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The spontaneous motion of electrons in the bulk photovoltaic effect in pyroelectric materials may be
explained by separating the processes into two steps: the generation of photoelectrons whose distribution is

asymmetric in momentum and a subsequent normal difFusion of the carriers. Asymmetric generation violates

time-reversal symmetry and is shown to be only possible for local states in polar systems. Transport

properties are calculated for the short-circuit and the open-end case. It is shown that in high-resistivity

materials the short-circuit current is not afFected by impurities other than those supplying the asymmetric
photoelectrons. The open-end saturation field is proportional to the short-circuit current E, = J„/o,where

cr is the photoconductivity. Both results agree with experiment.

I. INTRODUCTION

Some ferroelectrics like LiNbO„LiTa03p BaTi03,
etc. , change their index of refraction under il-
lumination. Early attempts to explain this "optical
damage" or "bleaching" attributed it to a diffusion
of photoexcited carriers out of the illuminated into
the dark regions. The resulting carrier-density

- profile then in turn induces a local variation of the
optical properties. Extensive experiments con-
firmed in principle the migration of carriers be-
tween light and dark regions, however, they
showed that the process is more complicated than
simple diffusion. ' ' Homogeneous illumination of
a single-domain crystal gives rise to a field of the
order of 10' V cm ' along the c axis, which means
that carriers are being transported spontaneously
in a well-defined direction, piling up at the end of
the domain. This picture is further substantiated
by the fact that by contacting the ends of the do-
main, short-circuit currents proportional to the
light intensity may be drawn without external elec-
tric field. The dependence of this current on wave-
length and polarization of the incoming light is not
proportional to the optical density, indicating that
only carriers originating from particular tran-
sitions contribute to this effect. (In BaTio, the di-
rection of the current may be reversed by altering
the polarization of the incoming light. 4)

This spontaneous motion of photoelectrons in the
entire volume of a substance is called the bulk
photovoltaic effect (BPVE) and is of practical in-
terest for the storage of volume holograms. ' '

The microscopic processes giving rise to the
BPVE are not yet fully understood in spite of a
large amount of experimental information. In par-
ticular it is still unclear whether the spontaneous
transport of carriers is intrinsically connected to
impurities or whether it results from properties
of the pure substance, possibly enhanced by im-
purity effects.

Experiments on LiNbO, suggest a very strong
connection to impurities. It is found that the bulk
photovoltaic efficiency z defined by'

J„=veI,
where J„is the external short-circuit current, e
the optical density, and I the light intensity, shows
a pronounced correlation to doping in absolute val-
ue and spectral dependence. ' ' In particular, con-
centrations of some 10 ' Fe give extremely high
efficiencies, and in addition it is found that the
spectral dependence of x corresponds to a. Fe"
-Nb transition in the absorption spectrum. ' Fin-
ally the current is proportional to the content of
Fe" ions over a wide range of concentrations. ' In
spite of this strong correlation between the BPVE
and impurities in LiÃbO, the situation is less clear
if one takes into account that in other substances
like BaTiO, the same effect takes place in nominal-
ly pure crystals4 and that it may also be found i:n
pure LiNbO, by two-photon excitation. '

The experimental results mentioned above would
be compatible in principle with a model attributing
the transport to the bulk system and assuming that
the impurities merely supply the carriers. In Sec.
II we shrew, however, that symmetry arguments
lead to a crucial importance of the localized states
for the transport process itself. It must then be
assumed that in the pure system defects play the
role of impurities, for which there seems to be

,some experimental evidence. ' The alternative pos-
sibility of asymmetric polaronic motion within the
conduction band will not be considered here as it
is not clear at the moment whether the energies in
question are compatible with this model,

The mi. croscdpic processes responsible for the
BPVE may be qualitatively divided into two steps.
First, the photoexcited electron must possess
some initial momentum in a well-defined direction
with respect to the polar axis, and second, it must
move in this preferred direction over macroscopic
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distances in order to contribute to the external
short-cir cuit current. Recently several models
have been proposed which rely on the formation of .

local time-dependent dipoles and calculate the cur-
rent as the averaged time derivative of the dipole
moment. It is clear that such processes can only
contribute to current fluctuations and do not give
rise to a steady external current.

