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Random-bond Ising chain in a magnetic fieM at lo~ temperatures
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The low-temperature behavior(T (& h, J) of a random-bond Ising chain in a magnetic field is considered
[Jf = —(1/2)JX T, rr, rr, +, —h Xo;,o; = + 1, ( T, j is a fixed random sequence of numbers +1 and —1 with
concentrations c, and c, = 1 —c„respectively]. The ground-state energy Es, magnetization p,s and zero-
point entropy So are calculated exactly. It is shoen that p,o and So are discontinuous functions of magnetic
field having jumps at h = Jln, n = 1,2,....

I. INTRODUCTION

Melting of heteropolymers is described by a
one-dimensional two-component random Ising mod-
el. Similar models are used for disordered lin-
ear magnetic systems and for ferromagnetic or
antiferremagnetic linear systems in a random
magnetic field. Also, it is hoped that such models
will help us to understand more complicated prob-
lems with higher dimensionality. For these rea-
sons random Ising chains have been a subject of
interest over the last decade. ' "

A random Ising model does not allow an exact
solution" (except for the special casess~ when the
magnetic field vanishes or when the chain breaks
up into uncoupled segments). The problem can be
reduced to an integral or functional equation
which has to be solved numerically. "'" There
are also several approximate analytic calcula-
tions"" "for the case h, T«J [see Eqs. (1) and

(2)j. In the present paper the low-temperature
limit (T«h, J) is studied analytically.

The specific model to be considered is an Ising
chain with random ferromagnetic and antiferro-
magnetic bonds (of equal strength) in a magnetic
field. The Hamiltonian for this system is

H= -s JQ Tt (rt trt i —hQ trt, (1)

where J; h&0, o, =el, tT; f is a fixed random se-
quence of numbers +1 aod -1 with concentrations
c, and c,=1 —cy respectively. Let o, =7', be the
ground state of the system' at A=0, so that T,v', v„,
=+1 for all i. Introducing new spin variables as
o, =v', o'; we get

1 (,
xp T I,'- J g tr, tr„,+ ft

t t j
(4)

and L is the number of links in the chain. (In this
paper we assume L- ~.) At low temperatures
(T«1's, J) we can write

E=Ec-TSc+O(e e" r), (5)

since there iy a finite gap of order h or J between
the ground state and the first excited state (except
for the case when lJ -nh s T with n =1,2, . . .).
Here Ec=L ' min(H) is the, ground-state energy
and SO=L, 'lnD is the entropy at T=O, D is the
degeneracy of the ground state. We shall calculate
Eo and So exactly using the method developed in
Refs. 12-15. The magnetization is then found from

. t' &E)

In the general case, the sequence (r,) is not
r'andom: there is a correlation between the neigh-
boring links. I.et s«» be the probability that v„,
=+1 if v, =+I, Ni» the probability that v, „=+I if
v&= -1, etc. Then it is easily understood that zviy

=to»=e, and w»=so»=c, . (Note that the only case
when the sequence (rtf is random is c,=c,=0.5.)

Hamiltonians (1) and (2) are equivalent to
each other. However, it proves more convenient
to work with Eq. (2), and we shall use this form
of the Hamiltonian in all calculations below.

The free energy (per link) for our system is
given by

P=-I i TlnZ,
where

8= -~s JQ tr. 0't ~t —It Q 'rt trt . (2

This Hamiltonian represents a ferromagnet in a
magnetic field statistically changing along the
chain (a similar model is used for heteropolymer
melting).

We shall see that at T=0 the magnetization po is a
discontinuous function of the magnetic field. (In
agreement with Refs. 7 and 18, where numerical
calculations have been used) p, c(It) has jumps at
k= J/n, where n=1, 2, . . . . The density of
jumps becomes infinite as h-0. The zero-point
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entropy S0 has jumps at the same values of k.
This gives rise to a phenomenon similar to the
magnetic cooling.

II. GENERAL FORMULAS

The ground state of the Hamiltonian (2) is a se-
quence of sections with cr=+1 and 0 = -1. %e shall
call them u sections and d sections, respectively.
By definition, u sections neighbor with d sections
on both sides and vice versa. If we want to talk
about parts of u and d sections, we shall call them
u and d segments, respectively.

Let i = p& and i = v& be the beginning and the end
of the jth u section. The necessary conditions for
the points p.

&
and v& are easily formulated" "in

terms of the functions

n(M) =

and

n(M, M') -=n(M)-n(M').

If (p. , v) is a u section, then (a) n (ii, v) & N, where
N = J/li, (b) it h-as no segments with n & -N inside
it, and (c) n ( p, ) ~ n (M) ~ n ( v) for p &M & v. If
{p,, v) is a d section, then, (a') n (p, v) ~ N, {b') it-
has no segments with n&N inside it, and (c') n ( p)
& n (M) & n {v) for ii & M & v. One can easily verify
that any violation of these conditions increases the
energy of the system.

