which for a shock velocity on the or-
der ot'lokm/sec in a material with a lattice spac-
ing of 1 A is about 10 ~~ sec. The results of our
calculations give rise times in rough agreement
with this estimate. Following the initial rise,
thermodynamic quantities will overshoot what will
be their final equilibrium values. The second and
third processes, which can occur simultaneously,
are an approach to equilibrium of all thermody-
namic quantities coupled with the relaxation of in-
ternal stresses usually associated with plastic
flow. Internal stress relax3tion begins immediate-
ly after the shock front passes but ean persist long
af ter thermodynamic equilibrium is attained.

We wish to emphasize the difference in time
se3les for the two processes. For small local
thermal fluctuations, thermodynamic equilibrium
can be reached in about 10"sec, a typical vibra-
tional period in a solid. Most continuum hydrody-
namic calculations of shock waves assume thermo-
dynamic equilibrium 3t all times for plastic flow

on a time scale of 10 '-10 ' see and achieve good
agreement with experimentally measured wave
profiles. Anisotropic stress distribution can per-
sist long after thermodynamic equilibrium is es-
tablished behind the shock front. ' The purpose of
this paper is to explore the regime where thermo-
dynamic equilibrium has not. been obtained, so that
the assumptions of continuum mechanics" must be
questioned.

For one-dimensional systems shear stress relax-
ation cannot occur and hence must be studied in three
dimensions. We have focused our attention on how
thermodynamic equilibrium is attained following
excitation by a shock wave on a lattice of discrete
particles in one dimension; that is, we want to
know how the local dynamical variables such as
density, particle velocity, and temperature relax
to their new values behind the shock front. Three
"realistic" nearest-neighbor potentials were con-
sidered: I ennard-Jones 6-12, Toda, and Morse.
While the I ennard-Jones potential has fixed anhar-
monicity, the anharmonicity of the Morse and Toda
potentials can be continuously varied. The Toda
potential is particularly interesting because it can
be varied from the harmonic limit to the hard-
sphere limit. In addition, we have studied three
truncated forms: the harmonic, the harmonic plus
cubic, and the harmonic plus cubic and quartic.
Over a wide range of shock strengths the particle
velocity profiles and shock speeds for a given form
of potential ean be characterized by &v, where o.

is the cubic anharmonieity coefficient and v is the
particle velocity in units of the long-wavelenth
sound speed.

In Sec. II we give a brief outline of the molecu-
lar-dynamics method using the central difference
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approximation. Section III contains details of the
pair potentials that were used. In Sec. IV we give
a review of shock-wave propagation in the hard-
rod chain. Besides illustrating many of the gen-
eral features of shock waves, we find that the
strong shock (nv & I) behavior of all but the har-
monic and cubic potentials qualitatively approach
that of the hard-rod chain. We have also calcu-
lated the effect of a mass defect in the hard-rod
system and find that the shock structure is altered
for either a lighter or heavier particle, with ener-
gy scattered backward down the chain.

The analytic solutions to the harmonic chain out-
lined by Manvi et al.2 are discussed in Sec. V and
compared with our molecular-dynamics results.
We have also calculated the relaxation time of the
particle velocity (which gives the shock width in
the absence of stress relaxation) and find that the
shock width grows with time t as t' '. (The same
qualitative results apply for the relaxation of den-
sity, stress, and temperature. ) For the other an-
harmonic potentials we determine in Sec. VI a re-
laxation time that grows as t. The I," ' growth of
the relaxation time in the harmonic system con.-'
forms to the accepted continuum description of
shock waves where the shock thickness of unequi-
librated material is small compared to the extent
of equilibrated material on both sides of the shock
front. The linear growth of the shock thickness
with time observed in the anharmonic systems
does not conform to the usual continuum notions,
since the unequilibrated region is a constant frac-
tion of the material behind the shock front. Calcu-
lations we have done in three dimensions at finite
temperature for anharmonic potentials also predict
that the shock thickness will grow linearly in time.
We find no relation, in any of the one- or three-
dimensional calculations we have done, between
the shock width and the propagation velocity of
second sound as previously reported by assai and
MacDonald. '

In Sec. VII the effects of finite initial tempera-
tures and mass defects for continuous potentials
are presented. A finite initial temperature seems
to have no observable effect on the approach to
equilibrium. We observe a change in temperature
only following a sufficiently strong shock. We do
find behavior qualitatively similar to the hard-rod
chain for mass defects. In general, the interaction
of a shock wave with a mass defect scatters the
wave, so that the time required to reach thermody-
namic equilibrium is lengthened.

Our numerical calculation of a very weak shock
in the harmonic plus cubic truncated potential does
not agree with the far-field perturbative solution
of Tasi. ' We do not see the same qualitative be-
havior in the particle-velocity profiles thai Tasi

identifies as solitary waves. We do see steady
wave profiles qualitatively similar to the hard-rod
system for strong shocks (nv& l) in chains where
the potential has at least some quartic anharmon-
icity.

