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The case of a magnetic field parallel to a step junction characterizing an interface is analyzed theoretically.
Comparison is made between this "transverse-field" geometry and the usual "longitudinal-field" geometry for
which the applied magnetic field is perpendicular to the interface. For the transverse-field configuration, the
energy eigenstates and eigenfunctions are obtained exactly. They depend on three quantum numbers: (i) p,
the particle momentum parallel to the field, (ii) p„measurjng the distance between the center of the charge-
carrier oscillation and the interface, and (iii) n the Landau-level label. Different regimes are examined as a
function of the step potential height with special emphasis on the case where the center of oscillation is on
the interface (p = 0). For this case, selection rules for magneto-optical absorption predict strong harmonics
especially for high potential steps. Reference is made to rare experimental data. The energy levels and wave
functions of an electron in a uniform magnetic field can also be obtained by means of a transfer-matrix
technique for an arbitrary set of step potentials.

I. INTRODUCTION

During the last decades an increasing amount of
work has been invested in the study of physical
systems such as semiconductor or metal surfaces,
p-n semiconductor junctions and related topolo-
gies. Due to their complexity, the system proper-
ties have to be described in terms of approximate
models. The usual approach starts with a choice
between either solving approximately an involved
model containing much of the details of the real
system or solving exactly a simplified model
containing its qualitative features only. In the
present paper, the latter approach will be con-
sidered for studying the effects of a magnetic field
on energy states at an interface, and for con-
sidering the possibility of their detection by cyclo-
tron- resonance experiments.

Applied magnetic fields are standard experimen-
tal constraints' used to investigate the Fermi
surface of metals and the bottom (top) of the con-
duction (valence) band in semiconductors.
Parameters such as band masses and the non-
parabolicity of the band have been often studied
using the data provided by cyclotron-resonance
experiments.

After such successful application in semicon-
ductors and metals, one conjectures that this
powerful technique (i.e., magnetic quantization)
can be used to study other systems, such as Sur-
faces or junctions. "' Few examples of such ex-
periments have been reported so far. '+' In
most cases, the magnetic field has been di-
rected along the direction of the potential gradi-
ent ("longitudinal field" ), i.e., perpendicular to
the interface. ' ' A few experiments' "with the
field parallel to the interface have been reported.
For the former configuration, the electron inter-

acts with the potential step only through the trans-
1ational part of its helicoidal motion along the
magnetic field, except when the presence of the
interface induces variations in the transverse
(parallel to the surface) potential. This is the
case, for instance, when the interface considered
presents some irregularities or when a band
bending occurs. Several papers by Ando have
appeared on this subject. " The case of surface
roughness will be discussed by us elsewhere. ~4

It appears from such works that the cyclotron
resonance variation in the lorigitudinal-geld geom-
etry does not seem to be directly connected to
the height of the potential step but rather to the
number and distribution of the traps lying near the
interface and to the gradient of potential perpen-
dicular to the interface. '4 On the other hand,
another range of information can be provided by
the transverse field configu-ration. In this case,
where the magnetic field is parallel to the inter-
face, hence perpendicular to the potentia1. gradient,
it is easy to visualize that the orbiting electron
now strongly and directly interacts with the po-
tential jump.

In a first approximation, one can consider the
interface potential variation to be described by a
step discontinuity. For example, at a semi-
conductor or metallic surface, this discontinuity
can represent the energy difference between the
vacuum and the Fermi level inside the material.
Similarly, such a discontinuity corresponds to
the energy difference between the energy levels in
the P and n regions at an appreciable distance of
the junction. It is known that such a junction can
be better described in terms of an asymmetric
barrier potential (Fig. I), the height and width of
which can, in principle, be adjusted by doping.

. Here, therefore, we treat the limiting case of
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a heterojunction where the only energy discon-
tinuity arises from conduction band discontinuity.
Models with other profiles can often be qualita-.
tively discussed along the lines of our calculation
by using appropriate values for their heterojunc-
tion characteristics.

We realize nevertheless the limitation of our
model, as an interface description. Furthermore
we neglect all scattering mechanisms, and do not
consider limitations due to finite-penetration
depth. Scattering mechanisms associated with
the interface itself could introduce some non-negli-
gible damping and relaxation indeed. In particular,
they could play an important role in reducing the
sharpness of the cyclotron resonance main peak
and harmonics which we calculate in the following
sections. However, even with an elementary
model such as a step barrier, the following theo-
retical investigation can already shed some light
on data interpretation for a real experiment.

