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Conductivity of inhomogeneous materials: Effective-medium theory
with dipole-dipole interaction
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%'e extend the old effective-medium theory, originally due to Bruggeman, by incorporating dipole-dipole
interactions to account for local-field effects. The interactions are represented approximately by use of effective
depolarization factors. For close-packed clusters of conducting regions, a description which is appropriate at
the percolation threshold, we predict an onset of percolation processes when 15.6 vol%%uo is conducting. This is
in very good agreement with numerical simulations as well as with experimental data for the metal-insulator
transitions in metal-ammonia solutions and in alkali-tungsten bronzes.

I. INTRODUCTION

In this article we present an improved effective-
medium theory for the conductivity of a micro-
scopically inhomogeneous material. Essentially
we extend the old formulation, originally due to
Bruggeman, ' by explicitly incorporating dipole-
dipole interactions to account for near-field ef-
fects. The modified theory will be seen to stand
in very good agreement with numerical results
simulating a percolative conductivity, as well as
with experimental data pertaining to continuous
metal-insulator transitions.

The strategy underlying the usual effective-me-
dium theory' ' (EMT) is to consider a typical ele-

'

ment of the disordered system which is embedded
in an effective medium, whose properties are to
be determined self-consistently. To achieve this
one solves for the exact local field around the ele-
ment and imposes the condition that the fluctua-
tions of this local field about its effective value
should average out. The self-consistency require-
ment is then sufficient to specify the effective me-
dium. Representing the disordered material as a
p.ixture of conducting and insulating spheres it can
be seen' ' that the EMT predicts an onset of con-
ductivity when the concentration of Conducting ma-
terial is —„i.e., the theory gives a percolation
threshold' at a critical concentration

EMT

Another, and at first sight rather different, ap-
proach to the conductivity of an inhomogeneous
medium is to start with a lattice and connect neigh-
boring nodes one by one with resistors which are
placed according to some statistical prescription.
Extensive numerical studies by Kirkpatrick' dem-
onstrated that the percolation threshold for ran .

domly distributed resistors on a simple cubic lat-
tice occurred at C* = 0.25. This result is not im
mediately applicable to a disordered material,
though, as a real system. must be characterized by
Percolations on a continuum rather than on a dis-
crete lattice of any specific type. Such a contin-
uous-percolation problem can be considered as
the limit of site or bond percolation on any lattice
as the correlations on adjacent sites or bonds are
increased. Among the most pertinent computa-
tions for the continuous-percolation situation are
those by Skal et a/. ,

' who studied the percolation
probability' "for a particular random potential
in a cubic lattice with site correlation extending
up to third-nearest neighbors. Asymptotically
they obtained

C* = 0.17

for the percolation threshold. This result is re-
produced in the numerical work by Webman, Jort-
ner, and Cohen, "who investigated bond correla-
tion up to second order. The above value of C* is
also in keeping with the empirical finding by Scher
and Zallen, " that for three-dimensional regular
lattices one has C *= FP, = 0.15+ 0.02, where I is
the packing fraction for spheres forming a lattice
and P, is the critical site concentration for the
same lattice.

We then have to reconcile that the accurate nu-
merical computations yield a percolation threshold
gvhich is much smaller than the value from the
simPle EMT. Several attempts to extend the EMT
have been made: Probably the most thorough is by
Hori and Yonezawa" who employed diagrammatic
representation up to high. orders in a perturbation
expansion and were able to derive upper and lower
bounds on the percolative conductivity for a sim-
ple cubic lattice. In the low-concentration limits
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a "cluSter EMT" can be worked out exactly, as
shown recently by Bernasconi and Wiesmann";
this should accurately represent percolations on a
continuum but unfortunately their "cluster EMT*'

can be justified theoretically only in the limit of
very small concentration of either constituent in
the inhomogeneous medium. Very recently it has
also been suggested by Davidson and Tinkham"
that the old and well-established EMT should be
abandoned in favor of a purely phenomenological
amalgamation of percolation theory and the notions
behind the effective-medium concept. To our mind
the latter appr oach is too, drastic, and in this paper
we present an improved effective-medium theory,
where we account for dipole-dipole interactions
within clusters of conducting inclusions by intro-
ducing effective depolarization factors. This novel
extended effective-medium theory (here called
EMTDD), which we formulated in another' context
in a previous paper, " is outlined in Sec. II below.
In Sec. III we compare this EMTDD with earlier
theories and with numerical data, and demonstrate
that it simulates accurately the onset of a percola-
tive conductivity. As shown in Sec. IV there is
also a satisfactory correspondence with experi-
mental conductivity results on metal-ammonia so-
lutions and on alkali-tungsten bronzes. The main
results are summarized in Sec. V.