II. MOLECULAR-DYNAMICS METHOD

The method of integrating on the computer the
classical equations of motion for a large number
of interacting particles is known as molecular dy-
namics. ~~ ~3 We will briefly outline the method as
it applies to one-dimensional chains. The position
of particle N at time t is given by X„(t). The dis-
placement of particle N from its original position
ls

Initially, the particles N=0, 1,2, 3, ..., are placed
at lattice sites X„(0)=Na, where a is the lattice
spacing. The relative displacement of particles i
and j ls given by

Xfg Xf X) o

The equations of motion for continuous nearest-
neighbor interactions in the one-dimensional chain
are given by

where m is the mass of the particle, I„is the
force on particle N, and I

&&
is the force on parti-

cle i due to particle j. For particles interacting
via a central, pairwise-additive potential P, we
have

(4)

The last line expresses the law of equal but oppo-
site interactions between pairs of particles. W'e
shall use primes to indicate spatial derivatives
and dots for time derivatives. The equations of
motion can be rewritten in terms of displacements:

(5)

In order to integrate Eq. (5), a finite time step
d t is introduced and the trajectory of each particle
is discretized. The change in displacement xN
during the time interval from t to t+4t is

The displacement x„ is then advanced each time
step:
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with velocities given by

x„(t+r t)=r x„(t+r t)/r t. (8)

The last three equations constitute the straightfor-
ward central-difference approximation to Eq. (5)
(strictly speaking, for changes in displacements
and for velocities, the time arguments shown here
as t+ rI. t are really at t+26t). To begin the cal-
culation, one needs to specify initial positions
(lattice sites) and velocities of the particles as
well as any additional boundary conditions that
represent external forces.

In order to simplify notation we let the unit of
length be a, the lattice spacing, and the unit of
time be I/&uo, where I00 is the fundamental har-
monic frequency given by m&omo= P"(a). If P' is ex-
panded in a Taylor series about the equilibrium
lattice spacing a for small relative displacements
X$gp

It '(a+x„)= ItI'(a) + ItI" (a)xI, +-,'y' (a)x'„

+ 1 y III&(a)XS + ~ ~ ~

6

and the new time and distance units introduced,
then the equations of motion, Eq. (5), can be re-
written

I 2 2
+N+1, N NsN 1 & N+1, N N, N 1

+ p (xx+1,N xiV, N-l) +

where o, is the cubic anharmonicity coefficient,

o' = --,'ag" (a)/g" (a),

and P is the quartic anharmonicity coefficient,

for shock strength o.'v ~ 0.525. (In a later section,
the characterization of shock strength by the prod-
uct o.v is discussed. Multiples of n =10.5, the
Lennard-Jones 6-12 pair potential cubic anhar-
monicity coefficient, appear frequently in our cal-
culations; for example, a relatively weak shock
with n = 10.5 and v =0.05 has a shock strength of
av=0.525,) This choice makes the time step about
—'. th of the period of the maximum frequency of the
harmonic chain, 2+o. Fox' larger values of Nv the
time step was scaled downward: &oo6t =0 052. 5/n v
Variations in b t by a factor of 2, either larger or
smaller, produced no noticeable change in the cal-
culated solutions.

III. PAIR POTENTIALS

In this study of one-dimensional shock waves,
several different forms of pair potentials with
varying degrees of anharmonicity have been used.
These include the Lennard-Jones (I.J) 6-12 poten-
tial [presented in reduced units so that ItI" (1)=1
and y (1)=y '(1) = 0]:

y(x) = —,', (x-"-2x-'+ 1), (l.7)

where cI =10.5 and P = ~~ n2=0. 560847nm; the Toda
potential 4:

y (x) = (1/4n')(exp[-2n (x —1)]

+ 2c'. (x —1) —1],

p =-', a'g""(a)/ItI" (a) .
(For most realistic potentials, n is on the order
of 10, while P is on the order of 100.) &ith these
new time and distance units, the velocity unit is

(12)

Co -Q(do

the long-wavelength sound speed in the harmonic
chain (e =P = =0). The particle velocity u~ and
the shock velocity I, in the new units are then
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V=Q Co~ tI =u, /c, . (14) C

The zero-temperature initial conditions for N~ 1
are

x„(O)=0; x„(O)=O; X„(0)=0. (15)

To initiate a shock wave, we consider the first
particle on the chain [N=0, X,(0)=0] tobe infinitely
massive, in essence, the "piston, " with constant
velocity

x,(t) =v, (16)

for t~ 0.
The time step 4t was chosen such that +o4t =0.1

0.'5
I

I

X

I

1.5

FIG. 1. Pairwise-additive potential P(x) as a function
of particle separation x. H—harmonic (n=P=O), C—
cubic (+=10.5, P=O), and Q—quartic (0.'=10;5, P=73.5)
are trunc ated potentials: ft}(x)= 2 (x —1) —3n (x —1)
+~P (x —1)4. LJ is Lennard- Jones 6-12 potential defined
in Eq. (17); T is Toda potential (+=10.5) defined in Eq.
(18); and M is Morse potential (a =10.5) defined in Eq.
(19).
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FIG. 2. Pairwise-additive force —P'(x) as a function
of particle separation x. (Same key as Fig. 1.)

IV. HARD-ROD CHAIN

It is instructive to review shock-wave propaga-
tion in the ha, rd-rod chain, since the analysis is
simple and serves to illustrate many of the fea-
tures of the problem for more realistic interac-
tions. Hard rods, the one-dimensional analog of
three-dimensional hard spheres, interact only on
contact with one another via perfectly elastic col-
lisions. The natural unit of time in the zero-tem-
perature hard-rod shock-wave problem is the col-
lision time given by

f, = (a - a)/2u„ (20)

where o is the length of the hard rods. In Fig. 3
the trajectories of the hard rods are shown as they

where n can be varied from zero, the harmonic
limit, to infinity, the hard rod limit (that is, hard
spheres in one dimension), and P = ,'n'; an—d the
Morse potential:

y( )=(9/8 ')f. m[--,' ( -1)]
—2 exp[--', n(x —1)]+1], (19)

where p = —,
'~ n'=0. 518518 ~ 'n2 In ad.dition to

these "realistic" potentials, three truncated forms
were considered: harmonic (n =P =0), cubic (P =0),
and quartic. The potentials g are shown in Fig. 1
and the forces -Q' in Fig. 2 as functions of the in-
teratomic separation. The Toda and Morse poten-
tials shown have =10.5, the LJ 6-12 value. How-
ever, since the values of P differ, the stiffness of
the repulsive wall is in the order Toda& LJ 6-12
&Morse (P/nm:0 667&0.5.61&0.519). The harmon-
ic, cubic, and quartic potentials are truncated
forms of the Toda n =10.5 potential.