The rather academic st@p potential model can be
rightly;modified to be much more appropriate
physically, and much more useful, in describing
the thin repeated- heterostructure fabricated by
molecular-beam epitaxy. " The one-dimensional
regular Kronig-Penney model in a magnetic field
is quite appropriate here, beside being an in-
teresting exercise in elementary quantum mechan-
ics. The results can only be numerical, and can
be easily obtained by some- skilled calculator.
More realistic and complicated physical conditions
(e.g., random Kronig-Penney model in a mag-
netic field) can also be calculated later.

The magnetic-field-step-discontinuity model
solved in the present paper describes the system
as an isolated particle moving in a one-dimension-
al step potential placed in a uniform magnetic
field. The following calculation is equivalent to
solving exactly the one-dimensional harmonic
oscillator problem with a step discontinuity. This
model is given in more detail in Sec. II, where the
exact eigenstates and eigenvalues are obtained and

discussed for particular cases. In Appendix A, a
perturbation treatment for a shallow discontinuity
is given. In Sec. III, exact results are obtained
for the optical absorption of the morsel described
in Sec. II. The Transfer matrix method in a uni-
form field is treated in Appendix B. A brief dis-
cussioti ean be found in Sec. IV.

II, EXACT SOLUTION

Let the potential be a constant V, (zero) on the
right (left) of the plane x = 0, and B be the mag-
nitude of a uniform constant magnetic field applied
along the z direction (Fig. 2).

Such a geometry where B is perpendicular to the
direction of the "potential gradient" is for the
purpose of this work the most interesting one since
it allows the particle orbit to cross the plane of
potential discontinuity. Hence this particle is a
good system for testing the characteristics of both
regions.

In the Landau gauge, the vector potential is
chosen to be A=B(0,x, 0). The Hamiltonian of
a particle in the total potential is then given by

p„' [p„—(eB/c)xj' P',
2m 2m 2m

where e(x) is the Heaviside step function.
After performing a unitary transformation of

the Hamiltonian S 'HS, with S = exp[ -f(cP„/eB)P„],
the new Hamiltonian is the sum of three terms:
(i) a harmonic-oscillator Hamiltonian along the
x axis, (ii) a free-particle kinetic energy along
the z axis, and (iii) a, shifted step potential at
the point x, =-cP /eB.

In making this transformation x, becomes simply
the distance between the step and the center of the
classical orbit described by the particle in the
constant magnetic field. This distance is a con-
stant of the motion.

At this point, it is more convenient to use re-

ity

y{xj

FEG. 1. p-n junction with doped interface region (shad-
owed region) considered as a single-step discontinuity.

FIG. 2. Geometry of the problem: a step discontinuity
eo in the potential energy of the particle takes place on
the plane x=0. A uniform magnetic field B is applied in
a plane perpendicular to the x axis and defines the s axis.
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duced units, where (a) lengths are expressed in
units of the cyclotron radius x, =(ff/2m~, )'~', (b)
masses in units of 2m; (c) time is written in units
of ~,', where m and &, are the particle mass and
cyclotron frequency eB/mc, respectively. In such
units, energy, and momentum are expressed in
units of $&o, and (2mlu, )'~'.
Since [p„,lf ] =[p„rf] = 0, the wave function 4 (r)

can readily be written as the product of plane
waves along y and z direction times a function
m(x) which satisfies the following equation:

[p„' +-,' x'+ U(x)] au(x) =en)(x), (2)

where & is related to the total energy E of the par-
ticle by e=E-p2 and U(x}=vo9(x+2p„). The po-
tential is drawn in Fig. 3. The Schr5dinger
equation (2) is solvable independently in regions
I and II joining at x = -gP„.

In each region, this equation has two linearly
independent solutions the so-called parabolic cylin-
der functions. " In region I (x&-2P, ) and region II
(x&-2p„), the solutions are, respectively,

gu i =AU(-f, x) +BV( e, x), - (3a)

(sb)aoqq = CU(-e+vo, x) +DV (-e +vo, x) .

-5 -4 -3 2
/

1

V

1 2

-2py

FIG. 3. Potential energy of the particle is shown as a
function of the distance of the center of the classical or-
bit with respect to the step junction. The plane x = -2p~
separates the space into regions I and H in which. har-
monic oscillator potentials differ by a constant vo. Re-
duced units are used.

