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First-order transition induced by cubic amsotropy
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A two-component spin system with cubic anisotropy sufficiently large to remove the renormalization-group

fixed point is investigated using diAerential recursion relations. An explicit free energy is constructed and it

is verified explicitly that the loss of a fixed point corresponds to a first-order transition to the system's

ordered state. A tricritical point is located and scaling properties of the first-order transition are investigated

close to it.

I. INTRODUCTION

I

A system of some interest in the current theory
of critical phenomena is an n-component spin sys-
tem with cubic anisotropy in the spin Hamjltonian.
This kind of anisotropy represents the influence of
cubic lattice structure on the localized moments
of a magnetic insulator. Cubic anisotropy can. also
appear in the effective Hamiltonian of a lattice
undergoing a structural phase tran. sition. ' Re-
normaljzatjon-group calculatjons jndjcate that
cubic anisotropy is "relevant" in a three-dimen-
sional spin system with n, the number of spin com-
ponents, greater than three. ' That is, in such a
system the existence of cubic anisotropy gives rise
to different critical behavior from that of the iso-
tropic n- component system.

In addition to changing the critical behavior of the
system cubic anisotropy can lead to the loss of a
renormalization-group fixed point. This is com-
monly interpreted as an indication that the transi-
tion to'the ordered state is first order rather than
continuous. This interpretation has been recently
verified for cubic anisotropy using a parquet-
graph analysis, ' ' It has also been borne out in
other systems through different methods. ' '". In
this paper, a recursion-relation approach is applied
to the first-order transition induced by cubic aniso-
tropy. In part, it reproduces the results of the
earlier parquet-graph approaches, including pre-
dictions about. the trictitical behavior of the system
and about universal amplitude ratios. However,
since the recursion relation approach has proven a
powerful tool in the analysis of complicated multi-
critical systems it seems worthwhile to publish
a recursion-relation based analysis of this interes-
ting model. In this context, it is interesting to note
that Domany, Fisher, and Mukamel" have already
extended the work contained here to show how suf-
ficient quadratic anisotropy can restore the con-
tinuous transition that is removed by cubic aniso-
tropy alone.

The system to be investigated here has a two-

component spin field. Although the methods to be
used can be readily applied to a system with more
than two components the analysis for two compo-
nents is somewhat simpler than for n components.
The more general case is discussed by Domany
gt g) i2

An outline of the paper is as follows. In Sec. II
the Hamiltonian of the spin system is displayed,
and mean-field predictions are reviewed. A mean-
field phase diagram is constructed. In Sec. III a
more complete. treatment is applied to a system
with extreme cubic anisotropy. This system under-
goes a first-order transition. to its ordered state in
zero magnetic field. It is similar to some field-
theoretical models considered by Coleman and

Weinberg, "and the analysis in this section is quite
close to theirs.

Section IV contains renormaljzatjon-group equa-
tions for a two-component system with cubic anis-
tropy. The equations are "sharp-cutoff" renormal-
ization-group equations, obtained as per the pre-
scription of Wegner and Houghton" or, alterna-.
tively, by differentiation of appropriate diagrams. "
They are for a (4- &)-dimensional system with

E small and are accurate to low order in & only.
The equations are solved and their fixed points
are identified. We also identify the regions in
which fixed points are lost because of the cubic
anisotropy. In Sec. V the free energy of the (4 —e)-
dimensional system is constructed according to a
method outlined by Rudnick and Nelson. " With
the aid of this free energy it is possible to show
that when there is no fixed point because of cubic
anisotropy the phase transition of the spin system
to its ordered state in zero magnetic field will be
first order rather than continuous. Section IV
concerns properties of the phase transition when
it is nearly continuous. Tricitical scaling pre-
dictions are developed and discussed with the use
of nonlinear scaling. fields. This seems to be the
first case in which these quantities have been con-
structed for such a complicated crossover prob-
lem.
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II. FIELD-THEORETICAL HAMILTONIAN; MEAN-FIELD
PREDICTIONS

