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Renormalization-group approach for critical percolation behavior in two dimensions

Yoshio Yuge

(Received 6 December 1977)

A renormalization-group approach using a scaling transformation in real space is applied to the critical
behavior of two-dimensional percolation systems. In various approximations for the triangular-site lattice and
the squar'e-bond lattice, the location of the fixed point and the correlation-length exponent are calculated by
determining the behavior of the probabilities under a scale transformation. The fixed points for all
approximations for the two lattices are found to be in complete agreement with known exact results for the
critical percolation probability.

INTRODUCTION

Critical percolation behavior has been studied
recently by renormalization-group approaches. " '
%e present a new method of renormalization-
group approach. for calculating the critical be-
havior of two-di. mensional percolating systems
using a scaling procedure in real space. The
method is applied to the triangular-site lattice
and the square-bond lattice and gives good results
for the correlation-length index v by a linearized
transformation about the fixed point. The fixed
points for these two lattices are in complete agree-
ment with known exact results' for the critical
percolation probability P, = ~.

If the elements (sites or bonds) in the original
lattice are independently occupied with probability
P, which in the case of the elements will scale
into a transformed probability P' of a single ele-
ment on the new lattice and will. determine the
scaling relatlGQship of the transformation via

TRIANGULAR LATTICE

Pour-cluster approximation

The original triangular lattice of Fig. 1(a) is'
scaled into the new lattice of Fig. 1(b) with a
scale factor b = 2: the original cluster-group
sites 1-4 (2 x 2 sites) scales into a single site I
with new probability P'. The transformed proba-
bility P' is defined as the probability that the
cluster group is conductive when it is sandwiched
between two plane electrodes A. and & made of
perfect conductors. The combinations of paths
contributing to the transformed probability dis-
tribution under the transformation are shown in

V V V V V

p' =ft(p) .

Then a fixed pol. nt p i.s determined by

p~ =Jt(p:&).

A Qontrlvlal fixed point gives an approxl. matkon

for the critical percolation probability P,.
The linear'. zed form A' of the renormalization-

group transformation near the fixed point has
eigenvalues Xq with A, , & I & A, The correlation
length index v is then given by

Q
l /'fj

where A is the change in length scale.
Cluster approximations for the triangular site

and for the square-bond lattices will be worked
out for an original cluster group consisting of
four, nine, and sixteen elements (sites or bonds).
%'e discuss each approximation for the two lattices
separatel. y.
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FIG. 1. Transformation of the triangular-site lattice:
{a) original lattice; (b) the transformed lattice; vyith
scale factor b =2.
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p' = 20p' —12p' —30p' —20p'+ 45p'+100p' —66P'"

300p" + 520P" —36OPL3+120P" —16P".

Pl P4 4P (1-P) 3P (1-P)

Since transformation (8), when linearized about
its fixed point P* =-„has the eigenvalue A.,
=2.3486, we obtain v=1.6236.

FIG. 2. Combinations of paths conducting between two
plane electrodes A and B. Each black site with full
lines and each white site with broken lines represent
sites occupied with probability p and 1 -p, respectively.

Fig. 2. In that diagram, each conducting, site has
been connected with full lines; the white sites
connected with broken lines represent insulating
sites.

The sum of the probabilities p» of these graphs
gives the transformed P' as

p'=Z p =3p'-2p',

where the fixed-point value of P is found to be
1
2 (5)

This result for P~ is in complete agreement with
the known exact value' for the critical percolation
probability of the triangular-site lattice. Trans-
formation (4) has an eigenvalue X, =-,. Thus the
correlation length index v is given by

v = 1.7095. (6)

Nine-cluster approximation

As in the four-cluster approximation, the proba-
bility P of 3 x 3 sites connections on the original
lattice transforms into the probability P' for
connection between two plane electrodes. Con-
sidering the possible connections and combining
their probabilities using the exclusion-inclusion
principle, we can obtain the probability of the
single site on new lattices as

SQUARE LATTICE

Similar calculations may be carried out for the
square bond lattice using the corresponding trans-
form ations.

p'=-'(p', +p'. ) ='-p'- &p'. (9)

This transformation is equivalent to Eq. (5) for
the four-ct. uster approximation on the triangular
lattice. Similarly we can obtain the fixed point
P =

& which is known to be-exact value' of the
critical percolation probability for the square bond
lattice. The eigenvalue of the scaling transforma-
tion (9) ls A, = g, from which we find v = 0.8548.

Pour-cluster approximation

Consider the transformation of the square lattice
by the scale factor 5 =v 3 obtained by rotating the
axes by -&m. The transformation is illustrated in
Fig. 3, in which two types of the basic scaling
procedure are dispj. ayed, These illustrate the
on).y procedures that scale into a new lattice with-
out destroying the symmetry of lattice. I et P,'
and p,' denote the transformed probabilities for
the two basic illustrations shown in Figs. 3(a)
and (b), respectively. The transformed p' is then
defined from their arithDletlc IHean namely

P' = 8P' —6P4 —6P'+12p' —9p'+ 2p'.

The fixed-point value is again P* = &. This gives
an eigenvalue X, =1.9453 and putting 5 =3 in (3),

'

we find v=1.6510.