However, all values of A. ,B,C, D are not.
allowed. They have to be such that cv(x) is a square
integrable function. Considering the asymptotic
behavior of the parabolic cylinder functions Eqs.
(19.4.2) and (19.4.3) of Ref. 16 one must keep only
the following expressions:

~, =[BF(-,' e)/v] U(-e, -x),

~g1 '= CU(-e +v» x) ~

(4a)

(4b)

Kg~ =CU (-s +v»x) q

where

(6a)

(6b)

,C 2 = U2 -e+vo, x dx

U2(-s +vo, -2p„)
U'(-e, 2p„)

U'(-e, x)dx .
(I)

There is, in principle, no difficulty in solving
(5}numerically or analytically for some values
of vo and p . Therefore, expression (6) canbe
evaluated exactly. However to obtain the normal-
ization C ' iS more difficult because there is no
general expression known for the integrals ap-
pearing in Eq. (7) except in a few special cases.

One of these cases arises when the orbit center
is pinned on the position of the step discontinuity
of the potential (p, =0). Another completely solv-
able situation corresponds to the case of very
high step potential (v, -~ ). The complete reso-
lution of these cases with respect to the energies
and the wave functions is illustrative of the way
the solutions behave in the general case.

The case P„=0 is an interesting nontrivial case
for which the general form of parabolic cylinder
functions are not explicitly needed. Equation (5)
can be rewritten in terms of F functions

r(, --, e) I (4 —g 6 gv+o}

1 .. 1
+

I"(l —l~) I'(l —le+-,' v, )

= 0. (8)

The energies & can be evaluated from this equa-
tion as a function of the potential step strength
vo. The results are displayed in Fig. 4.

which obey the requirement tv~ (x--~)=0 and
gggg (x oo}= 0

The usual matching conditions at —.2p, lead to an
homogeneous system of equations which produces
nontrivial solutions only if the following require-
ment is satisfied:

U (-4-1,2p, )U(-s +v„-2p„)
+U( s, 2p„)U(-s —1+v„-2p„)=0. (5)

This equation implicitly defines the eigenvalues of
the Hamiltonian. It is then possible to write a
closed form for the normalized wave function-
corresponding to the eigenvalue e(v»p„}, i.e.,

~, = C[U(-s+v„-2p, )/U(-e, 2p„)]U(-s, -x),
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A(x) =[4(-,'x+-,')-e(-,'x+ —,')]/r(x +-,'). (15)

0,2'.
15.2'.
L3,
2.

'

1 2 3 4 5 6 7 8 9
"o

I'IG. 4. Energy diagram versus the step amplitudee 0
for p~=o. Th@ levels move from g+ 2 to (Sg+&)+ ~ in
units of Se~ as eo increases from zero to infinity.

[(a)„+( a'+)„]/r(a n+) (ra +~n+)= ,0

where (a)„ is the Pochhammer symbol defined
equivalently by"

(10)

(a)„=a(a+1)(a+2)~ ~ ~ (a+n -1) . (11)

The poles of r(a+n} and r(a+n+ ~) are immediate
solutions of (10), which lead to the energy levels
shown by block dots in Fig. 4. On the other hand,

(a)„+(a+ —,')„=0 (12)

is an algebraic equation of degree n. The roots
calculated from (12) are indicated by squaxes in
Fjg, 4.

Starting from the general expression for the
wave function, Eq. (6}, with P„=O, one has

2-oo/2r (3 Ls )
co, (x)=C r„, '-, ', U(-e, -x),

~&@ —g ~+a vpj
(ISa)

Furthermore, a few special energy states can
be exactly obtained. First define

1 10 ~
Q

~ g E ~

Whenv0=2n (even integer), Eg. (20) has the simple
form

In this expression, 4 (x) is the logarithmic deriva-
tive of 1"(x).

To illustrate the behavior of the wave functions,
a few are shown in Figs. 5 and 6 for the ground
state and the first excited state, respectively. The
wave functions are calculated for v, =0 (harmonic-
oscillator problem), v0=1 or 2, and vo=~ (half-
harmonic os-cillator well}. It can be seen that
the wave function shifts toward the center of the
left well when v, increases. Its shape changes
from the wave function of the harmonic oscillator
e+-,'. state for q, =0 into the x-negative wave func-
tion of the harmonic-oscillator (2n+1)+-,' state for
vp =~. For such a condition, the wave function
vanishes identically for x positive. In this latter
case, half of the harmonic oscillator levels
"survive, " and are those corresponding to odd

'

parity states.
For intermediate values of v„ the wave func-

tion arises from a mixture of states. In particular,
when vo is an even integer, (see above} it can be
easily shown that the wave functions fall in two

categories: one for which the corresponding en-
ergy & is greater than vp; the other for which
& is smaller than vp.