Our two-component system has the following
Landau- Ginzburg-Wilson effective .Hamiltonian

"~=+(r+q')[s„(a)s„( a)+s, (a)s„( a)]
B

+ —Q [s (qi)s.(q~)s. (qs)s. (q~)

+ s„(q,)s„(q,)s„(q,)s„(q,)]6;,;,;,-

(2 2)

This is the generalized X, Y model considered in
the original &-expansion paper by Wilson and Fish-
er. '

The free energy of this spin system is

E=-kB&In Z

with

(2.3)

Z= ~ ~ ~ e~«~~B~, d8 q .

The mean-field approximation neglects all the
S(q)'s except S(0) which is replaced by

M=(1/WW)S(O). (2.5)

The mean-field Hamiltonian is

X„lu,T'=W[r(M'„+ M', )+u(M', + M',)

+ vM„M~ —h ~ M],
and the partition function Z is

+ — S„q, S„q, S„q, S, q4 6tt,&,~,

-v N h ~ S(0). (2.1)

N is the number of q modes in the sytem and S(a) is
the Fourier transform of the lattice spin- field 8;,
given by

the absence of such terms (u; v) must lie inside
the stability wedge.

As long as h = 0 and (u, v) lies within the stability
wedge the mean-field transition to the ordered
state is continuous, and is described by mean-field
exponents. The nature of the h=0 ordering is de-
termined by the region of the stability wedge in
which (u, v) lies. If —2u& v&2u then M will point
along one of the diagonals (1,1), (1,-1), (-1,1) or
('-1, -1). If 0&u&-,' v, M will point along either the
x or the y axis. If v =2N, M will have no preferred-
orientation.

The phase diagram in Fig. 2 displays the dif-
ferent kinds of ordering that can take place. The
line along w»ch v =2u is also a line of first-order
transitions in that as the system crosses it M
changes discontj. nuously. There is no description
in the figure of what might happen when (u, v) lies
outside the stability wedge, except for the dashed
first-order lines to indicate the possibility of a
first-order transition in the presence of stabilizing
terms in the Hamiltonian.

III. FIRST-ORDER TRANSITION INDUCED BY EXTREME
CUBIC ANISOTROPY

Returning to the full Hamiltonain (2.1) we will
consider the effect of extreme cubic anisotropy on
the transition to the ordered state. Extreme cubic
anisotropy here means that (u, v) lies just inside
the stability wedge. The transition in this case
turns out to be first order, in contrast to the pre-
diction of mean-field theory.

To obtain this result we consider a free energy
consisting of a sum over an infinite number of

Z = e m B dM dMm X (2.7)

In the limit N-~ the mean-fieM free energy is

F =X (Mo), (2.8)

where M, minimizes Xm.
We may define a "stability wedge" in the u-v

plane. The wedge, shown shaded in Fig. 1, lies be-
between the lines u = 0 and u =- ~ v. If (u, v) lies
within the wedge then the Hamiltonian (2.1) and the
mean-field Hamiltonian (2.6) are stable. If it lies
outside of the wedge they are unstable in that their
partition functions are given by divergent integrals.
The Hamiltonjan can be stabilized by the addition
of sixth- or higher-order terms in S(q) or M. In

FIG. 1. Stability wedge for the Hamiltonian (2.1). If
g and v lie in the shaded region the Hamiltonian is stable.
Otherwise the integral on the right-hand side of the ex-
pression (2.4) for the partition function is divergent. .
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(u,v)
v=2U

DISORDERED

e=o
ORDERED

FIG. 2. Mean-field phase
diagram for the two-com-
ponent system with cubic
anisotropy. The direction
of increasing temperature
T is shown and the angular
variable 0 is defined in the
inset at the top. whether
the system orders along
principal axes or diagonals
ls indicated Ul the ordered-
phase portions of the dia-
gram.