FIG. 3. Shock-wave trajectories of hard rods in a
one-dimensional chain: positions X/a as a function of
time t/t~ P is lattice spacing, t~ is collision time).
The hard-rod length 0 is 5 a. The shock velocity
gong dashes) is u~ =a/t~, while the particle velocity
(straight line) for the piston rod, which starts out at
X=O at t=0, is u&=0.3 u~. The lines emanating from
the point of contact of particles 4 and 5 (short dashes)
are shown for reference to Fig. 6.

u, =a/t, =2ug(1- a/a), (21)

indicated by the dashed line in Fig. 3. The N=1
rod is again struck from behind by the piston, and
henceforth, follows an oscillatory trajectory be-
tween its two nearest neighbors. In Fig. 4, the
steady square-wave velocity profile, characteris-
tic of a shock wave in a hard-rod system, is shown
for a given particle along with its displacement as
a function of time. There is no dispersion in the
velocity profile since there is but one frequency,
namely, 2v/f, .

This information of Figs. 3 and 4 is displayed in
Fig. 5 as a contour plot of velocity versus position
and time (only one contour, at 2u~, has been
drawn). Note the series of peaks paralleling the
shock front as well as ones more or less perpen-
dicular to the front. These peaks and troughs
arise from the discrete nature of the lattice and
appear also in shock-wave propagation in chains
of particles interacting via more realistic poten-
tials.

evolve with time. At time 2t, the "piston" rod
(Ã=0), which always travels at velocity u~, hits
the first rod (N= 1) whichthenbegins traveling
toward the second (K=2) at velocity 2u~. At 3t„
N = 1 hits N = 2 and comes to rest while N = 2 moves
off at velocity 2N~. The collision chain proceeds
at intervals of t, so that the shock front moves out
ahead of the piston at the shock velocity
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FIG. 6. Velocity contour plot for a shock wave in a
one-dimensional chain of hard rods with the fifth rod
having a slightly different mass from the rest of the
rods: m5/m=1+A, ~dl «1. The shaded area is the
region of backscattered interference from the mass de-
fect. The inverse of the slope of the left-most boundary
of the shaded region is &„, the reflection velocity
[Eq. (23)]. Compare with Fig. 3.

FIG. 4. Velocity response i2 (straight line) of hard-
rod number two to the shock wave as a function of time;
its displacement x2 from its lattice site X2(0) =2n is also
shown (dots).

From Eq. (21), we note that the relative com-
pression behind the shock,

q =1/(1 —u, /u ) = 2/(1+ (r/a), (22)

12-
HARD-ROD CHAIN

10-

6-t
tc

I I

3 4
X
0

FIG. 5. Velocity contour plot for a shock wave in a
one-dimensional chain of hard rods as a function of
position and time (see Fig. 3). A contour is drawn at
velocity 2u&. The dashed line shows the trajectory of
the piston particle.

is independent of the particle velocity and depends
only on the relative excluded volume per particle,
a/a. As the relative free volume per particle
(1 —o/a) decreases, the proportionality between
the shock and particle velocities increases, much
as stiffening the repulsive wall of realistic poten-

V„= —(u, /ri)[1+-,'5 (1+q)]/(1+-,' &) . (22)

The new shock velocity ahead of the defect will
then be

which is slower than u, to second order in 6. The

tials by increasing the anharmonicity 0. will be
shown to increase the slope of u, vs u~.

The effect of a slight mass defect can be seen in
Fig. 6, where N=5 is the defective rod carrying a
massless Maxwell demon determined to ride the
rods, as though they were boxcars, from N=5 to
N =0, the piston. Imagine further that the demon
can only jump from one "boxcar" to the next at the
moment they collide. Therefore, his path will be
somewhere in the shaded region, depending on his
bravery and timing (see also in Fig. 3 the region
between the dotted lines). If he is quick and brave,
he will follow the left-hand line toward the piston
at the reflection velocity V„(with respect to the
already shocked boxcars moving at an average ve-
locity u~). If, on the other hand, he is too slow or
scared, he will ride the fifth boxcar at an average
velocity of u~ along the right-hand border of the
shaded region.

Now consider the case of a real mass defect at
N=5, namely, the mass is m(1+5), where -1&5
& ~ (m is the mass of all the other particles, ex-
cept the infinitely massive piston). The reflection
velocity due to the mass defect is found to be
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average velocity of the defect particle is similarly
slower than the average particle velocity to second
order in 6. Thus, whether the defect is light or
heavy, energy is scattered back toward the piston,
affecting the dynamical history in the shaded re-
gion in Fig. 6. (These results will be compared to
the behavior of chains with more realistic interac-
tions in Sec. VII.)