The conditions (a)-(c') are illustrated by Fig. 1
where n is plotted as function of M. (The origins
for n and M can be chosen arbitrarily. ) We have
d segments to the left of p,, and to the right of v,
and a u segment (yo, vi). Segments (p„p,,) and

( v„v,) can be u segments or d segments as well.
Thus, we have four possible choices of au sec-
tion: (ii„v,), (p„v,), (p„v,), and (p,„v,), This
rrieans that the ground state-is degenerate.

According to the discussion in Sec. I,

q=c, P q =c,(1 —q,) ', p"=(2c,) 'p . (10)
if= 0

Each u section has a segment of type p on its
left, then m, segments of type q„a segment of
type p', then m segments of type q, m, 'segments
of type qo, and finally a segment of type p (mo,
m, and m, are arbitrary positive integers). The
probability that an arbitrarily chosen link of the
chain is the beginning of such section equals

At

p(mo&m&mo)=p p p'qo 'q qo '.
The energy difference between the u and d states
of such section (including the surface energy) is

68(m)=-2h(m+ 6N),

where

5N=[N]-N+1.
The ground-state energy can now be written

(12)

the graph of n(M) can be thought of as represent-
ing a "Brownian motion" of a fictitious particle, .

nplaying the role of coordinate and M the role of
time. The particle makes a step in the same di-
rection as its previous step with probability c, and
in the opposite direction with probability c„c,+ c,
= 1. The ground state energy ~0 and zero-point
entropy S0 can be expressed in terms of the prob-
abilities of certain trajectories of such a particle.

I et us denote p'(p; p; q; qo; qo) the proba-
bility that the particle, starting from the point
n=0 will for the first time get to the point n&[N]
(n& -[N]; n& -[N]; n=1; n=0; n=0) without
leaving the domain 1 ~ n ~ [N] (-1& n & -[N]; -1
& n& -[N]; 0& n& -[N]; -1 &n& -[N]; 1-n- [N]),
the last step before the particle starts being down

(up; any; up; up; down). Here [N] denotes the
whole part of N and we assume that N & [N ]. Note
that our definitions of probabilities are different
from those in Hefs. 12-15. It is easily seen that

qo=qo p =p p +qo=co

E, =E + g P g P(m„m, m, )cks(m),
fff0 0 yff "-0 m0u0

where E. is the energy (per link) of the chain with
all spins down (o, = -1):

E = oJ + L 'k Q -'rg = -o J .
i

(15)

p- ) p$ I ~ I I I p I

V( Vp

FIG. 1. Jypical graph of the function+ (I) for a sec-
tion of the chain. Division of this section into segments
of types p, qo, etc. , is shown by dashed lie.es.

In the last equation we made use of the fact that
Z v) = 0. C}mitting the unimportant additive con-
stant --, J and using Egs. (9) and (10) we get

E.=-2IiP (p )'(l-q. ) (I-q) [q+(I -q)»].
(16)
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Similarly, the entropy at T = 0 can be expressed
as

A, = c,/c„A, =B[N],

B=e,' c,'(1+c, [N]) ',
(26}

I'(m„m, m ) ln[(m +1)(m +1)]
nr0 W mO

=2p (p )2(1 —q} (1 —qo) . Q qo in(ll'+1). (17)
KeQ

Thus, the problem results in calculation of the
probabilities p, p, q, and qo.

III. CALCULATION OF PROBABILITIES

Calculation of the probability q results in the
problem of Brownian motion of a particle be-
tween two absorbing boundaries: n= 1 and n
= -[N ] -1. Corresponding equations are"

and

q=e, (1+p20}=(c,+c, [N])/(1+c2[N]) . (27)

The probabQities qo, p, and p" can be found
from Eqs. (9) and (10):

q, = c,' [N] /(c, + c, [N] ), p = c,c,/(c, + c,[N] ),

P =c,/2(c, +c, [N]). (28)

IV. RESULTS

Substituting Eqs. (27) and (28) in Eqs. (16) and
(17) we get

1 14, n el''ll l, n+ +l-c2'YN-le++i ~ '

Ns&
—C19 N 1B& 1 2qg 1B~

(18)
and

c,c,J —c,(1+2c,[N])h
("+"»J)(1".[N] }

with boundary conditions

P~ 0 =0, 4'u, iv) -0-
and initial conditions

(19)

(21)

Introducing

$0 „=0, $0 „=60„. (20)

Here Q„' „(p2 „) is the probability that at "time",
M the particle has "coordinate" n, its last step
being down (up). q is given by

C1 C2
So

( [ J )2 qo ln( x+ 1) (30)

where qo is given by Eq. (28) and N= J/h. Note
that Eq. (30) becomes ambiguous when h& J and

q, = 0. However, from the derivation of Eq. (17)
it is obvious that in this case So= 0. Since So van-
ishes at h-0 (So-h2), it must have a maximum in
the interval 0&&&J.

It is easily verified that E, is a continuous func-
tion of h, while its derivative BE,/Bh and the en-
tropy S, have jumps at h=J/n with 'n=1, 2, 3, . . . .