Feynman diagrams. The sum can be shown to
be accurate for the free energy in the regions of
interest to us. This will be established in part by
verifying that the Ginzburg criterion" is satisfied
in. one of the regions. A complete demonstration
requires a detailed analysis of all diagrams in

aQ the regions of interest. It is not contained in
this paper. A fuller discussion of this sort of
system can be found in the paper of Coleman and
Weinberg. "

The extremely anisotropic system has u and v
satisfying the following conditions

u v&0

(u/v') ln(v'/2u) «1,
V« 1.

(3.2)

(3.3)

Condition (3.1) ensures that (u, v) lies inside the
stability wedge while condition (3.2) places it very
near the u = 0 boundary. Condition (3.3) insures
that weak coupling approximations to be made here
are asymptotically accurate.

Following the mean-field predictions we expect
the system to order either along the x or the y
axis. For simplicity we will set M, = 0 and replace
S„(0) by v N M. The Hamiltonian then takes the
following form.

"' =N(rM'+ uM') + Q (r+ 6uM'+ q')S„(q)S„(-j) + Q (r+ vM'+ q')S, (-q)S, (-j)k~T ~0
qP0 POq

+ Z S„(q,)S„(a,)S.(~.)6;,.;,:,, + ——— Z S.(~,)S,(q,.)S, (~.)6;„.;,.;,
QvC2els&o . 0N Qg Q ~ 43~0

[S„(i,)S„(i,)S„(a,)S„F7,) + S,(q,)S,(a,)S,(q,)S,(a,) ] 6; .;.;,~
q~~ q2 qe, q4/0

Z S.R,)S.(~,)S,(q.)S,(~.)6;,.;,:„.;, .+ q. q q. q&0

We have set h=O.

The leading-order contribution to the free en-
ergy is given. by

(S.(a)S.(-q)& '= (S,(a», (-q)& '

= r+ q —Z(q) =—r'+ q2

=r+ dv

F/ksT= urM++6', (3.6) or

where F represents the diagrammatic sum dis-
played in Fig. 3. The double propagator lines in
the diagrams are partially renormalized (S,S,)
propagators satisfying the Dyson equation shown
in Fig. 4. The double loop in Fig. 4 is a sim-
ilarly renormalized (S,S„& propagator This Dys. on
equation yields for the inverse propagators

vd " q«"3 gqr' =r+—8-2 r +q'
«-'d I

+vr y rl + q /2 (3.7)

d on the right-hand side of (3.6) and (3.7) is the
dimensionality of the system, taken to be between
two and four. The q's are restricted to the inter-
ior of.a spherical zone of radius one. Iterating
(3.7) once we obtain the following expression for

FIG. 3. Single-loop sum performed to find the free
energy of a system with extreme cubic anisotropy.

V4 (l-2)/2 ~ q& 3 dq- r+ — —v4 r+--
1 +@2

~ ~

qltf 3 Pql
+ vd r+- —--

—,— . (3.8)
[r+ vd/(d 2)] +q"-
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FIG. 4. Dyson equation (3.6), satisfied by the partially
renormalized ($„$„) and ($ $„) in the system with ex-
treme cubic anisotropy.

The right-hand side of (3.8) is well approximated
by the first two terms if

r+»vd
We thus require

r + vd/(d - 2)» v' "~' .

"9''dQ .
1+Q' (3.9)

(3.10)

If r+vd/(d-2) =v, (3.10) holds as long as (3.3) is
satisfied and 4~d&2.

The diagram sum for the free energy yields

= rM'+ uM'+ d q' ' ln(r'+ vM'+ q') dqk~T 0

1
-d q" ' ln(r'+ q') dq .