II. EFFECTIVE-MEDIUM THEORY

P =CE(o -F)/(o +2o). (2)

The rest of the two-phase medium is regarded as
spheres of conductivity o„(for convenience taken
to be smaller than o) embedded likewise in an ef-
fective medium of conductivity o.. Their polariza-
tion is then

P = (1 —C)E(o —o)/(o + 2F).

The effective-medium condition is equivalent to
stating' that the net polarization should vanish,

P+ P =0.

Bg this relation we obtain" for spheres

~C n + (1 —C )(o „—F}/(o + 2F) = 0,

A physically very transparent derivation of the
EMT was given by Landauer. ' Following his line
of reasoning we consider a spherical inclusion of
conductivity e, which is embedded j.n an effective
medium described by o. The dipole moment for a
sphere of radius r is

Er'(o —F)/(o + 2F),

where E is the far field. If the volume fraction C
is occupied by such spheres their polarization is

where a can be written

o. = (o -o')/[ o + —,'(o -F)] .
Hence a is proportional to the polarizability for a
sphere (having a depolarization factor —,'). As we
discussed in a previous paper" the generalization
to randomly oriented ellipsoids is

] ~ 0-0'
3~ o+L;(o-o)'

where the L, 's denote the appropriate triplet of de-
polarization factors which, in its turn, is governed
by the ratios between the axes of the ellipsoid.
Clearly, the latter definition of an effective medi-
um is nonsymmetric in the two constituents.

Equation (7} inserted into Eq. (5) gives a pos-
sibility to discuss the conductivity of nonspherical
inclusions. Alternatively, an(f more important
for our present discussion, exactly the same form-
alism is amenable to a treatment of dipole-dipole
interactions among neighboring spherical inclu-
sions. Such a coupling may be insignificant when
the concentration of either component in a mixture
is small, provided the conducting particles have a
possibility of being well separated. " However, as
the amounts of the two components become in-
creasingly comparable it is obvious that clustering
of the conducting regions will become more and
more important, until the cluster size eventually
diverges at the percolation threshold C*, where a
conducting path opens up throughout a sample of
unbounded extension. This clustering is not ac-
counted for by the simple EMT, which is the rea-
son for its failure to describe the percolation
threshold properly.

Physically, it is clear that the electric field
entering the expressions for the polarization of
the two components [Eqs. (2) and (3)] is not equal
to the far field in the case of spheres which are
surrounded by other spheres, but that local-field
effects can be significant, or, in other words, that
multipole coupling must be considered explicitly.
The most important of these interactions, namely
dipole-dipole coupling, was studied lately by Clippe,
Kvrard, and Lueas, "who calculated the reso-
nance frequency for sever3tl geometrically well
determined configurations of identical touching
spheres from a dipole-dipole interaction Hamilton-
ian. As we discussed decently" it is possible to
represent their computed resonance frequencies
by one triplet of effective depolarization fac-
tors, "" L~&, pertaining to each of the geometrical
configurations, These quantities replace the L

&

's
in the expression for the polarizability, i.e., in
Eq. (7). An asterisk has been'added to the symbol
for the depolarization factors to signify that the
effective depolarization factors are, in a sense,



I556
I

C. G. GRANQVIST AND O. HUNDERI 18

TABLE I. Equivalent depolarization factors for dif-
ferent geometrical configurations of identical touching
spheres as extracted from Ref. 18.

Geometrical configuration

Equivalent depolarization
factor

L

Single sphere

Single-strand chain
fcc lattice

0.133 0.435
0.0865 0.0865

0.435
0.827

fictitious quantities which are not related to any
deviations from a spherical shape. Table I con-
tains L~&

's for the two most pertinent configura-
tions considered in Ref. 18, viz. , infinite linear
single-strand chains and close-packed (fcc) clus-
ters; for comparison the values for independent
spheres have been included. Formally, the linear
chain is seen to behave like a prolate spheroid,
whereas the fcc cluster, formally, acts like an
oblate spheroid.