A system which gives spontaneous photocurrents
was studied by Neumark" in connection with ex-
periments on laminated ZnS crystals. These cry-
stals may be represented as a sequence of junctions
whose photovoltages accumulate if at least one of
the components has no center of inversion. This
model also explains photovoltages due to the grain
boundaries in polycrystalline samples of pyroelec-
trics. It cannot be applied to the case of impurities
in LiNbQ, as it would require the impurities to
form some sort of lamination for which there is
no evidence.

II. SYMMETRY

The existence of a spontaneous electric current
requires states of opposite momentum tobe inequiv-
alent and thus clearly breaks time-reversal sym-
metry. Excluding electron-phonon interactions for
the moment, we may show that the BPVE cannot
occur for symmetry reasons in a pure Bloch state
but must be due to localized states.

It is evident from experiments that magnetic ef-
fects play no role and thus the Hamiltonian itself
is time-reversal invariant. The breaking of sym-
metry is then due to the boundary conditions.

Bloch states of opposite momentum are connec-
ted in the undisturbed crystal by the time-reversal
operator K

Kg)(x) =)I) -„(x)= gf (x) (2)

(where spin has not been taken into account explicit-
ly for symmetry reasons) and are thus degenerate
irrespective of the symmetry group of the crystal.
The matrix element for photoexcitation from state
gg „ofmomentum k in the valence band to state
g-„,in the conduction band is

M»»c iE d~x ~»„x& .„,x

The states (t); „and (t) „-„being degenerate are

(5)

where E is the electric-field vector of the incident
light. From condition (2) we have

(4)

equally populated. Due to (5) this is also true for
$1, and g „-,upon photoexcitation and the net cur-
rent of photoelectrons vanishes. This statement
remains valid if additional interactions are intro-
duced as long as they do not break time-reversal
symmetry. We have, therefore, no asymmetry in
momentum distribution in a system of pure Bloch
states.

The situation is different if we allow for defects.
In addition to a possible bound state the conduction
band is then disturbed and we must construct a con-
tinuum state from the Bloch functions. The bound-
ary conditions are analogous to those used for the
photoionization of atoms where the proper choice
was shown" to be an incoming spherical and an out-
going plane wave. In our case this reads

( -' '(x) = (-,(x) + Jd 'x G '(x, x')tr(iC)( ( '(x'), (6)

where $-„,is the conduction band Bloch function,
V(x) is the scattering potential of the impurity or
defect, and

,„-,g,.( )0;.,( )
G» px j lcm

is the Green's function for incoming (-) and out-
going (+) "spherical" waves. e-„is the band energy
of the electrons and E„"the energy of the continuum
state.

Time reversal, being equivalent to complex con-
junction, now gives

Zyf( '(x)=y' (x), (8)

which contains an outgoing Green's function and is
thus excluded by the boundary conditions which only
allow for incoming "spherical" waves as mentioned
above. The state of opposite momentum -k is con-
nected to pi, by the inversion operation I

y'„-'(x)=ly '(x), (9)

provided I is an element of the symmetry group.
Otherwise the states Q'„-)and P„-areindependent
and give in general different probabilities of photo-
excitation from the localized state into continuum
states of opposite momentum. The connections of
the four states belonging to momenta k and -k are
summarized in Fig. 1 where the ones in the upper
1ine are allowed by the boundary conditions.

The absence of inversion symmetry is a neces-
sary condition for the existence of a spontaneous
external current but is it not yet sufficient. In
most crystals without inversion symmetry one
still has pairs of defect sites which are equivalent
apart from having opposite orientation. Even if
each one is capable of emitting a directed current
of electrons, these compensate and there is no
macroscopic net current. Thus we must impose



H. HEYSZENAU

K

P, l'I
I

I

I

I

I

Aa
I

P,

conduction
band

irnpvri ty
level

(

FIG. 1. Transformation of the continuum states of
plane-wave momenta k and —k under inversion I and time
reversal K.

the additional requirement that the asymmetry in
all equivalent sites has the same sense, which
means that we need a polar axis in the crystal.