In the first case, if e = l+ —,
' with l = vp, vp+ 1, vp

+2, . . . , the wave function in the left-hand side
well (x negative) is that of the I +-,' harmonic-
oscillator state and matches that of the l- v, +-,'
harmonic-oseillatr state at x =0. In the right-
hand side well (x positive), the wave function is
that of the l —vp+-,' harmonic-oscillator state.

The second category of wave functions does not
allow such a simple description, because in the
left-hand side well, energy states are not ex-
actly that of a harmonic oscillator. They belong
to the saturated part of the energy curves versus
v, {see Fig. 4). In the right-hand side well,
wave functions are naturally damped.

The next interesting special case is that of
an infinitely large step height vp for an arbitrary
orbit center.

In this limit, the eigenfunctions are

u„(x ) —CU(-c+ v„x),
with C,

'-' expressed as"

C '=2 '/Vm A(-e+ vo)

( r (g 2 s + 8 V 0)

with A(x} given by

(13b)

(14)

co, (x) - U(-e(P, ), -x); + (( (x) = 0 .
The matching condition is readily found to be

s/&(-2P, ) =o

The roots of U(-e, +2p„) remain to be found.
Some (marked by a. b&ack dot in Fig. 7) are those
of Hermite polynomials. On the other hand, the
asymptotic behavior of U(a, x) for x- -~ implies that
the values of a for which U(a, x) vanishes in that limit
approach n —&. Such an asymptotic behavior is
easily seen on Fig. 7 and admits of a simple
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-5 -4 -3 -2 -1 0 1 2 3 4 x

FIG. 5. Evolution of the ground state wave function
ze(x) as vp increases from zero to infinity, in the case
p =0. The n =0 oscillator state for vp=0 moves toward
the n= 1 oscillator state (defined only for x& 0 when vp
tends to infinity).

interpretation in terms of the step .discontinuity
motion toward the left (p, -~) or the right

(p, --~). The motion of the oscillation center
and the energy level position are interpreted
similarly: when p„ is very large, the potential
vreQ is narrow and high with respect to the har-
monic-oscillator ground state and hence, energy
levels have a high value.

When P, decreases (P, -O and further --~) the
potential well looks more and more similar to
that of a harmonic oscillator, thereby explaining
the asymptotic value of e(P, }.

Possible extensions of our work are suggested.
It would be interesting to consider (i) different
band masses on each side of the interface; (ii) an
asymmetrical step barrier (thus with three dif-
ferent band masses), better characterizing usual
junctions. Extensions toward tunneling experi«
ments would follow (iii) the regular Kronig-
Penney model in a magnetic field; (iv) the in-
finite linear chain disorder, ed Kronig-Penney
model in a magnetic field; and (v) the finite chain

) w(xI

FIG. 6. Evolution of the first excited state for v p vary-
ing from zeio. to infinity for p&= 0. The wave function for
vp=2, e.g. , is built from the n = 0 oscillator state for x
positive matched to the n =2 oscillator state for negative
abscis sas.

-1.5 -1.0 -.5 0 .5 15 2.0
Py

'

FIG. 7. Dispersion relation e'(P~) in the limiting ease
vp oo, The black dots correspond to energies e =n + 2

and are given by&& „/4 2 where&& „(@=1,2, ...,+) are the
zeros of the n-degree Hermite polynomial. The satura-
tion obtained for p~ -~ corresponds to simple Landau

levels when the center of the classical orbit is far from
the step discontinuity.

1.0

for models (iii) and (iv}.
In order to solve these problems, the transfer-

matrix technique is the most appropriate. This is
only an extension of the present work. The gen-
eral procedure is established in Appendix B.

III. OPTICAL TRANSITIONS

In the preceding sections the exact eigenstates
and corresponding energies have been dei. ived.
From these, the physical properties of the sys-
tem can be easily obtained. As an example one
may examine features of the optical process in
such a system.