0
(3.11)

The integrals in (3.11) are over logarithms be-
cause of the combinatorial factors indicated in Fig.
3. When M is small, I' can be expanded in a power
series in terms of it. Equation (3.11) yields

4-1 d
— =~M'+ u--,'dv' q. q, M4

k T
o (r'+ q')'

dq
jr'+ q'j3 (3.12)

If r' is of order v the coefficient of M' mill be
given by

u =u —-'dn" '"'v'" Q' 'dg
2 (1 q2)g

+ gdv
q" 'dq

(~v+q')' ' (3.13)

where we have setr'= O,v. When d(4 we c:an verify,
using (3.2), that the coefficient of M' is less than
zero. The coefficients of the quadratic and sixth-
order terms are both greater than zero. The sys-
tem looks like one that will have a first-order
transition. However, it turns out that-the finite
value that M takes just below the transition is too
large for a low-order expansion like (3.12) to be
accurate.

To investigate the transition in detail we will
take r( O, r'=r+ vd/(d- 2)) 0 with rl of order v.
We will now see what happens when M becomes
very large while u is arbitrarily small. For very
large M, we have

k~T
= rM'+ uM'+ d In(vM')q~ '

dq

-d ln r'+q2 q" 'dq,
0

= rM'+ uM4+ ln(vM')

1
-d ln(r&+ q')q~ 'dq.

0
(3.14)

If x is less than zero and u is arbitrarily small
t:hen for sufficiently large M the free energy can
become large and negative. To see this we wi11
solve for the large-M minimum of the free energy.
The equation of state for large M is

a& = 2'+ 4uM'+ —= 0.
k~ T 8M

(3.15)

If u/r'«1 the solution of (3.15) for the large M-
minimum is given to a good approximation by

M'= Jr (/2u. (3.16)

The free energy is then

E ~ VI ~ I

kg T 4u 2u
=-—+ ln — ln(rt+q')q~ 'dq. (3.17)

This can be solved by iteration for r'. Iterating
twice,

r = 2uln(v'/2u) + 2u In[In(v~/2u) ] .

By (3.2) the second term on the right-hand side
of (3.20) will be much smaller than the first one.
Notice that if r is given by (3.20) then

(3.20)

2u v~ = -Y ln —«1,
v v 2u

(3.21)

As u-0 this free energy will become infinitely
large and negative. At the same time because r'
&0 the free energy has a local minimum = 0 at M
=0. The free energy has a double minimum and the
large-M minimum can be much lower than the M
=0 minimum. Note that this double minumum oc-
curs in the region of validity of simple propagator
renormalized diagrammatic perturbation theory,
as defined by the Ginzburg criterion. "

To find the first-order transition we search for
the r for which, with a given small u, the large-
M minimum in the free energy equals the M =0
minimum. We require

1
rM'+ uM'+ ln(vM') -d ln(r'+ q')q~ ' dq = 0, (3.18)

0

with M given by (3.16). This assumes in advance
that u/r'«1 at the first-order transition. Sub-
stituting (3.16) into (3.18) yields

+ln -d ln(r'+q')q 'dq=0. (3.19)
v)r )

4u 2u



1410 JOSEPH RUDNICK 18

u/r'= [in(v'/2u)] '«1, (3.22)

the inequality following from (3.2). Thus r' =r
+ dv/(d- 2) =dv/(d- 2) and the Ginzburg criterion
is satisfied. Also, we have

v(l) = V(l)e",

u(l) = U(l)e",
e"=x.

(4.7)

(4.8)

(4.9)

Q,nd The following equations for U(x) and V(x) result.

V I& I
1"V2 ~2 1/2

vM = —ln — » 1.
2u 2u 2u

(3.23) =-36U —V',dU

dx (4.10)

The last inequality confirms the large-3f approxi-
mation (3.14) to the free energy around the finite-
M minimum.