(22)

y'„=c, y„'„+c,y'„„(-[N]-1&n &-2), (23a)
I

p'„=c, p2„,+ c, P'„, (-[N]+ 1 - n ~ 1), (23b)

1I 2 —P ply 2

iM-'"1

and summing Eqs. (18}and (19) over M from PI
=1 to infinity, we get a system of equations for

ls2 ~

8

0 I 140 240 2&
1 1 2 (23c) Fo

0.5—
y'„=0 (m~0), (23d)

$„=0 (n ~ -[N]) . (23e)

The general solution of Eqs. (23a) and (23b) is

P'„=A, +Bn
(-[N] - n- -1),

p„'=A2+ Bn

where A„A„and B are constants and

(24)

I

IO l5

c, (A, -A2) =B.
From Eqs. (23c)-(23e) we find

(26)
PEG. 2. Ground-state magnetization po as a function

of the magnetic field k; c~=c2=0.5.
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FIG. 3. Zero-point entropy 80 as a function of the
magnetic field h; c f cp P.5.

The density of jumps becomes infinite as h-0.
For all values of h other than h =J/n, BSO/B h = 0
and Eq. (6) gives

BE c,(l + 2c, [N])

(c,+ c,[N])(l+ q, [N])
(31)

At small h, p0=2c, h/c, J. If c,=c,=0.5, Eq. (31)
becomes particularly simple

p,,=2([X]+2}-', c,=c,=0.5.

This expression is in a quantitative agreementap
with the numerical calculation of Ref. 18. The
graphs of p, (h) and S,(h) are given in Figs. 2 and
3 for the case c,=c,=0.5.

Equations (30) and (31) are not valid in the vicin-
ity of points h= J/n where

~
J- nh

~
~ T and Eq.

(5) is no longer a good approximation for E. At
small but finite temperatures the vertical jumps
of p, p and Sp will be smoothed with a characteristic
width 5h - T/n - Th/J.

V. DISCUSSION

(j) The unusual behavior of magnetization and
entropy shown in Figs. 2 and 3 allows a simple
explanation. Formation of a u section requires~ V
energy Ee = 2(J- nh), where n =Z, .„v,, i = p, and

i = v are the beginning and the end of the section.
[Similarly, 6 c =2(J+nh) for a d section. ] Obvi-
ously, n is an integer. New I sections appear in
the ground state when bc=0, i.e., J-nb=0. This
means that the magnetization changes by leaps at
h= J/n.

As it was shown in Sec. II, the boundaries of the
p sections are not uniquely determined, i.e., the
ground state is degenerate. If we start from &=0
when the ground state is unique and So= 0 (strictly
speaking, the ground state is doubly degenerate),
and increase the magnetic field, new d and u sec-
tions appear, the degeneracy of the ground state
increases and the entropy grows. However, it is
easily understood from Fig. 1 that increase in A,

leads to a decrease in the degeneracy associated
with already existing sections [segments of type

q, split into u and d segments at h= J/n, where n
is the maximal variation of n (M) in the segment],
The first process dominates at small h and the
second at h- J. At h&J all the spins are aligned
with the magnetic field, the ground state is non-
degenerate and Sp =0.

(ii) A random-bond Ising chain studied in this
paper exhibits a phenomenon similar to the mag-
netic cooling. Let S ( T) be the entropy associated
with nonmagnetic degrees of freedom (which are
absent in our model), e.g. , vibrations. The total
entropy is then given by S=S(h)+S(T) [We as-.
sume that T«h, J, and the temperature depen-
dence of S(h) can be neglected. ] If the system is
thermally isolated and we change the magnetic
field adiabatically, the total entropy must remain
constant, and we get AS= -4 S. If 6 S&0, the tem-
perature must decrease: T, & T, . A difficulty
arises if the initial temperature is very low, so
that S ( T,) & 6S. In this case one ean speculate
that to thermalize the system, we have to introduce
some interactions (which can be very small) al-
lowing transitions between various ground states.
These interactions will remove the degeneracy,
the characteristic splitting being of order 6 (the
strength of the interaction). If T drops lower
than b, , Eq. (30) for the entropy is no longer cor-
rect and the paradox does not arise.

(iii) Equations (29) and (30) with c, =c,=0.5 hold
for the case of a ferromagnetic chain in a random
magnetic field described by Hamiltonian (2).
Magnetization in this case is equal to zero. [Equa-
tion (32) does not hold since y,, is not equal to

B S,/B h. ]
(iv) It should be noted that a discontinuous de-

pendence of p, o on h is not a specific property of
the one-dimensional random system studied in
this paper, but rather a general feature of dis-
ordered Ising systems with arbitrary dimension-
ality and with finite-range interactions. Above
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some critical value of h (corresponding to flipping
of one spin in the most energetically unfavorable
configuration) all the spins are aligned with the
magnetic field. Below this value the magnetiza-
tion changes by jumps corresponding to flipping
of several spins. The density of jumps becomes
infinite as k 0.

Note added in Proof: Puma and Fernandez"
have demonstrated that at J/k =n with n = 1, 2, . . .
the zero-point entropy has special values S,(n)
which are greater than S,(n —0) and S,(n+0). For
J/h 4n, the numerical calculations of Puma and
Fernandez agree with the results of the present

paper. I am grateful to Dr. Fernandez for sending
me his paper before publication and for his re-
marks which h'elped me to eliminate a numerical
error in the paper.
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