V. HARMOMC CHAIN

At the other extreme of interaction is the har-
monic chain, where particles interact with their
nearest neighbors through a force linear in rela-
tive displacement. To further illustrate the
framework for the general case to be presented in
following sections, the analytical solution for
shock waves in the harmonic chain will now be
briefly outlined. The equations of motion [Eq. (10)]
are given by

xv(t) =x„,(t) —2x„(t)+x„„(t). (25)

The analytical solution satisfying the shock bound-
ary conditions, Eqs. (15) and (16), has been shown
to be a series of Bessel functions of the first kind
for particle displacements

analytic expression [Eq. (28)]~'.

t (» = N+-,'(-a,)N'/', (29)

t (l,3) t (8) t (1) 4 ( )N) / 3
N N N -2 3 1

whence the initial oscillatory frequency is

(d, (N) =27(/t' "=[4((/(-a~+a, ))N ~ '. (32)

Since the dispersion relation for the harmonic
chain yields the following frequency dependence
for wave velocity"

where j=1,2, 3, .. . , and g& are the negative zeros
of the Airy function Ai(x). For N = 751, we ob-
serve t,",,'=761.6 and calculate from Eq. (29) 761.6;
If75/ 776 2 is observed while 776.1 is cal culated,
well within the O(l/N) accuracy of Eq. (29). We
conclude that even after long times, namely, more
than 7500 time steps, the numerical integration of
the equations of motion is very accurate.

From Eq. (29) for j=l and particles N, N+1»1
we find that

t( = 1 —,' ( a,—)N-'/'+ ~ ~ ~ .
The initial oscillatory period of particle N is given
by

x„(t)= v g (2&+ 1)Z„„(2t),
k-"0

with particle velocities given by

(26)
c(v) =c,(l —&o'/4&@ )' 2

we are led to compare the shock velocity as a
function of particle number [Eq. (30)] with

(33)

x„(t)=—g (2@+1)Z (2t)„„
k=N

N

=v[1+J (2t}+J, (2t) —2 g J (2t)],
k=0

and particle accelerations given by

X„(t)= {2vN/t)Z, „{2t).

(27)

(26)

The final state of the chain behind the shock front
is XN- v and xN-0. The shock velocity is p, -1,
since particle N begins to move only when f-N
[J„(g) is small until s n], reg-ardless of v. In
order that particles not be sent through one anoth-
er, however, v must be less than p, .

The most useful diagnostic in the shock-wave
problem is the velocity profile x„{t)/u~. For the
harmonic chain, the analytic expression for the
velocity profile, Eq. (27), is unfortunately very
difficult to compute, since the important features
for particles far from the piston (N & 100) are
given by high-order Bessel functions where the
arguments are close to the orders. We can, how-
ever, compare the times for the first and second
peaks in the velocity profile of particle N, t„' ',
and t(~), respectively (tN+) is for the first trough),
as given by the molecular-dynamics'experiment
and by the first and third zeros of the asymptotic

c(((),) =1-[2)(2/(-as+a, ) ]N /'+ ~ ~ ~ (34)

x„(tv(')+r'„/') -u, =[x„(t~") u,]/e, -

(The coefficient multiplying N 2/3 is about five
times larger in the latter expression than in the
former, though they are in basic agreement. )

The velocity profiles of several particles in the
harmonic chain ar'e presented in Fig. 7(a}, with
abbreviated profiles, that is, initial rises and peak
positions, presented in Fig. 7(b). The initial peak
response to the propagating shock-wave asymp-
totes to 1.27u~ by about particle number 50. The
initial rise becomes less steep with particle num-
ber, though the arrival time tN '=N correlates well
with an approximately constant velocity, -0.36u~.
[It may not be completely coincidental that Ai(0)
=0.355.] The initial period of oscillation steadily
increases with particle number, hence i), - 1 (the
fastest propagation speed in a harmonic chain is
for low-frequency waves: co). The long-time value
of the oscillation period is m, corresponding to the
highest frequency in the spectrum of the harmonic
chain, 2+0. The velocity profiles oscillate about
and decay to the particle velocity with time-expo-
nentially at first and more slowly, -t~ ', at long
times. The 1/e-fold decay time v'„', defined as
the largest value such that
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increases with particle number in proportion to
Nt a. As shown in Fig. 8(a) and Table I, a similar
result is obtained by fitting the first and second
peaks to an exponential decay:

T„'* =t~~'si/In([x (ttt') -u ]/[x„(ttsi) -u)f. (86)

The ratio v~~'/vz"' is essentially constant with N,
about 1.06. Since we observe that x„(t„'~')/u~- 1.272 and X„(t„'~')/u~- 1.152, while from Eg. (81),t„""-]..59N'~'; hence v" -'2.73N'~' and v'~'- 2.90N' . If time is measured from the arrival
time (tz'~'=N) through the region of 1/e-fold decay
(t~~'+ ru) and divided by Nt s, then for this time
interval velocity profiles of different particles can
be superimposed. The relaxation rear velocity u„
behind the shock front is given by

N= ~l ~II 6I

50

0
100

FIG. 7. Velocity profiles xz/I& vs time for several
particles N in the harmonic chain. (a) Shows complete
profiles, while (b) shows abbreviated profiles, i.e., the
initial rise shown as a solid line and velocity peaks as
d.ots.

so that u~&u„&u, ; observed and calculated (using
the asymptotic behavior r„=2.90N'~') values are
given in Table I and Fig. 8(b). If, as in the hard-
rod chain, relaxation is never achieved, then u„
=u&. If 7„ is proportional to N, then u„ is a, con-
stant fraction of u, of all times. On the other
hand, if 7'„ is proportional to N to some fractional
power, like 3 in the harmonic case, then u„-u, .
This conforms to the accepted continuum descrip-
tion of shock waves where the shock thickness of
unequilibrated material is small compared to the