The absorption spectrum of a system with a
step potential is the superposition of '. an ab-
sorption taking place far inside the solid, in the
$ow-potential region, 2 an absorption of light by the
particles orbiting near the step, and' an absorption
by particles moving in the high-potential region.
These cases correspond, in our formalism, to
the conditions P, «0, P, = 0, P„»0, respectively.
More generally, knowing the absorption coef-
ficient for a fixed value of P, , one can deduce the
whole absorption spectrum arising from the spatial
distribution of the orbit centers by a mere con-
volution. Only P, =0 will be explicitly treated here
because of its experimental interest. At the end
of the section some argument will be given in
order to predict the distortion due to a given dis-
tribution of orbit centers.

As can easily be understood, the absorption due

to particles in the high-potential region is small,
since, at the low temperatures required to ob-
tain sharp cyclotron lines, these states are not
populated. This is strongly justified in real sys-
tems, where the magnetic energy h~ is generally

t
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small compared to the step amplitude for practi-
cally accessible magnetic field strengths and
actual values of effective masses.

For these conditions, the only cases which re-
main to be considered are these corresponding to
p, «0 and It)„=0. The former is nothing more
than the "bulk" contribution which has been ex-
tensively studied in many .semiconductors.

This would lead to a strong absorption peak at
~ =v, if an active mode of the incident radiation
is selected. To illustrate the specific absorption
arising from the interaction of the orbiting elec-
tron with the potential wall, let us thus consider
the case p, =0.

At zero temperature and relatively weak in-
cident intensities the Fermi Golden Rule allows one
to calculate the absorption coefficient 1'(&o). Con-
sidering that all transitions start from the ground
state (P, =O; n=0), one writes

2

( )
18m n„n.

6Eel

10

(18)

where && and c, are, respectively, the final and
initial energy levels. Reduced units are used and,
in particular, the absorption coefficient is given
here in units of the inverse cyclotron radius ~p';
~„ is the fine-structure constant; n, is the carrier
concentration near the interface; and n is the re-
fractive index in the material.

In the case where the linear polarization is
directed along the magnetic field axis, the matrix
element (f I P, Ii) identically vanishes as soon as
the initial state is the state p, =0. No cyclotron
absorption is thus expected in the configuration
where the electric component of the radiation is
parallel to the steady magnetic field. This is iden-
tical to the ease of the "bulk" absorption.

The complete expression (18) can be computed
to obtain the relative peak strengths. They are
displayed in Fig. 8 for several values of v, at the
calculated positions of the absorption frequency in
the case where the polarization is perpendicular to
the interface. One clearly sees the rapid increase
of higher-order harmonics as vp increases. The
order of the dominant harmonies apparently de-
pends on. the value of v, in a rather complicated
way. Neverthelss, inspection of Fig. 8 indicates
that all important harmonics always lie in regions
near the frequencies (2n +1/2)K&u„which rep-
resent the saturation energies pointed out in Sec.
II.

This remark is more convincing when the v,
» 1 spectra are considered; it is less evident

FIG. 8. Position and relative strengths of the absorp-
tion peaks arising from allowed transitions at fixed field
for various values of the step amplitude vo. It can be
seen that the number of harmonies increases when' o
increases.

for vp& 1, where harmonics have a rather small
strength. Nevertheless, this information, added
to the fact that the strength of the shifted cyclo-
tron resonance peak is always very strong is
important for the data analysis and interpreta-
tion of the very structured spectrum predicted in
the configuration studied here.

The limitation for effectively observing these
transitions is twofold: first, condition p, =0 will
never be strictly achieved. Some distribution of
p„values around p, =0 is unavoidable because the
carrier orbit centers fluctuate near the interface
even though some strong driving force is imposed
in order to concentrate the carriers on the inter-
face.

This induces some line broadening provided
that the energy levels are p„dependent, due to the
variation of the potential.

However, it may be pointed out that, for high-
potential steps, energy separations ean be seen to
be almost always larger than R~, (see Fig. 4). No
important contribution to the absorption is thus
expected for hen& Sar, even in the case of a broad
distribution of orbit centers. The absorption line
will thenbe distorted, and will mainly broaden toward
high frequencies. The main line is thus expected
to be more or less asymmetrical depending on the
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actual orbit-center distribution.
Furthermore, all kinds of scattering processes

(involving impurities, phonons, etc. ) are respon-
sible for a broadening of the lines. The experi-
mental arrangement should 'then take into account
these effects: (a) by localizing as much as possible
the orbits near the interface (for instance by apply-
ing an electric field in y direction); and (b) by
searching for optimal conditions (low temperature,
high purity of the sample, good definition of the
interface).