& „-
—— =-24UV 8V'.dV

(4.11)

Writing U=. Vf(V) we obtain, dividing (4.10) by
(4.11)

1V. RENORMALIZATION-GROUP RECURSION RELATIONS

AND THEIR SOLUTIONS
dU df 36f'+ 1
dV dV 24f +8 (4.12)

dr(l) 3du(l) d
'

v(l)
dl 1+r(l) 2 1+r(l) ' (4.1)

An investigation of the behavior of a system whope
cubic anistropy is not extreme requires a more
elaborate analysis. We will begin with a solution
of the renormalization-group equations for a
(4- &)-dimensional system. This solution will yield
the renormalized coefficients r(l), u(l), and v(l)
of a "block-spin" system with a Brillouin-zone
radius q~= e '. The equations are those of the
sharp-cutoff renormalization group and may be ob-
tained either via the method of Wegner and Hough-
ton" or diagrammati. cally via an extension of the
technique outlined in an earlier paper. "

The equations are

df (6f —1)(2f —1)
dV 24f+8 (4.13)

(6f, —1) ( 6f —1) (4.14)

where f, =f(x = 1) and v = V(x = 1) = v(l = 0). An ex-
pression for x in terms of f follows from (4.10).
We have

dU d dU df=e —(Vf)=c f+V—
dx dx dx dx

= —V'(36f'+ 1) . (4.15)

I«egrating (4.13) we obtain the following solution
for V in terms of f.

du(l)
(4 ) (l)

qdu(l)' dv(l)'
(4 2)

f1+~(l)] ' 4 [1+r(l)]
dv(l) 6du(l)v(l) 2dv(l)'

[1+r(l)]' [1+r(l)]'
To the accuracy in & desired here d can be set
equal to 4 except when 4 is subtracted from it.
Furthermore, we can neglect the difference bebveen
[1+r(l)]' and 1 in (4.2) and (4.3). Finally we ex-
tract from (4.1) the equation describing the initial
propagation of r(l) from the critical hypersurface.
The equations become

or

eV(36f'+1) df
(6f —l)(2f —1) dx.

= V (36f +1),

dx df
V(6f 1)(2f —1)—

Using (4.13) we obtain

(4.16)

dt(l) = 2t(l) —12u(l)t(l) —2v(l)t(l),

du(l) = au(l) —36u(l)' —v(l)',

(4 4)
1 (2f, 1)' (6f —1)' d-
v (6fo —1)~ (2f —1)6

This yields

(4.17)

dv(l)
cQ

= ev(l) —24u(l)v(l) —8v(l)'. (4.6) .

t(l) in (4..4) is equal to ~(l) —r, (l) =r(l)+ 6u(l)+ v(l).
Equations (4.5) and (4.6) describe to leading

order in [e,u(l), v(l)] the propagation of u(l) and
v(l) along the critical hypersurface. They can be
solved by making the substitution

x-1 e"

1 (2f, —1)'
1), [X(f)—X(f,)],

where

X(f) = (6of'- 3of + 4)/(2f —1)'.

(4.18)

(4.19)

We now have parametric solutions for U, V, and
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O.I-

= 2U

higher-order terms must be taken into account in
an analysis of the properties of the spin system
when (u, v) lies outside of the smaller wedge.

We end this section with the derivation of some
results that will be useful in the scaling analysis
of Sec. VL First is the solution of (4.4) for t(l).
We have

0.05- t()) = te*' e — [12u() )+ 2u()')] dV) .
0

(4.22)

0.]

The integral in the exponential can be evaluated as
follows:

f!
[12u(l')+ 2v(l')] dl'

0

-0.05-

FIG. 5. Trajectory plot of N(l) vs e(l) obtained by
solving the renormalization-group equations (4.5) and
(4.6). The direction of increasing l i.s indicated by
arrowheads, and fixed points by solid circles. The
principal trajectories connecting the fixed points are
indicated by a dashed curve.