TABLE I. Arrival times, relaxation times, and relaxation rear velocity for the harmonic chain as functions of par-
ticle number N.

tsar) '5l)/ tI" 5l)/

u„/u, u„/u,
~J/'/~@~ obs calo

(a)
31 34.6
61 65.8

101 106.2
151 157.2
211, 217.8
281 288.6
361 369.4
451 459.8
551 560.6
751 761.6

(b)
1.251
1.259
1.261
1.267
1,267
1.269
1.270
1.270
1.271
1.272

(c)
40.4
72.4

114.2
166.0
227.8
299.4
380.8
472.4
573.8
766.2

(c)
1.130
1.139
1.143
1.146
1.147
1.149
1.150
1.151
1.151
1.152

(d)
5.8
6.6
8.0
8.8

10.0
10.8
11.4
12.6
13.2
14.6

1.85
1.68
1.72
1.65
1.68
1.65
1.60
1.64
1.61
1.61
1.59

(e)
8.8

10.6
13.3-

14.6
16.8
18.3
19.4
21.7
22.6
25.1

2.81
2.69
2.86
2.74
2.81
2.79
2.72
2.83
2.75
2.76'
2.735

(f)
40.9
77.8

120.6
173.4
235.6
308.1
390.3
482.5
584.6
788.3

(f)
6.3 0.72

12.0 1.13
14.4 1.08
16.2 1.11
17.8 1.06
19.5 1.07
20.9, 1.08
22.7 1.05
24.0 1.06
26.7 1.06

(g)
0.854
0.853
0.887
0.911
0.928
0.940
0.949
0.955
0.961
0.968

(h)
0.784
0.850
0.888
0.912
0.928
0.940
0.949
0.955
0.961
0.968
1.0

t &: arrival time for first peak in velocity.
x ~: first peak of velocity profile; &: reduced particle velocity, +&/&0.

c tg &, x9): second-peak quantities.
tsar'~)=ting-tg): initial oscillatory period. [Eq. (31)l.
7@~: exponential-fit relaxation time IEq. (36)].

f tg~'=t5tt&+vg'; age: 1/e fold decay time [-Eq. (35)l.
relaxation rear velocity fEq. (37)]; &~: shock velocity.

Calculated using u&=0.05, u~=l, tI00)=Ã, and r 2.Bud~ ~.
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HARMONIC CHAIN
I

~
' I

(z.7M)
exp /~l/5

+N

TABLE II. Shock velocity p'=&, /&0 as a function of
cubic apharmonicity &, quartic anharmonicity P, and

particle velocity &=&p/~p for a variety of nearest-neigh-
bor interRctlons.

Comments

t(P) /~l/3

\ ~

I ~ ~ ~.~.~ ~

& l/ey exp
N N

I I I

HARMONIC CHAIN

0.9—

,~CALC.
l

I

0.8 —
~

(l.59)

(l.06)

(a)

K)00

0.0
10.5
10,5
10.5
10.5
10.5
10.5
10.5
1.05

10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5

105.0
10.5
10.5
10.5
10.5
10.5

1/5. 0

0.0
0.0
0.667
0.0
0.519
0.561
0.667
O. 667
g.667
0.0
0.667
0,667
0.667
0.0
0.667
0.0
0.519
0.561
0.667
0.667
0.667
0.0
0.667
0.667
0.667
0.667
0.667

0.05 0.0
0.01 0.105
0.01 0.105
0.05 O. 525
0.05 0,525
0.05 ' 0.525
0.05 O.525
0.05 0.525
0.5 0.525
0.1 1.05
0.1 1.05
0.15 1.575
0.18 1.89
0.2 2.1
0.2 2.1
0.5 5.25
0.5 5.25
0.5 5.25
0.5 5.25
0.5 5.25
0.05 5.25
1.0 10.5
1.0 10.5
2.0 21.0
2.0 21.0
5.0 52.5
0.5 52.5

1.0
1.061
1.066
1.25
1.30
1.31
1.30
1.33
1.33
1.40
1.63
1.90
2.08
1.64
2.19
2.05
3.19
3.37
2.86
3.61
3.61
2.60
5.79
5.00
9.61

19.7
19.7

hRr Dl on ic
cubic
Tocl R

cubic
Morse

- LJ 6-12
quartic
TodR
TodR
cubic
ToclR

TodR
Toda
cubic
ToclR

cubic
Morse
LJ 6-12
quartic
TOUR

TodR
cubic
Toe(@
quartic
Toda
Tocl R

ToclR

l000

PIG. 8. Asymptotic behavior with distance into the
harmonic chain, ¹ ta) exponential-fit relaxation time
&z~ |see Eq. (36)]; initial oscillatory period tN' ' [see
Eq. (31)]; and the ratio of the measured 1/e-fot. d relaxa-
tion time vJ/ to vz~, (b) observed and oaloulated ratios
of the relaxation rear velocity u„ to the shock front
velocity u, ~. (See Table I.)

extent of equilibrated material on both sides of the
shock front.