To make the significance of the L* s clear we
contemplate spherical conducting inclusions in an
insulating matrix. When C is small we have L*, = —",

as, in general, the conducting regions are widely
apart. However, when C increases the dipole-di-
pole coupling becomes more manifest and it is then
more meaningful to regard the specimen as con
sisting of nonintexacting aggregates of spheres
These aggregates can be thought of as the "funda-
mental particles" to which we apply Bruggerpan's
theory. A schematic (two dimensional) represen-
tation of our conceptual model for the inhomoge-
neous medium is given in Fig. 1. At C* (which we
know to occur at approx. 17 vol% of conducting
material) infinite aggregates form, and then the
L*; 's for close-packed spheres should be most ap-
propriate. Somewhere in the interval 0& C &0.17
it is reasonable to assume that the two phase ma-
terial is best characterized by linear chains. Two
points are worth making: (i) in general, the ef-
fective depolarization factors are concentration
dependent; but, (ii) over a large concentration
range, from the percolation threshold and up to
C =1, the L~&'s for close-packed clusters should
constitute a good approximation for the dipole-
dipole interactions.

Before concluding this section we remark that
the old EMT is a mean-field theory for which the
self-consistency requirement implies that the in-
teractions among the inclusions are accounted for
only in so far as they can be represented by a con-
stant far field, whereas, as we pointed out above,
all local-field effects are neglected. Our present
approach, where we incorporate dipole-dipole in-

teractions via effective depolarization factors
should then lead to some overestimation of the
coupling at least when C is not very small. Qn the
other hand, the L~&'s do not include higher-order
multipole-multipole couplings like quadrupole or
octupole terms, which may also play some role
for neighboring spheres. Physically, we expect
the double counting of the dipole-dipole interac-
tions as well as the omission of higher multipoles
to be rather unimportant effects in our "local-
field approach" to the dipole-dipole coupling in
the EMTDD. Furthermore, these two factors
counteract one another, which strengthens our
contention that by use of the effective depolariza-
tion factors, one obtains a good representation
of the local-field effects for the pertinent geo-
metrical configurations in the two-phase media.

III. COMPARISON WITH EARLIER THEORIES AND WITH

INUMERICAL RESULTS

From Eqs. (5) and (7) it can be seen that the
largest depolarization factor determines the on-
set of conductivity, and hence dipole-dipole inter-
action will alzeays displace the percolation thresh-
old towards lower concentrations of conducting
material. Figure 2 shows calculations of effective
conductivities for our EMTDD with L~& 's appropri-
ate to linear chains and to close-packed clusters.
The results apply to the "pure" percolation case
for which o =0. It can be seen that o is zero up
to a certain percolation threshold given by

0.271 (chains),
0.156 (clusters),

FIG. 1. Two-dimensional representation of our con-
ceptual model for a disordered two-phase medium. The
conducting regions (circles) are taken to be aggregated
into noninteracting clusters of a well-characterized
configurations —here close packed. -A triplet of effec-
tive depolarization factors approximates the local-field
effects within each cluster.
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where the latter value stands in excellent agree-
ment with the result C* = 0.17 obtained from nu-
merical studies'" simulating percolations on a
continuum. For comparison the o -vs-C relation
for the simple EMT is also contained in the fig-
ure; it can be expressed as'

FEG. 2. Normalized effective conductivity vs concen-
tration of conducting material as calculated from our
effective-medium theory with dipole-dipole interaction
(EMTDD) using the L,*. 's of Table I to represent spheres
aggregated into infinite linear chains or close-packed
clusters. Results are shown for the old effective-
medium theory (EMT; cf. Refs. 1-6) as expressed by
Eg. (8). The eireles denote correlated bond percolation
on a simple cubic lattice as extracted from Ref. 3; the
predicted percolation threshold of C*=0.103+ 0.1 is
probably somewhat too low for the continuous-percola-
tion situation.

The EMTDD and EMT are investigated close to
C* |n the log-log plot of Fig. 3. For the EMT
one finds a linear relation with slope unity as pre-
dicted by Eq. (8). Sufficiently near the percola-
tion threshold the EMTDQ also yields a straight
line with

yEMTl)D yEMT

as can be inferred already from the structure of
the effective-medium equations [Eqs. (5) and (7)1.
This reflects the simplification in assigning only
one triplet of L*, 's to the complex structure of
conducting regions at the percolation threshold.
By use of a distribution of effective depolarization
factors one can, in principle, obtain yF„T„„&1;
however this involves an unwarranted complication
to the effective-medium approach.