On the other hand, one can suggest that the
polarization. direction of the incident radiation be
varied. It is easy to show that although the ma-
trix elements (f ~P„~i) and (f ~-—,'x ~i) are equal in
the limit v0=0, this will generally not be true in
the case v, t0. The change recorded in the spec-
trum going from q =(1,0, 0) to (0, 1,0) is spe-
cifically due only to the presence of the step po-
tential.

Furthermore, if one considers the nonactive
circular polarization q = (1,-i, 0)/v 2, no line
is expected in the spectrum when v, =0 (i.e. , in
the bulk). For v, 10 therefore, any observed
structure should be due only to absorptions by
carrier orbiting near the interface. For such an
experimental configuration, the spectrum is thus
highly sensitive to the presence of a potential
gr adient.

IV. CONCLUSION

In this paper, the behavior of a particle moving
in a uniform magnetic field and orbiting near a
potential step discontinuity is examined theo-
retically. The magnetic field is set up parallel
to the direction of the strong one-dimensional
potential gradient in contrast to the configuration
generally used so far in interface probing experi-
ments.

The problem can be treated easily. some results
are analytically obtained, other need some graph-
ical or numerical processing.

It is shown that the eigenstates for such a sys-
tem are described by three quantum riumbers: P, ,
which characterizes the particle momentum in
the magnetic field; P„which here is related to the
distance between the center of the classical orbit
and the step discontinuity; and n, which takes
positive integer values and characterizes the
generalized Landau level (P„and P, fixed). In the
framework of this model, optical abosrption selec-
tion rules and strength are predicted and dis-
cussed.

The transverse configuration which is studied
here ean be considered as complementary to the
usual longitudinal-field configur ation. It seems,

however, that this transverse configuration is
more sensitive to the value of the potential height,
while the former is a better test of the surface
structure and roughness.

In both cases, one has to take into account the
distribution (or the density) of oscillation centers,
if the predicted fine structure of. the resonance
lines has to be analyzed. This distribution is un-
available at this time. Hence we have considered
a relevant case for which the oscillation centers
are close to the .interface.

Some emphasis has indeed been put on the case
P, =0. One might ask whether it is possible to
localize the orbit centers. on the discontinuity.
Such a stiuation could be obtained by applying a
weak electric field payal$e$ to the interface, but
pe+endicular to the magnetic field. In this case,
it is possible to drive the oscillation centers
towards the interface, where the density of car-
riers with P, = 0 would then become larger.

Even for very large applied magnetic fields (say
100 kOe) the bulk cyclotron resonance frequency
cu, is usually quite small (i.e, , in the meV range).
In typical cases V, varies from —,

' to 6 eV. Hence.
the dimensionless parameter v0 ranges from 10'
to 10'. Such a value of v0 can however be reduced
if the effective mass of the carrier is small.

In this respect, thin;layered semiconducting
heterostructures are probably the most interesting
cases where the results of the present paper should
apply. In these materials, much smaller jumps of
potential ean be created. The situation where v,
=k&, can be found much more easily and the whole
transition range 1& v0& 10 can then be studied.
However, one must keep in mind that larger v0

values are not of negligible interest and belong in
fact to another range of physical situations. They
correspond in this work to the saturation regime
in which "half" the Landau levels exist. Various
strong harmonics are in fact predicted in absence
of damping effects.

An interesting case of the use of the transverse-
field geometry to investigate an interface has been-

provided by the Beinvogl, Kamgar, and Koch ex-
periment'0 on Si(100) surface. For typical mag-
netic fields this case is an example of a very
high step (v0 = ~). However, the band bending is
here too large to allow the use of the simple-
step model. Indeed, the potential depth (or band
bending) at the surface is of the order of 50 meV, "
while, even for the large applied magnetic field
(i.e., 10 T), h~, is of the order of 5 meV only.
The band bending cannot be considered as a pertur-
bation. An extension of the step problem to allow
p'iecewise linear potentials should be much more
appropriate to treat the available data in the
transverse field configuration. Such a problem can
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be later handled by a transfer matrix technique
similar to that described in Appendix B.

APPENDIX A

Here the perturbation method is applied to
the calculation of eigenvalues and eigenfunctions in
the limiting case of a small-step amplitude eo.