VI. MORE REALISTIC POTENTIAL, S,

%hen varying degrees of anbarmonicity are in-
cluded in the interactions of particles in the one-
dimensional chain, many of the features of the
velocity profiles for weak shocks qualitatively re-
semble those exhibited by the harmonic chain.
Comparison of Fig. 9(a) (Toda chain, o!:=10.5,

&=0 o5) with Fig. 7(b) (harmonic chain, n =P =0,
&=O 05) shows that, fol tbe anharmonic chain, tbe
initial peak rises as a function of particle number
and asymptotes to a higher value than in the har-
monic chain, nearer to 2g, ." Onthe otherhand,
unlike tbe harmonic chain, the initial rise of a
particle's velocity response does not noticeably
broaden with distance into the chain from the pis-
ton particle. The initial oscillatory frequency &,
decreases to a, limiting value with distance into
the anha, rmonic chain, rather than approaching
zero (-N ~~') as in the harmonic chain [see Eg.
(32)]. The relaxation time r„rgowlsinearly with
particle number, which is much faster than the
N' ' growth observed for the harmonic case. Con-
sequently, the shogk thickness is a constant frac-
tion of the material behind the shock front, rather
than a diminishing fra, ction with time as in the har-
monic chain. . This linear growth of shock thick-
ness obviously does not agree with the concepts
used to justify the usual continuum treatment of
shock waves.

The shock velocity, for the same particle veloc-
ity, is greater in the anharmonic chain. The ve-
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FIG. 9. Abbreviated velocity profiles [compare with
Fig. 7(b) for key) for Toda chains: {a) nv-0. 525 (n
=10.5, v=0.05, arid a=1.05, v=0.5); (b) nv~1. 05 (p
=10.5, v=0.1), dashed line shows outline of profile
envelope; (c) o,v=1.575 (0~10.5, v=0.15); (d) O. v

=2.1 (n=10.5, v=0.2); and (e) nv= 5.$5 (n~l0. 5, v

= 0.5, and & = 105, v = 0,05) .

50

loeity profiles, and therefore, the shtick velocity
, also, depend only on the product O. p, the shock
strength parameter, as has been reported previ-
ously for weak shocks (0.1~ nv ~ 1) in chains of
pa,rticles interacting via the cubic potential. %e
have found that this scaling of the shock strength
applies over a much wider range of shock strengths
and potential forms, namely, 0.195~ op& 52.5 for

the Toda potential along with selected corqparisons
with the LJ 6-12 and Morse potentials. Abbrev-
iated velocity profileq are pre'sented in Figs. 9(a)-
9(e) with a full velocity profile for the strongest
shock shown in Fig. 10. Data on shock velocity p.

as a function of n, p, and v fer the various corn
puter experiments are given in 'gable Ii an/ p, vs
+v in Pig. 11.
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TODA CHAIN, us= 52.5 TODA CHAIN, (z v = 52.5

0

XN

Up ~at 05

0.5
Capt

FIG. 10. Velocity profiles (full) for the strongest
shock studied in the Toda chain, ev= 52.5 (a =10.5,
v=5, and n=105, v=0.5).

Examination of Figs. 9(a)-9(e) reveals a sur-
prising transition in the long-time behavior of the
velocity profiles. At values of shock strength o.'v

less than about one, the profiles converge to the
particle velocity, while at larger values of nv,
the profiles reach a steady oscillatory state about
the particle velocity. By the time &@=52-.5, the
solutions look very much like the hard-rod case,
as comparison of Figs. 3 and 12 and of Figs. 4 and
13 shows. The steady profiles thus indicate that
for sufficient shock strength in anharmonic

15

IO

X
l5

FIG. 12. Shock-wave trajectories of particles in a
one-dimensional Toda chain, 0.'v = 52.5 (+=10.5, v= 5).
See Fig. 3 for comparison with hard-rod chain and key.

chains-just as in the hard-rod case-an initial
zero temperature in the unshocked region gives
way to a finite final temperature after the shock
wave passes. A measure of the ratio of the inter-
nal kinetic energy to the center-of-mass kinetic
energy behind the shock is given by

which is plotted against v in Fig. 14. In the har-
monic limit (ctv 0), e--0; while in the anharmon-
ic hard-rod limit (nv- ~)," e-1; hence, e exhibits
the transition to hard-rod behavior at &v & 1. As

IO—

TODA CHAIN, as= 52.5

n '"pyre

-
I

Up

'I
0 10 15

I

20 25

x,—
0.5

J I.
FIG. 11. Shock velocity p, =u /co as a function of

shock strength, o,v(v=g&/co and e is the cubic anharmon-
icity). @=1+~ nv is the linear result for the continuum
approximation to shock-wave propagation [Eqs. (40) and

(41)]. C, cubic chain; Q, quartic; T, Toda; LJ, LJ 6-12;
M, Morse.

FIG. 13. Velocity response xs (solid line) of Toda
particle number three to a shock wave as a function of
time; its displacement x3 from its lattice site X'3(0)
= 3a is also shown (dotted line). For comparison with
hard-rod chain, see Fig. 4.
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I I 1 I
I I I I

TODA CHAIN

c 0.5—

0 .-
01

a & I I & & s I

05 I 5 IO

FIG. 14. &he thermal parameter e [Eq. (38)] as a
function of shock strength nv for Toda chains; quartic
chains shown as Q.

shock strength av is increased, the relaxation
time from the initial velocity response to the final
steady state divided by particle number, v„/N,
also increases, though more slowly in the regime
where +p~1

The full potentials (Toda, LJ 6-12, Morse) and

the quartic truncated potential exhibit the approach
to hard-rod behavior-steady velocity profiles-
with increasing shock strength, while the cubic
truncated potential does not, even up to the point
where the potential barrier to interpenetration of
particles, which depends on n, is close to the
maximum relative kinetic energy, a(2v)'=2v'.
The cubic chain has profiles that continue to look
qualitatively like Fig. 9(a). The quartic chain ex-
hibits hard-rod-like steady profiles more slowly
as a function of shock strength than the full poten-
tials; for example, at np=21, &=0.4, while the
Toda potential gives a =0.4 at nv =2.7 (see Fig.
14). The failure of the cubic chain to show hard-
rod behavior is undoubtedly due to the anomalous
repulsive force at larger separations than the
equilibrium value (see Fig. 2).