12v l' x l' + 2V l' x l' dl',
0

=
J V(l')[12f (l')+ 2]x(l') dl',

0

=
Jl V(l')[12f (l')+2]x(l'), , df (l'),

0 dx l' d l'

t(l) 12f +2
(6f—1)(2f —1)

x in terms of f. These can be used to obtain tra-
jectory plots of u(l) vs v(l). Such a plot is dis-
played in Pig. 5. Arrowheads on the trajectories
indicate the direction of increasing l. In addition
to the line u=2v the lines v=0 and v=6u have a
special significance in the plot. On those two lines
the system decouples into two noninteracting
single- component systems. When v = 6u the de-
coupling is achieved by transforming to the spin
fields

' 2f(l) —1 ' 6f(l) —1=-21n
2f + in (4.23)

2f(l) —1 2' 6fo- 1 '

2f, —1 6f(l) —1, (4.24)

We can similarly obtain the following result:

We have used the definitions (4.7), (4.8), and
(4.9) of U, V, and x, and (4.17) for the derivative
dx/df. We have for t(l)

S,= (1/v 2 ) (S„+S,),
S, = (I/W2)(S„—S,) .

(4.20)

(4.21)

Because the decouplings along those lines as well
as the rotational symmetry along the line v = 2u

are preserved in the renormalization-group trans-
formations a [u(l), v(l)] that starts on one of the
three lines stays there.

As indicated on the plot there are four fixed
points of Egs. (4.5) and (4.6). The fixed points
on the lines v=6u and v =0 are Ising-like, as is
to be expected. The fixed point on the line v = 2u
is X- Y like and there is the Gaussian fixed point
at u(l) =v(l) =0. The relative stability of the fixed
points is in agreement with the res~its of Wilson
and Fisher and others. ' '„Outside of the wedge
bounded by the lines v=0 and v=6M no O(e) point
is approached and [u(l), v(l)] propagates off the
stability wedge. The system itself does not be-
come unstable because higher-order terms are
generated by the renormalization procedure. Those

t' ' 2fo-1'
2e 6fo —1,

(4.25)

dl
(4.26)

This is a form that will enter into the free energy
in the next section.

Finally, we will look at the behavior of [u(l), v(l)]
when it is asymptotically close to the fixed point on
the line v=6u. To the order of accuracy of (4.5)
and (4.6) the fixed point is (—' e, —' &). If we write

12
u = —'+ b,„and v = —' &+ 4„ the following equations
result to first order. in &„and 6„
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The eigenvalues and associated vectbrs are

A~ =-&, &„=6&„;

A.,= e/3, ~=-2&„.
(4.28)

(4.29)

The asymptotic approach to the fixed point along
the line v = 6u is as e "and the asymptotic depar-
ture from it and away from the line- is as e" '.

F(t(l +),u(l*), v (l *),M)

where

gQ

l(1)2e '~dl
a

+ 8-' '{f(l~)M(l +)'+ u(l*)M(l*)'
I

+ —' f [t(l*)+ 6u(l*)M(l*)']

+ —' f [t(l*)+'v(l*)M(l*) ]), (5.1)

and

M(l*) =Me"-2&' ~2 (5.2)

f (x) = x'[in(x) —2 ] . (5.3)

The integral on the right-hand side of (5.1) and
the first two terms in curly brackets are the lead-
ing-order contributions to the free energy. They
are of order [a,u(l*), v(l*)] '. The remaining terms
are of order [e,u(l*), v(l*)]'. When u(l*) and v(l*)
are set equal to a pair of non-Gaussian fixed point
values this expression is accurate to zeroth order
in &.

V. ANISOTROPY-INDUCED FIRST-ORDER TRANSITION

IN 4 —e DIMENSIONS

To continue the analysis of a (4- e) dimensional
system with cubic ansisotropy we consider its free
energy, generated from the recursion relations
of the previous section by a technique outlined by
Nelson and the author. " Briefly, the technique
consists of integrating the recursion relations to
an appropriately chosen l* and then applying fluctu-
ation corrected Landau theory to the renormalized
Hamiltonian of the block spin system. The ex-
pression for the free energy is in terms of l*,
v(l*), u(l*) and t(l*). Whennofixedpointontheu(l)-
v(l) plane is approached this expression will pre
dict a first-order zero-field transition to the
ordered state.