Evidently, none of the effective-medium theories
properly accounts for the critical behavior at C*,
but even so the fact that the right magnitude of the
percolation threshold is reproduced proves that
the EMTDD for clusters represents a significant
improvement over the simple EMT. With this in
mind it is interesting to compare our EMTDD with
other extensions of the EMT. Recently Bernasconi
and Wiesmann" (BW) used the correspondence of
the effective-medium formalism and the disordered
Heisenberg ferromagnet to derive "cluster exten-
sions" of the KMT, which should be exact in the
low-concentration limit. In their case of corre-
lated bond percolation, which is most appropriate
for our purposes, they found

a =1 ORr(C —.Cg~) for C ~ C~~~,

with

i.e., by a straight line. At C~ 0.7 the EMTDD is
found to be practically indistinguishable from the
EMT. The circles in Fig. 2 denote Kirkpatrick's'
numerical data for site correlated bond percolation
networks with a three-dimensional simple cubic
lattice. It is immediately clear that the results
are very similar to the EMTDD for close-packed
clusters, as expected from our considerations in
Sec. II above.

It is of interest to study the behavior of the a-
vs-C relations in the immediate vicinity of the
percolation threshold, because there the numerical
data of Kirkpatrick' and of Webman, Jortner, and
Cohen" can be expressed as

&Y=Ao(C -C*)& for Ca C*,

where A and y are constants.
The exponent in the power law is given by"'"

y= 1.6.

1.0

0.5

0.1

0.05

0.01

0.01 . 0.05 Q.I

C —C
0.5

FIG. 3. Log-log plot of normalized effective conduc-
tivity vs concentration of conducting material exceeding
the value at the percolation threshold. Results are
shown for the EMTDD, with L,*. 's given in Table I, as
well as for the old ZMT.
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FIG. 4. Normalized effective conductivity vs concen-
tration as obtained from the EMTDD with L,*. ' s appro-
priate to close-packed spheres (cf. Table I), from the
theory by Bernasconi and Wiesmann (BW) given in Ref.
13 Icf. Eq. (10)], from the phenomenological equations
by Davidson and Tinkham (DT) given in Bef. 14 Icf. Eq.
(12)] and, finally, from the simple EMT. Excepting the
ZMT the theories predict very similar percolation
thresholds.

C„*~= 0.157.

Thus the BW theory yields a percolation threshold
which is practically identical with our CF„T» for
clusters. Also the exponent in the power law [cf.
Eq. (9)] is the same as for the other effective-med-
ium theories. From its derivation Eq. (10) should
hold only for small C, but due to the good agree-
ment with numerical data, ' BW suggested that it
could be used for C ~ ~; above this limit the sim-
ple EMT was taken to describe the effective con-
ductivity. The dashed line in Fig. 4 represents the
BW theory. Comparing with the EMTDD for clust-
ers (solid curve) it is seen that the two approaches
give very similar results for the entire c7-vs-C re-
lation. This, we believe, explains the apparent
success of Eq. (10) for nondilute two-phase media.

The previously mentioned failure of the EMT to
give the correct percolation threshold recently led
Davidson and Tinkham" (DT) to propose two purely
phenomenological equations for the conductivity of
microscopically inhomogeneous mater ials. These .

were constructed, in the spirit of Pade approxima-
tions, to satisfy the percolation result for the
threshold while resembling the EMT far from the
critical region. For spherical inclusions DT sug-
gested that the, effective conductivity could be ac-
curately described by

cr (1+3C)j(1 —6C) for 0&C& —,', (ll)
o~~(6C —1)/(5 —3C) for ~ &C & 1. (12)

~ ~~It is seen that the percolation threshold, taken to
be

0.5

0.05

I ) II ) I ) I ) I ) I ) I ) I i I

0.01

4 80 0.2 0 0.6 0.
C

FIG. 5. Normalized effective conductivity vs concen-
tration as obtained from the KMTDD with L,*-'s appro-
priate to close-packed spheres (cf. Table I), from the
simple EMT', from the phenomenological equations by
Davidson and Tinkham (DT) given in Bef. 14 [cf. Eq. (12)]
and from the numerical simulation of a percolative con-
ductivity with second-order bond correlation due to
Webman, Jortner, and Cohen (WJC) given in Ref. 10.