Tasi' has concluded from a far-field analysis of
weak shocks in a cubic chain (o'. =0.2, v=0.1, n p

=0.02) that by N=1999 the beginnings of a solitary-
wave structure is observable in the velocity pro-
file, that is, the second peak has begun to look like
the first. By N =3999, the first two peaks look
identical, and by N = 5999, the first three look
identical. Our molecular-dynamics calculations
show no such solitary-wave behavior for this sys-
tem. Indeed, our results for N=999 agree with
Tasi's numerical results (within the linewidth of
his graph), though for integrating the equations of
motion he used Hamming's modified predictor-
corrector method rather than the central differ-
ence scheme outlined here. Had he integrated
further, he would have found, as we did, that the
far-field analysis becomes progressively worse
with distance into the chain. In Fig. 15(a) is shown
the molecular dynamics results as well as Tasi's

p, =a1 +vo/ p, P+v'/ p.', (29)

2.0
CUBIC CHAIN, a@=0.02, N= I999

l.5

I.O
XN

Up

0.5

0
I980 2000

QJ

2020

2.0
CUB)C CHAIN, (2p=0.02, ¹3999

l.5

—1.0XN

Up

0.5

5980
QJO f

FIG. 15. Comparison of velocity profiles of mole-
cular dynamics calculations (straight line) and Tasi's
far-field perturbation analysis (short dashes) jfor a
weak shock in a cubic chain (+=0.2, v=0.1, vv=0. 02).
Straight lines have been drawn through the first two
peaks and first two troughs to emphasize the differences
in the )ecay envelopes of the exact result and the far
field analysis.

Q.r-field analysis for N =1999. Note that the decay
in the peaks of the molecular-dynamics velocity
profile is concave upward (like an exponential de-
cay) compared to concave downward for the far-
field model. The disagreement is even more no-
ticeable by N =3999 in Fig. 15(b). The relaxation
time calculated from the molecular-dynamics data
is t„=—0.024N for N =999, 1999, and 3999. One is
forced to conclude that the solitary-wave behavior
demonstrated by the far-field analysis for weak
shocks in one-dimensional chains is due to some
artifact not present in the full solution of the equa-
tions of motion.

Extending previous work on the continuum ap-
proximation to the equations of motion [Eq. (10)]
for shocks in the cubic chain4 to the quartic chain,
we have the following results for the shock velocity:
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whence, after some algebraic manipulation,

tl =1+z»- 8(1 —,' t—l/ o')(o v)' +

Since P/o. '& —, for the full potentials, p, curves
down away from the linear result

p, =1+sv~

(40)

(41)

The Toda chain shock velocity for o.v = 5 is given
approximately by

tj. (o'. v, 3) = 1+0.633m v —0.0314(n v)'. (43)

For the Toda chain, we have studied the limit of
the initial frequency of the velocity response far
from the piston given by [see Eq. (32)]

(u, =lim 2v/t„" ",
g~ oo

and the final (long-time) frequency, which is given
by

= lim lim2m/t"" """'
Pf~ oo f1~ oo

(45)

In the harmonic limit e, =0 and &„=2&„ the max-
imum frequency in the harmonic-chain spectrum.
In the hard-rod limit, &d, =ld„=2m/t, . In Fig. 16,
~, and e„are shown as functions of shock strength
np for the Toda chain.

In the harmonic chain, the initial frequency of
the velocity profile for particle N is low, on the
order of a&o/N' ' [see Eq. (32)], and slowly in-
creases to 2mo, in essence sampling the entire
frequency range of the harmonic spectrum. After
some distance into the anharmonic chain, however,
the initial frequency no longer decreases, but
reaches some small limiting value. The particle
then oscillates faster and faster with time, reach-
ing a higher value than the 2+, of the harmonic
chain. For stronger and stronger shocks, both of

where s = &n, shown in Fig. 11. That this linear
expression fits the Toda results moderately well
up to np-8 is fortuitous, since the continuum
analysis breaks down for the quartic case [Eq.
(40), P/n~ = —,'] at about this point and is therefore
not really very useful.

The full potentials give velocity profiles that dif-
fer only slightly from each other. The small dif-
ferences in shock velocity can be approximately
corrected by linear interpolation in p/o.". The
shock velocities for the cubic, Morse, LJ 6-12,
and Toda potentials can be fit approximately by the
following empirical form, given the Toda chain
shock velocity tl, (&v, 3):

p. (A v, p/Q') = p, (Q v,
—', ) + 0.45 9(x v

x [1—exp(-1.069m v)] (P/n' ——,').
(42)

50—
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5—QJ

(aPp
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I I I I I 1 ~ I ( I I /

I I [ I I 1 ~ l I /~/
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0

0

/

0 /

o

b
/'

Qli

Q)/QJp = QI/

0 S.l 05 I 5 IO 50

FIG. 16. Initial oscillatory frequency of velocity res-
ponse u& for particles far from the piston (asymptotic)
and the final long-time value (after the initial rise) co„
as a function of shock strength nv in Toda chains.
Dashed line is the function ev. Note the break in the
logarithmic scale near the origin so as to show the
harmonic-chain limits.

these frequencies increase, but the range of fre-
quencies narrows until the hard-rod limit is
reached, where there is only one frequency in the
system-the hard-rod collision frequency. From
Fig. 16, it appears that &,-co„-ev. From Eq.
(20), we see that the hard-rod collision frequency
is also linear in the particle velocity.