Summing up we find that the asymmetry require-
ment for obtaining a net spontaneous photocurrent
is (a) a polar axis in the host crystal and (b) the
existence of "local" states in the sense that these
states do not have the full translation symmetry of
the lattice. (They may still be extended and in fact
are in this case. ) All these requirements are ful-
filled by defects in pyroelectric and ferroelectric
crystals.

This far breaking of time-reversal symmetry
was assumed to be due to the local boundary con-
ditions of rigid continuum states. Including relax-,
ation effects of the lattice we obtain in addition the
possibility that time-reversal symmetry is broken
thermodynamically by the heat bath. This effect
gives rise also to anisotropic initial momentum
and will be treated in a subsequent paper.

III. CONDITIONS FOR DIRECT CURRENT

In Sec. II we studied the symmetry requirements
for directed emission of electrons from impur-
ities upon photoexcitation. The next step consists
in considering under what conditions these elec-
trons contribute to direct current which may be
measured at the boundaries of a macroscopic sys-
tem. Microscopically this means that we must
have momentum correlation over infinite distances,
or in other words, the electron must move in some
preferred direction through the entire crystal. It
may seem that this requirement hzs been fulfilled
in Sec. II by taking the wave function according to
Eq. (6) as there is an outgoing wave traveling free-
ly over infinite distances. The situation is, how-
ever, not trivial as we have until now neglected
the presence of other impurities or defects and,
in particular, of those which do not take part in
the photoexcitation mentioned above. As soon as
the electron is scattered (i.e., in the distance of

FIG. 2. Electron motion in asymmetric photoexcita-
tion.

the order. of a mean-free path) its momentum is
randomized and it does no longer contribute to the
external current. This problem does not arise in
normal field conduction as there the carrier is ac-
celerated by the external field and thus reacquires
its preferx'ed direction after each scattering.

In the absence of external fields a similar effect
might be imagined assuming that the electric cur-
rent is carried by electrons which so to speak
jump from one "active" impurity to the other thus
being reaccelerated every time. The relevant
parameter of this model being the distance between
the impurities gives a nonlinear dependence of the
current on impurity concentration while experi-
ments clearly show linear dependence over a wide
range of concentrations. ' Direct transitions be-
tween impurities may thus be excluded as the main
driving mechanism. For low impurity concen-
trations the distance between centers is large as
compared to the mean free path of the emitted
electrons and each center is independent of the
others.

I.et us consider the situation where an electron
which was emitted asymmetrically from an im-
purity, is being scattered after moving the average
distance of the mean free path. There are now
three forces acting on the carrier: (a) the attrac-
tive force of the hole it left behind, (b) the macro-
scopic field possibly present in the crystal, and

(c) a "concentration gradient" which will be dis-
cussed below. The first two forces clearly act
against the BPVE which requires the electron to
leave the impurity and to move against the macro-
scopic field.

A schematic sketch of the emission process is
given in Fig. 2. The motion of carriers may be
divided into two distinct parts. (i) After being ex-
cited at point P, the carrier moves a certain dis-
tance &, before being scattered inelastically at P,.
This motion takes place at some energy above the
lower edge of the band (some tenth of an eV ac-
cording to experiments) and is asymmetric as dis-
cussed before. (ii) There is a diffusion current
with mobility p at the bottom of the band. ("Band"
means a region of finite density of states rather
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than a band in the Bloch sense. ) It must be kept in
mind that A, is not the mean-free path belonging to
p. as these parameters belong to different energies.

Considering for the moment the short-circuit
case where there is no macroscopic field present
we find that the time dependence of the process we
are studying is governed by two characteristic
times (i) the time constant of emission of electrons
from the impurity defined by

r, = I/W, =1/nyI,

where W, is the emission probability per unit time,
0, is the optical density, I the light intensity, and

y a factor which gives the fraction of excited elec-
trons going into the state of asymmetric momentum.
(ii) The time the electron needs to return under the
local fieM and to neutralize the disturbance depends
on the bulk conductivity of the crystal and. is given
by

'rr=+o~/e & ~

where p. is the mobility in the conduction band, +p
the mean-free path of the emitted electrons, and
z the dielectric constant of the specimen.