Sixteen-cluster approximation

The 16 sites are arranged in a diamond shape
forming a 4 && 4 lattice. In a similar way, we can
obtain the transformed probability p' from com-
binations of paths conducting between two plane
electrodes. The result is

FIG. 3. Transformation of the square-bond lattice by
the scale factor b =~2, showing the cluster group of
four bonds sandwiched-between two plane electrodes A
and B . The two illustrations represent the only pro-
cedures that scale into the new lattice with preservation
of the symmetry of the lattice. The transformed prob-
ability is defined from the arithmetic xnean of. the prob-
abllltles fol these two scallngs,
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TABLE I. Results of cluster approximations.

I

FIG. 4. Transformation
for a cluster group of
3x 3 bonds. The scale
factor is b =3/v 2.

No. of
elements

Triangular-s ite lat tice

2 ~2 1.7095

1.9453

2.3486

1.6 510

1.6236

Square-bond lattice

2

2

Scale Correlation Fixed
factor Eigenvalue length index point

Nine-cluster approximation

Only the simple system of nine bonds with proba-
bility p is illustrated in Fig. 4. From the connec-
tions of 3 & 3 bonds between two plane electrodes,
the scaling transformation of the probability P'
is obtained and the result is equivalent to Eq.
(7). The fixed point value is p~ =-, for the square
lattice. This gives an eigenvat. ue X, =1.9453, and,
substituting 5 =3/v 2 into (3), we find v =1.1302.

Sixteen-cluster approximation

A more intricate scaling transformation is pos-
sible using the original cluster group shown in
Fig. 5. For this cluster approximation, there are
also only two types of basic scaling procedure of
the cluster group consisting of 16 bonds. The
arithmetic mean of the transformed probabilities
for those scalings gives the transformed proba-
bility

p' = 21p' —18p' —16p' —36p'+ 54p'+ 98p' —66p"

OPPI + 520Pi2 360P~ + 120P' —16P'~ (1P)

which has the fixed point P~ = &. From the corres-
ponding eigenvalue A., =2.3408 and the scale factor
b = 2&2, we obtain the correlation length index
v = 1.2225.

%e have treated the various approximations for

FIG. 5. Transformation of the square-bond lattice
with b =2&2. Two basic scaling procedures for the
cluster group consisting of 16 bonds are illustrated.

v2

3/v 2

2&2

1.9453

2.3408

0.8548

1.1302

1.2225

the critical behavior of two-dimensional perco-
lating systems for two lattices by a renormaliza-
tion-group approach. The results for the eigen-
value A,„ the fixed point P*, and the correlation
length index v of all the transformations are sum-
marized in Table I.

The most remarkable feature is that the non-
trivial fixed points of all these approximations are
in complete agreement with known exact results'
for the critical percolation probability p, of the
triangular site and the square bond lattices. Note
that the fixed points for both lattices have the
same value & for all three cases of the present
cluster approximation. This suggests that this
renormalization-group transformation will always
give the same fixed point even if the cluster group
becomes still bigger.

The approximate critical exponent for the triangu-
lar lattice becomes smaller as the scale factor 5 be-
comes larger. In contrast, the approximate crit-
ical exponent of square lattice becomes larger as
the scale factor becomes larger. The increase
and decrease of the critical-exponent estimates
are nearly linear in b"' within these cluster
approximations. If we assume the linear depen-
dence of vonb 'for large 5, we canestimate a value
of the correlation length index for b- ~; this
yields v =1.595 for the triangular lattice and v
=1.348 for the square lattice. The result for the
critical exponent v of square lattice for the 4 & 4
cluster approximation is in good agreement with
the value 1.34+0.02.' The estimated value v
=1.348 foI b ~ is also in excellent agreement
with this value; for the triangular site lattice
these are in fair agreement with the result' "
1.34 +0.05 obtained by the scaling relation.

Any bond-percolation problem is equivalent to
a site problem on the corresponding covering
lattice. '" Since the present scaling transforma-
tions for the triangular site and the square bond
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lattices have almost the -same symmetry and

eigenvalues and the same fixed points, some criti-
cal percolation behavior of the square bond prob-
lem can be described in terms of the triangular
site problem. Similarly, we can expect to analyze
the site problem on the kagom6 lattice by writing
it as a bond problem on the honeycomb lattice,
using an adequate scaling transformation in real
space.

The present genorrnalization-group approach to
the site and bond problems has been shown to give
the exact results for the critical percolation
probability. We now describe a method for con-
structing adequate clusters and preserving the
symmetry of the lattice. In all the transforma-
tions, the elements (sites or bonds) which form
the original cluster group are arranged in diamond
shape with side length equal. to the scale factor.
Generally, the elements must be constructed in
convex polygon shape with side length equal to
the scale factor and having symmetry with respect

to diagonals. Suppose that the original cluster
group based on such a polygon is sandwiched be-
tween two plane electrodes made of perfect con-
ductors. Then the transformed probability is
determined as the prebability that the cluster group
is conductive. We will note that the original clus-
ter group with elements of sites or bonds rescales
into the new l.attice without destroying the sym-
metry of lattice. Thus the renormalization-group
transformation should be so scaled that the trans-
formed parameter has the symmetry for the lat-
tice. Finally, we mention that the present pro-
cedure for employing the renormalization-group
approach should be very promising for the study
of other critical percolation behavior.

I
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