VII. EFFECTS OF TEMPERATURE
AND OF MASS DEFECTS

When we observed that particle velocity profiles
for we@k shocks in anharmonic chains evolved with
distance toward hard-rod-like stea.dy profiles, we
were naturally led to wonder whether disruption of
perfect lattice symmetry ahead of the shock wave
would prevent the growth of hard-rod-like waves.
To that end we equilibrated a Morse chain at a
finite temperature, ksT/mco = 10 ', which is a few
degrees Kelvin for a typical metal, and then sent
a weak shock down the chain (cl =10.5, v =0.05,
nv =0.525). The results for two particles far down
the chain from the piston are shown in Fig. 17. We
see that the random thermal fluctuations ahead of
the shock are swamped by the highly correlated,
almost steady waves that have evolved. Essential-
ly no effect on the shock-wave propagation is dis-
cernible save the modulations due to superimposed
thermal fluctuations; for example, the tiny appar-
ent increase in shock velocity is hardly bigger than
the experimental error (s1%). An order of magni-
tude higher initial temperature naturally makes the
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FIG. 17. Two velocity profiles of particles in an in-
itiaQy thermalized Morse chain, k&T/mc20 =—10, O, v

~0.525 (+=10.5, v= 0.05).

signal harder to pick out from the noise, but the
sItme relentless growth of anharmonic response is
ultimately observed. When an order of magnitude
stronger shock is sent through a Morse chain at
this higher temperature, the hard-rod-like steady
profiles are basically unchanged, since both the
magnitude of the thermal fluctuations and their
frequency are much smaller than those of the
steady-velocity waves behind the shock. If the
random fluctuations are subtracted out both before
and after the shock front has passed, the only tem-
perature rise we observe is due to the steady-wave
(hard-rod-like) response for strong shocks.

We have discussed the mechanisms of thermal
relaxation by analogy 'with the limiting models of
collisional transfer of thermal energy afforded by
the harmonic and hard-rod chains. A critical
question which may be impossible to resolve is:
After a shock wave has passed a point in the hard-
rod chain, does the shocked portion eever reach
equilibrium, or is it already instantaneously in
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FIG. 18. Velocity contour plot vs position and time (see Fig. 8) for a shock wave hitting a mass defect in a Toda
chain, mI4pm = 1.5 ~ nv= 0.525 {n=10.5, v= 0.05). Contours are drawn at 1.351& {1/s-fold decay from 2u& to II&) and
1.7 Np.
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equilibrium? It certainly never reaches the state
of random fluctuations that we usually associate
with a finite temperature, even though we can eas-
ily calculate a final temperature from a standard
statistical-mechanical formula

«s+t
ksT = lim — dt' — m[i, (t') -u~], (46)t N

S Ia

where k~ is the Boltzmann constant and N is a col-
lection of particles which have been shocked oy the
time t=t, .

We have also investigated the effect of mass de-
fects, both lighter and heavier than the other mem-
bers of the chain, to determine whether the
presence of such defects can speed up the relaxa-
tion process behind the shock front, as is often
supposed. The following Toda chains, with mass
defects far enough down the chain that the initial
velocity response has reached its asymptotic value,
have been studied: +v=0;525 and 5.25, m =0.5,
0.8, 1.2, and 1.5; and np=52. 5, m =0.8 and 1.2.
As an example the velocity-contour plot versus
position and time, with contours drawn near the
.1/e-fold value, 1.35u~, and at 1.7u~, is presented
in Fig. 18 for up=0. 525, m =1.5. Compare this
with Fig. 6 for hard rods. The disturbances due to
the heavy-mass defect (N=139) are very apparent.
Though the fine details differ, qualitatively very
similar results are obtained for a light defect, that
is, the energy of the shock wave is partially back-
scattered by any mass defect. Quantitative agree-
ment with the hard-rod problem in Sec. IV, includ-
ing details of individual collisions, is approached
in the essentially hard-rod nv = 52.5 cases. For
example, the reflection velocity calculated accord-
ing to Eq. (23) is Vgco=-12.5 (p =19.7, -p, /q
=-14.7) for 5=-0.2, while Vgc, =-13.1 is ob-
served. For 5=+0.2, V/co=-16. 5 is calculated,

while V„/co=-16.0 is observed. The shock veloci-
ty following the defect is predictably [see Eq. (24)]
only slightly slowed by the defect (-1/o), which is
difficult to detect. In Figs. 19(a) and 19(b), con-
tour plots of these very anharmonic problems are
presented for comparison with the hard-rod case
in Fig. 6.

The mass defects do not lead to a quickening of
the relaxation to equilibrium behind the shock
front. On the contrary, behind the defect the re-
laxation process is noticeably slowed down because
of interference from waves backscattered off the
defect. Beyond the defect, as is clearly visible in
Fig. .18, the relaxation process resumes almost
as if no defect were there, that is, a straight-line
relaxation rear can be drawn. Thus, in addition
to the constant fraction of unequilibrated material
behind the shock characteristic of anharmonic
chains are these regions of backscattered distur-
bance due to the presence of mass defects.

It is easy to speculate on the effect of mass de-
fects in three-dimensional crystals. Very likely
they cause scattering and smearing of the shock
waves; however, the presence of extended defects
and the possibility of plastic flow in higher dimen-
sions make it rather risky to draw incisive conclu-
sions from our one-dimensional results. We are
therefore pursuing these questions in three-dimen-
sional molecular-dynamics calculations.
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