1.0

CpT: 6 0 16Vp

is a critical point where Eqs. (11) and (12) diverge
in opposite directions. This unphysical behavior
is of course not encountered in the pure percolation
case, for which the effective conductivity, as ob-
tained from Eq. (12), is plotted in Fig. 4 (dash-
dotted curve). The DT model is seen to yield an
appreciably more concave a-vs-C relation than
predicted from the EMTDD or BW theories. It
should also be noticed that in the limit C = 1 the
DT model gives a steeper variation than any of the
effective-medium theories.

Sensitive tests of the various theories for the
conductivity of inhomogeneous media can be car:-
ried out if we consider situations for which a 0.
In Fig. 5 we plot results from the numerical simu-
lation by Webman, Jortner, and Cohen" appropri-
ate to second-order bond correlation with o /o
=10 '. The computer data are seen to fall in be-
tween the curves for the EM TDD with L~& 's per-
taining to close-packed clusters and the EMT,
although the approximation given by the EMTDD
seems to be superior around the percolation
threshold. For comparison we have also included
in Fig. 5 results from the phenomenological DT
equations. The aforementioned divergence at C~~T
= —,

' is clearly observed, and the overall agreement
with the numerical simulation is unsatisfactory.

A comparison with numerical simulations" is
also given in Fig. 6, where we have plotted data
for o„/o =10 '. Results are shown for nearest-
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FIG. 6. Normalized effective conductivity vs concen-
tration as obtained from the KMTDD with L& s appro-
priate to close-packed clusters and to infinite linear
chains (cf. Table I), from the simple KMT and from the
numerical simulation of a percolative conductivity due
to Webman, Jortner, and Cohen (WJC) given in Ref. 10.
Results for their "model A" (nearest-neighbor bond cor-
relation) and "model C" (second-order bond correlation)
are denoted by triangles and circles, respectively. The
low-concentration regime (shaded area) is shown on a
magnified scale in the inset.

neighbor bond correlation (triangles) and second-
order bond correlation (circles); the latter model
should most accurately represent percolations on
a continuum. A comparison with the EMTDD for
clusters yields a very good agreement with the
circles around the percolation threshold, whereas
the fit to the EMTDD for chains and to the simple
EMT becomes progressively worse. The inset
displays the low-concentration results, showing
that the numerical data drop below the solid curve
representing the EMTDD for clusters. This be-
havior is expected, as in this limit the clustering
is less pronounced, so that the EMT should be
appropr iate.

IV. COMPARISON WITH EXPERIMENTAL DATA

The very satisfactory agreement between the
EMTDD and the numerical results, which were
found in the preceding seCtion, . motivates a com-
parison also with experimental data. In this con-
nection it should be stressed that our treatment
applies to spherical conducting inclusions which
are touching, so that their electrical fields inter-
act strongly, but are not in metallic' contact. For
the latter situation it might be appropriate to rep-
resent the connected parts by ellipsoids which
short circuit certain portions of the samples.
However, we have chosen not to pursue this further
complication of the effective-medium concept, be-

g =(M —2-,')/6-,' for 2-,'&M&9, (13)

with M in MPM. Using this scale for C the con-
ductivity data for Li-NH, at 223 K and for Na-NH,
at 240 K have been plotted in Figs. V(a) and V(b).
The cu(rves in the figures were obtained from the
EMT and from the EMTDD with effective depolar-
ization factors chosen to represent close-packed
spheres and infinite linear chains of spheres (cf.
Table I). As in Ref. 23 we take a /o =1.2x10 ' for
Li-NH, and o„/o =2.4x10 ' for Na-NH, . It is ob-
vious that the EMTDD for clusters gives by far
the best description of both metal-ammonia solu-
tions, whereas in particular the simple EMT fails
to predict the right percolation threshold. For
both sets of data it is found that the solid curves
consistently overshoot the experimental results,
in particular, at concentrations around 0.3-0.4.
This kind of behavior, which is manifest at C & 0.5
even for the EMT, was noticed also by Jortner
and Cohen, "who ascribed it to boundary scattering
of the conduction electrons within the metalliclike
inclusions,

Our second example of a metal-insulator tran-
sition is provided by the alkali-tungsten bronzes,
QzWO„where the alkali metal Q at 0&X& 1 oc-
cupies a simple cubic sublattice. According to the
view expressed in Ref. 10 the interstitial alkali
atoms have a nonrandom distribution and tend to
form metallic regions. The concentration of the
metallic component in the two phase medium is
given simply by C =X. In Fig. 8 we have plotted

cause it does not seem necessary for understanding
the experimental results. In this section we will
discuss the electrical conductivity of metal-am-
monia solutions and alkali-tungsten bronzes.
Throughout the discussion we will rely on the ex-
tensive compilations of experimental results given
in Refs. 10 and 23.