It will be assumed that v&6u. The region v& 0
can be mapped into this region by making the
transformations (4.20), (4.21) so the discussion
here covers both kinds of cubic anistropy.

Anticipating that the system will order either
along the x or the y axis we set M„equal to zero
and M„equal to M. To the two lowest orders in

[c,u(l*), v(l*)] the free energy is given by

e " [t(l*)+ ~ v(l")t(l*) Int(l*)] . (5.6)

If t(l") is of order v(l*)' the coefficient of M' is
positive so M=O is a local minimum. On the other
hand the finite M minimum has substantially the
same value, less than the M = 0 minimum. Thus
we have the same kind of double minimum as in
the case of extreme anisotropy.

To find the first-order transition we guess that
t(l*) will be proportional to v(l*) and that M(l*)
wiil be proportional to [v(l*)] '. Writing t(l*)
= bv(l *) and M'(l*) = c [v(l*)] ' we require that the
free energy at the finite-M minimum equal the free
energy at the M= Q minimum. Those two conditions
take the following forms.
(i) Free-energy equality:

bc+ —,'f [bv(l*)+c] = —,'f[bv(l*)] .

(ii) Minimization condition at finite M:

2bc+ 2c[bv(l*)+ c] in[bv(l*)+c] = 0.

(5.7)

(5.8)

Using (5.3) for f(x) we obtain the following equation

It is important that the free energy be indepen-
dent of the exact choice of l* at least to its order
of accuracy. That is because if we were to per-
form an exact integration of the full set of recur-
sion relations and evaluate all the fluctuation cor-
rections to the Landau theory the choice of l*
would have no effect on the final result. The lack
of a dependence on l* of the right-hand side of
(5.3) is established to zeroth order in

[e,u(l*), v(l*)] in the Appendix.
A preliminary step in our choice of l* is to note

that the diagram sum performed in the derivation
of the expression (5.1) is just the kind of single-
loop sum performed in Sec. III." This implies
that [u(l*),v(l*)] should be near the edge of the
stability wedge. I*will be chosen here so that u(l *)
= Q. Because of the approximate independence of /* of
the free energy the same results would obtain if
l* were chosen so that u(l*) =0(a', [v(l*)]'). Our
particular choice of l~ has the advantage of sim-
plifying intermediate steps.

The free energy is now

F
T l(1) e

+e ' ~{t(l*)M(l*)'+2f [t(l*)]

+ —,
' f[t(l*)+ v(l*)M(l*)']] . (5.4)

If f = 0 so that t(l*) = 0 the free energy is given by

~&
' "M(l*)'~v(l*)' {ln[v(l*)M(l*)'j - ~ j . (5.5)

Ag a function of M it has a nonanalytic maximum at
M=O and a minimum at M'= [v(l*)] 'e" "" . When
t(l*) is positive the coefficient of M' for small M
is
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from (5.7) and (5.8).

—,
' bc ——,

' c'- ~ bv(l*) [2b+ 2c+ bv(l*)] = 2 f[bv(l*)]

This yields b = & c+ O(v(l*)). Substituting this re-
sult back into (5.8) and extracting terms of leading
order in v(l*) yields

9t

FIG. 6. Tricritical phase
diagram in the g;g~ plane
where g& and g~ are nonlinear
scaling fields (Hef. 21).

c2+ 2c' ln(c) = 0, (5.10)
Our concern is with the first-order side of the

tricritical point, when ~ and g~ are both positive.
The first-order transition will occur wheng,
tx g~t/~ and the discontinuity in M tx -8E/sg„ is
proportional to g~ "« ' '«. On the first-order
side g„when small, is commonly taken to
be proportional to the temperature reduced
with respect to a linear extrapolation of the
critical line. However, it has been pointed out
that spurious corrections to scaling can be gen-
erated if Q is much smaller than one unless a
correct, probably curved, extrapolation of the
critical line is made. 2' Since here Q = —' s to first

6
order in E these considerations must be taken into
account.