The unper'turbed Hamiltonian is wx itten

Ho=a a+ ~, (Al)

where the operators a and a, defined by a =-,'x
+iP„and a =x/2 iP-„, obey the usual boson
commutation relation. "

Using the Fourier transform of the Heaviside
step function, the perturbation potential can be
expressed as

V = lim
( vo

2im

X f+ e M2) 2e ~Ma~ e f Ma e-2luf y
d(d .

- GO+$g
(A2)

It is then simple to obtain the fi.rst-order cor-
rection to the ground-state energy under the form

+ 'o e co / 2e 2$40$y

dh)
o+ 2t11' (d +l'g

(A3)

which reduces to

ae"'=(-.' v,)[1 erf(-W2p, )]. (A4)

In the second-order correction d E"', the matrix
element (0

~
V ~n& needs to be calculated

+OO ff

X
(0+ l'g

(A5)

Cases with n odd or even have to be cal.culated
separately using relations (3.952.9) and (3.952.10)
in Ref. 16. Both lead to a concise expression

(0 I V In&= [v,/(vn! 2")'i'] exp(- 2P„')H,(-~2P„),
(A6)

wherelf„(x) is the Hermite polynomial of degree
n, , from which the factor

( (0( V( n&) can be cal-
culated and inserted into standard expressions for
de"'. Correspondingly, (0) V(n& serves to eval-
uate the first-order correction to the wave func-
tion.

Excited states can be calculated straight-
forwardly, but with some more algebra, starting
from the matrix elements

( ( ) ) v, (i[n( — ) (m+1 )'"
((„ )!

[n(n -1). j ]"'[m(m —1) j ]'~'
( )!~

(n —j+1)!(m —j+1)! (A7)

for n & m, with APPENDIX 8

F (x) = (2'-I'/v!! )e"+~'H, (x/~P) . (AB)

S

x
i —,) F„(-2p„)
i1& '

where
(A9)

The case n&m is readily expressed from the above,
while the diagonal element is

Here we present the expressions required for
treating more- realistic cases than the single-step
potential by means of a transfer-matrix technique.
This formulation allows one to handle problems
presenting several potential jumps, and this en-
compasses a very wide range of physical situa
tions. ""

I et us suppose a distribution of a finite number
of potential steps at the points x„ l =1,. . . ,N.
The potential U(x) in region f, i.e. , between x, ,
and x, is v, . In this region, the wave function
can be written

F,(x) = erfc(x/!I 2 ). (A10) sv (x)!=A, U(v, —e,x)+8, V(v, —e,x).
Furthermore, from these matrix elements the
first-order correction to the excited-state wave
function, can be readily obtained, starting from
standard formulas.

All these wave functions must be matched at each
point x, —2p„. This imposes a linear relation
between coefficients in region l and l+1. This
relation can be put into a matrix form
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(B2)

(Oj (v/I" (-,
'

e)j
(E6)

where

T"' =t '(v„x, )t(v„„ao,} (B3)

on the other hand, where n is some constant. This
last condition arises from the fact that

and

,(
fU(. , „, 2p„) V(.. .,x, 2p, ))
(U'(v, —e, x, —2p„) V'(v, —e, x, -2p„)]

Note that the %ronskian of U and V, i.e. ,
dett(v, ,x, ), is equal to (2/m)'~'. It is then very
simple to invert t(v, ,x, ) to obtain the complete
transfer matrix [T,'&"] = (2v)'f'[9", &" ] which has
elements

' 9',"~ = V(v, —e+ 1,X, ) U(v „,—e,X, )

+ (vg, i —e+ g ) U(v„, —e + 1,X,) V(vg —e, X,),
9',"~ = V(v, —t + 1,X, ) V(v„, —&,X, )

—V(v„, —a+ I,X, }V(v, —e,X, },

r,',"=(v, - e+-.')U(v, a+1,X, )U(v„, —~, X,)

-(v„, —e +p)U{v„,—@+1,X, )U{u, —e,X, ),
9 ~",

~ = V(v„, — e1+,X, ) U(v, —c,X,)

+(u, — e+)2U(v, —e +1,X, ) V(v„, —&,X, ),

where the first index labels lines of the matrix and

Xr =+r 2P
There is an essential difference between the

present situation and that in the absence of a mag-
netic field. Because of the existence of a center of
oscillation when a field is applied, the wave func-
tion is localized around this center and thus has
to be square integrable here along the potential
gradient direction. For a given value of p„(that
is, for a given position of the oscillation center),
the spectrum of eigenvalues is discrete. In the
absence of a magnetic field, the spectrum is con-
tinuous and the solutions are described in terms
of nonsquare integrable plane waves.