In a recent article Jortner and Qohen ' analyzed
in great detail the properties of metal-ammonia
solutions in the intermediate concentration range.
Their main conclusion was that the metallic prop-
agation regime was separated from a nonmetallic
regime by a microscopically inhomogeneous in-
terval where the concentration fluctuates around
either of two well-defined values M, and M, . The
limits of the inhomogeneous range for Li-NH, and

Na-NH, solutions were determined to be Mp 23
mole% metal (MPM) and M, = 9 MPM from mea-
surements of electrical conductivity, Hall-effect,
paramagnetic susceptibility, and concentration-
fluctuation data based on small-angle x-ray scat-
tering, neutron scattering, and determinations of
the chemical potential. The above results yield
the concentration of the metallic component ac-
cording to"
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experimental conductivity data fbr this class of
materials and compared with calculated results
for the EMTDD and the EMT. Clearly the circles
fall in between the curves representing the
EMTDD fog close-packed clusters and the simple
EMT. A very accurate agreement is not to be ex-
pected as the value of o /o, which was set equal
to 10 in Fig. 8, is uncertain and might actually
be somewhat smaller, " in which case the corre-
spondence with the solid curve becomes better.
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FIG. 7. Data points denote experimental results, as
compiled in Ref. 23, (a) for Li-NH3 solutions at 223 K
and (b) for Na-NH3 solutions at 240 K. The curves repre-
sent the normalized effective conductivity vs concen-
tration as obtained from the EMT and from the EMTDD
with L, ,*-' s appropriate to close-packed clusters and to
infinite linear chains (cf. Table I). The shown values of
the ratios 0 /0 were used in the theories.

10

In treating the averaged electric field in a
microscopically inhomogeneous material it is
customary to set the contribution from the individ-
ual inclusions (dipoles) inside a Lorentz cavity
equal to zero. However, this view cannot be main-
taineQ near a percolation threshold due to tQe sig-
nificant clustering of conducting and nonconducting
regions. To obtain an approximate description of
this complex situation we have in this article ex-
tended the old effective-medium theory' ' by in-

C:

FIG. 8. Data points denote experimental results, as
compiled in Ref. 10, for alkali-tungsten bronzes at
300 K. . The curves represent the normalized effective
conductivity vs concentration as obtained from the EMT
and the KMTDD with I.; ' s appropriate to close-packed
clusters and to infinite linear chains (cf. Table g.

corporating dipole-dipole interactions locally.
These are represented by use of effective depolar-
ization factors. In the case of close-packed clust-
ers of conducting regions, which is appropriate at
the percolation threshold, we predict an onset of
percolative conductivity at C* = 15.6 vol%. This is
in very good agreement with numerical simula-
tions as well as with experimental data for the
metal-insulator transitions in metal-ammonia so-
lutions and in alkali-tungsten bronzes. It would
also have been possible to discuss the conductivity
of tetrathiofu&valene-tetracyanoquinodimethane'
(known as TTF-TCNQ) and of vapor-quenched
germanium —noble-metal compounds" in a similar
fashion. Around the percolation threshold our re-
sults resemble, and to some extent justify, a sim-
ple relation for the conductivity given by Bernasco-
ni and Wiesmann. " For spherical conducting in-
clusions we demonstrate that our novel effective-
medium theory is superior to the phenomenological
equations recently proposed by Davidson and Tink-
ham. '4 "

Exactly the same formalism as the one we use
to describe dipole-dipole coupling can also be ap-
plied to noninteracting ellipsoidal conducting in-
clusions and, via a straightforward generalization
of Eqs. (5)-(V), to treat the effect of a distribution
of conductivities among the inclusions (for example
caused by boundary scattering in conducting re-
gions of different size). 'For the latter case we
substitute C~-g,. C,. o&, and o-o, , where o,. is the
conductivity of regions whose volume fraction is
C, . It is also possible to discuss anisotropic sys-
tems"; thus prolate spheroids aligned with their
major axes parallel with the field direction, to take
one example, can be described by letting their
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'
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