In case v', & v'„the charge disturbance is being
neutralized before the next electron is emitted.
The entire process then essentially involves one
single particle building up a dipole and returning
again to the impurity. This process does not con-
tribute to the BPVE as mentioned above, as the
carrier does not separate from the impurity which
is necessary for contributing to the direct external
current.

I et us now consider the case where 7, & 7'„,i.e.,
the "returning time" of electrons is larger than the
time interval between emissions. In this case
there is still some part of the dipole left by the
time the next electron is being emitted. We then
obtain a stationary nonequilibrium state which will
be shown in Sec. IV to carry external direct cur-
rent.

at time t is p(x, t) whose time dependence is gov-
erned by Smoluchowski's equation of diffusion. '

= div[p, Ep(x, t)+D gradp(X, t)]

+Q(x) -R(x) .
(This equation is obt'ained from the more familiar
Fokker-Planck equation in the large damping case
when local thermal equilibrium is established in-
stantaneously). Here D is the diffusion constant
which depends on the mobility through Einstein's
relation

D=p, kT.

E is the local electric field, Q(x) is the local rate
of generation, and R(x) of recombination of car-
riers. Generation and recombination contain inter-
band parts and contributions from the impurity.
We wi11 at present not consider the interband parts
assuming that the carrier lifetime with respect to
bulk electron-hole recombination is long as com-
pared to the time constant of the processes under
consideration. This assumption allows again for
omitting the continuity equation for the holes and
correspondingly we only take into account the im-
purity contributions in Q(x) and R(x).

Q(x) is the number of photoexcited electrons ar-
riving directly from the impurity at point x via the
asymmetric process. R(x) describes the "refil-
ling" of the ionized impurity. The values of Q(x)
and R(x) depend on the local environments of the
impurity and require knowledge of the continuum
states Eq. (6). Figure 3 shows the qualitative be-
havior of Q and R along the c axis in the vicinity
of an impurity at z;. Recombi. nation is only ap-
~preciable within the range of the localized wave func-
tion of the impurity. Photogeneration Q is asym-
metric and its main peak is in the forward direc-
tion and lies in the distance of the mean-free path
of the emitted carriers Ap.

1V. MOTION OF CARRIERS

Taking account of the fact that the substances un-
der consideration have low mobility we use a dif-
fusion-type formalism for describing the motion
of the carriers. For simplicity we assume that
only electrons contribute to the BPVE and that the
holes are practically immobile. There is some
reason to believe that the valence bands consisting
primarily of oxygen orbitals are rather narrow. If
in a particular case this assumption is not valid,
then the following arguments remain quite the same
apart from the fact that the corresponding equations
for holes must be included.

The probability of finding an electron at point x

4'(z-z, )

z+h,

FIG. 3. Rates for trapping of photoelectrons Q(z) and
of recombination A(z) in the vicinity of an impurity at
z&. The symbols are explained in the text.
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&g(x, f) = (e'/c&0) [p(x, f) —p), (15)

where p is the carrier density in the neutral bulk
and & its dielectric constant.

Assuming that the system is in local thermal
equilibrium we may introduce the electrochemical
potential y(x, f) which is connected to the density
by the relation

The local electric field E in (12) is connected to
the charge disturbance by Poisson's equation and
introducing the potential function

E(x) = -Vq(x), (14)

we have

1
R(z) = — dxdyR(x) . (23)

Here F is some large surface perpendicular to the
c axis. Equations (21) and (22) are coupled differ-
ential equations of one single variable and may in
principle be solved numerically for any given R(z)
and Q(z).