Here, for x&x~ and x & x„ the potential is sup-
posed to be zero thereby implying that the solu-
tions have to vanish when ~x

~

-~. This imposes
B„„=Oon one hand, and

U{-e, -x) = sin(ve)U(-t, x)+ [v/I'(~ —e)] V(-e, x)
(Bv)

is the only combination of U(- &,x) and V(—e, x)
that vanishes for x- -~. Relation (86} can be
transformed into the more easily tractable equa-
tion

Sin7f& + p 0„, (1)
(B8)
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Such a requirement allows one to obtain exact
energies and wave functions for a given position of
the orbit center.

In principle, this method can be applied to a
large nunber of potential steps, whereas the only
limitation lies in the precision required in com-
puting parabolic cylinder functions. Hence, it is
reasonable to believe that the transfer matrix
method and Eq. (88) should provide an interesting
way of solving exactly a (random or regular}
Kronig-Penney model in a magnetic field. In

this case, it seems, however, that due to the
localization of the wave function around the orbit
center, at least for lower energies, only a finite
number of cells need to be considered. This is
precisely the case where the above technique
could be successfully applied.

An attempt to solve the Kronig-Penney model
in a magnetic field has recently been provided
by Taylor. " In this calculation, a matrix transfer
technique is also used, but the parabolic potential
in each cell is approached by a constant. This
indicates that his method would apply to either
low magnetic fields or high periodic potentials.
These requirements are not always satisfied in
periodic layered structures produced by molecu-
lar beam epitaxy, where the Kronig-Penney model
should precisely apply.



THEORY OF CYCLOTRON RESONANCE AT A MODEL INTERFACE. . . 1473

'See, for instance, J. G. Mavroides, in Optical proper-
ties of Solids, edited by F. Abeles, (North-Holland,
Amsterdam, 1972), p. 351.

Electronic ProPerties of Quasi-Tavo-Dimensional Sys-
tems, edited by J. J. Quinn and P. J. StQes (Noith-
Holland, Amsterdam, 1976), as reprinted from Surf.
Scl. 58, 1,(19-76).

Proceedings of Thirteenth Interiiational Conference on
the Physics of Semiconductors, Rome 29/6, edited by
F. G. Fumi (Tipografia Narves, Rome, 1976).

J. P. Kotthaus, G. Abstreiter, and J. F. Koch, Solid
State Commun. 15, 517 (1974).

~G. Abstreiter, P. Kneschourek, .J. P. Kotthaus, and
J. F. Koch, Phys. Rev. Lett. 32, 104 (1974).

~S. James Allen, Jr. , D. C. Tsui, ahd J. V. Dalton,
Phys. Rev. Lett. 32, 107 (1974).

~J. P. Kotthaus and H. Kuelbeck, Surf. Sci. 58, 199
(1976).

8K Suzuki @id Y. Kawamoto, J. Phys, Soc. Jpn. 35, 1456
(1973).

G. Abstreiter, J. P. Kotthaus, J. F. Koch, and G. Dor-

da, Phys. Rev. 8 14, 2480 (1976).
W. Beinvogl, A. Kamgar, and J. F. Koch, Phys. Rev.
8 14, 4274 (1976).
M. von Ortenberg and R. Silbermann, Surf. Sci. 58, 202
(1976).

~2W. Brawne, J. Lebech, and K. Saermark (private com-
munic ation) .

' T. Ando, Phys. Hev. 8 13, 3468 (1976); Phys. Soo. Jpn.
36, 959 (1974); 36, 1521 (1974); 37, 622 (1974); 37,
1233 (1974); 38, 989 (1975).
J. P. Vigneron and M. Ausloos (unpublished).
R. Dingle, in Ref. 3, pp. 965-974.

6M. Abramowitz and I. A. Stegun Handbook of Mathemat-
ical I"unctions (Dover, New York, 1964), p. 685.

~VI. S. Gradshte~ and I. M. Ryzhik, Table of Integrals,
Series and Products, 4th ed. (Academic, New York,
1965).
L. Schiff, Quantum Mechanics (McGraw-Hill, New-
York, 1968).
P. L. Taylor, Phys. Rev. B 15, 3558 (1977).