An analytical solution may be found if we assume
that the range of all emitted carriers is the same
and that recombination at the impurities is strictly
local. This means that we approximate R(z) and

Q(z) by

p(x f) =p e-8(e(%, t)-g!(x, t)3
7

(16)

where 8=(kT) '.
The condition for a stationary state of (12) is

(1/e) divj (x) -Q(x)+R(x) =0, (17) Q(z)=q Z6(z -«-Ao),
(24)

where we have introduced the local current

3 (x) = zp p (x) gr ad% (x) ~ (18)

d 2~A

(e-Bf e(s)-4(e)3
& s(e 0&0)--

dz' 0
(22)

where we have introduced the averaged emission
and recombination rates

1
Q(z) = — dxdy Q(x)F

Inserting (16) and (18) into (15) and (1V) we obtain
the two coupled nonlinear differential equations

div[p poe ~ ~'"' ~+"gradqr(x)]-Q(x)+R(x) =0, (19)

n!I!(x) (e2/ ) ( 8[0(z) Ill(x)3 e-8(v 0) ) (20)

for the unknown functions y(x) and g(x), where (y
—g), is the difference of these functions in the un-
disturbed bulk.

Equations (19) and (20) cannot be solved as such
as Q and R depend on the statistical impurity dis-
tributions and are thus random functions. The ran-
domness itself has, however, no intrinsic conse-
quer. ces for the effect studied. As we are only in-
ter-ested in its qualitative features, we may assume
for mathematical convenience a regular distribu-
tion, thereby retaining the local character of the
wave functions. Moreover it is clear from sym-
metry reasons that all currents perpendicular to
the c axis compensate. We may thus make the usu-
al approximation of semiconductor transport and
neglect fluctuations of the electric and electro-
chemical potentials perpendicular to the external
current. Integrating. Eqs. (19) and (20) over these
directions we obtain

dz PP,e! s&e(g) e(g» ~-—Q-(z)+R(z) =0, (21)

as indicated jn Fig. 3, where A, is the range of the
emitted photoelectrons and z; is the coordinate of
the ith impurity along the c axis. There are now
two distinct regions which we label A for the range
over which the photoelectrons travel before being
randomized, i.e., from eachz~ to z;+A, and B for
the range from there to the next impurity. Inside
these regions there is no generation or recombin-
ation and we have from (1V) j(z) =j = const and from
Eq. (18)

eSE(p (g)-4(g) 3

dz 8p po
(25)

jz -j~=eQ
(26)

which is the condition for conservation of the par-
ticle number.

For all practical purposes we have to do with
large gap materials so that p is very small and
thus

d'g/Cz' = 0 (2V)

and we may take approximately g(z) = P = const.
This assumption corresponds to taking 7'„~in
Eq. (11). It has been checked numerically and is
found to be a good approximation for reasonable
values of the parameters.

From the definition of the currents we see im-
mediately that j~ is the external current while in
regions we have the backflow j„=js-eQwithin

Integrating Eq. (17) over the intervals [z; -&,z;+ z]
and [z&+A, -e„z,+A, +e] and taking the limit z-0'
we obtl.n



ELECTRON TRANSPORT IN THE BULK PHOTOVOLTAIC EFFECT 1591

the 1ocal dipole. It should be emphasized that we
are always treating a stationary case and that this
dipole is therefore constant in time.

V. SHORT-CIRCUIT CASE

9 Q(~}+ 12) V &}(~( 11) '

From Eqs. (30)-(32}we obtain

e ""}}"'= eQ6s;/ep, p, + e "'& "'

and inserting this into (33}gives

(34)

ds eP, Pp g[y(g) Q(g) l8
dp

which has the solution

(28)

y(~) =g ——ln — +e-B((p-4)
g 8PPp

(29)

cp being the function value at some arbitrarily cho-
sen z =0. As in Sec. IV we separate the range be-
tween the impurities into sections A and B, where
js=J is the external current and j„=J-eQ
Therefore,

In the short-circuit ease the boundary values of
9&(z) are equal at both ends of the specimen y(a~)
=ye and from (2V) we have }1&(z)=}I&=const. 9& being
a continuous function of z and all impurities being
equivalent in this case, we also have y =yp exactly
twice between each two adjacent impurities along
the c axis. In Fig. 4(a} this is shown schematically
for the ith impurity with y(z; —&I,) = (}&(z;+&i,) = y, .
It should be emphasized that this shape of y though
it has some apparent similarity to the band bending
of the model discussed in Ref. 10 is an entirely dif-
ferent physical situation. In our case the bands,
whose shape is given by }1&(z) are flat according to
Eq. (2V).

Inverting Eq. (25) we obtain

J= eQ}1./(n, +(I.) .
From the above definition and from Fig. 4(a) we
see immediately that g, +q, = —,'c, where c is the
mean distance between the impurities along the c
axis and &i, =-, A,. Q is according to (23) and (24)
the average excitation efficiency at z =a&. Intro-
ducing a and 5 as the mean impurity separations
perpendicular to the c axis and Q, as the excitation
efficiency per impurity we obtain

J„=eQp A (36)

where p, ,= (abc) ' is the concentration of "active"
impurities. We see thus that the external short-
circuit current only depends on the photoexeitation
efficiency and range of the active impurities. It
does, however, not depend on the conductivity of
the specimen. This result as well as the linear de-
pendence on concentration of Eq. (36) is in agree-
ment with experiment. "

There may be additional contributions to the ex-
ternal current due to an asymmetry of recombin-
ation and to asymmetric scattering. These effects
depend on the configuration of the impurities and
are not being discussed here.

VI. OPEN-END CASE

1
9 (~)=4 ——htA

g
1

(z) =g ——lnB p

(J —eQ)8z q(g,„q&

~V Pp

+ &-8(&B-(I&)

8P.Pp

Continuity of y requires

~~(~;)=v.(~;),

(30)

(32)

In the open-end case the external current van-
ishes. Outside the range of the direct motion of
the photoelectrons we have thus je = 0 and from (19)
d}»/dz =0. For the regions A between impurity and
target we have from Eq. (26) j„=eg, and taking .

again g(z) =P= const we have

e}}(e(e&-( &

d8 PPp
(37)

y(z}
(a) This situation is shown in Fig. 4(b). The potential

difference &y generated in stationary state at z;
becomes

gi 'Ap dz-
dg

' (38)

y(z)

I

z; zf A,
I l

I

z z+A,
} In Eq. (37) (ep, p,) ' exp(8[(p(z} —g]) is the local re-

sistivity which depends through ((& (s) on the particle
density. Averaging this over the current carrying
region we obtain the mean resistivity

FIG. 4. Electrochemical potential ~}( between two im-
purities along the c axis (a) in the short-circuit case and
(b) for open ends.

g~+Ap
dg FBI:{p(g)-4l

0' gP Pp Ap

which is the reciprocal of the normal bulk photo-
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conductivity. Inserting (39) into (38) we obtain

&9 =eQ&./o.
The saturation field E, = &y/c is then

E,= ega @co,
and with (36) we find finally

E,=J,Jo .'

(40)

(43)

Saturation field and short-circuit current are thus
connected by a relat&on of the type of Ohm's law
where the proportionality constant is the photocon-
ductivity. This result is confirmed by experiment.

VII. SUMMARY

The problems in understanding the transport pro-
cesses leading to the bulk photovoltaic effect are
twofold (i) photoelectrons must somehow acciuire
a spontaneous momentum, and (ii) the electrons
must continue their motion in the preferred direc-
tion over macroscopic distances in order to gen-

crate a direct electric current.
The requirement for momentum imbalance vio-

lates time-reversal symmetry. This was dis-
cussed in Sec. D and it was shown that impurity or
defect states allow for the BPVE while it is impos-
sible in bands of pure Bloch states. With respect
to the second point mentioned above the problem
lies in explaining the fact that the excited electron
separates from the impurity and keeps on moving
in the preferred direction in spite of scattering and
even against a macroscopic fieM.

Using a diffusion formalism we showed in Secs.
IV-VI that there exists a stationary state in which
only part of the emitted electrons Qow back to the
impurities while the rest experiences a driving
force along the c axis from the gradient of the
electrochemical potential.
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