The nonlinear sqaling fields have the property
that under renormalization- group transforma-
tions"

ol

At the first-order transition

t(l*) =
& e ' 'v(l ),~™ordered ~disordered

(5.11)

(5.12)

VI. TRICRITICAL SCALING PREDICTIONS

According to the tricritical scaling hypothesis"
the singular part of the free energy of a system
close to its tricritical point can be written in the
form

&(l, &,b) =
g t'"'@(sgn( g,),g, ~ g, ~

',g. ~ gt (
"'" )

(6.1)

y„ is the Kadanoff temperature- scaling param-
eter for the tricritical point =d/(2 —a,g, where
ct„ is the tricritical specific heat index. Q rs the
tricritical crossover exponent of Riedel" and x„
is the tricritical magnetic field scaling param-
eter of Kadanoff. "g, is a nonlinear scaling field"
which, when small, is proportional to the tri-
critical reduced temperature if ~=0 a,nd to the
critical reduced temperature, [T—T,(b)]/T, (&),
if ~& 0. g~ is the nonlinear scaling field cor-
responding to the tricritical parameter ~ and g„
is t:he nonlinear scaling parameter corresponding
to the magnetic field. A tricritical phase diagram
in the g, - g~ plane is displayed in Fig. 6.

-(tt-2)t*/2[pig)]-t/2 -t/~ O([ (ig)]o) (5 13)

Thus there is a first-order transition at positive
The analysis leading to this result could not be

carried out if [u(l*),v(l*)] did not propagate to the
edge of the stability wedge. When u(l*) and v(l*) ap-
proach fixed points i~side the wedge the transition
is continuous. The line u=6u is a line of tri-
critical points.

Finally, as Fig. 5 indicates, if [u, v] is near the
line v = 6u but in the unstable region then when u(l)
=0 v(l) will be of order e. The expressions (5.12)
and (5.13) for t(l~) and &M at the first-order
transition become the lowest-order terms in &

expansions for those quantities.

gt(1) =g t(o)e"'" '

g (l)=g e",
(6.2)

(6.3)

z =-', a+ 0(s2t) . (6.5)

Since tt&t/y and x = 2+ O(c) the tricritical cross-
over exponent is given by

ttet = ' g+ O(c') .
That means that the first-order transition takes
place when g, ~g~6 '" and that the discontinuity
in M across the transition is proportional to
g,' " " ', where to obtain the latter result we
have used the fact that d- x= 1+0(s) in (4- e)
dimensions.

The remainder of this section is a verification
of the above tricritical scaling predictions using
the results of the renormalization-group analysis
of the anisotropic system. The first step will be
to develop expressions for the nonlinear scaling
fields g, andg~. h wiQ be set equal to zero. Be-
cause g„ is odd in h it also equals zero.

We start by noting that (4.18) which gives x = e"
in terms of f(l) =u(l)/v(l) can be written in the
following form:

(6.6)

g.()=g. ""', (6.4)

these relations holding for arbitrarily large l. The
exponent z -describes propagation away from the
unstable tricritical fixed point. According to (4.29)
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10v (Gf I)3 {4 [f( )1'- —', f ( )+ P, ] (2f (l) 1), -[—, fo --, fo + —„1 (2f 1). + ~ (6.7)

Substituting this into the relation v(l) =xV(l) with
'

V(l) given by (4.4) we obtain

v(l) ——' 4 [-'f(l)'--' f(l)+ —' ]

g~ close to the tricritical fixed point stays finite
as &-0,

=[ ——' (-'f.'- —' f,+ '—')]10 4 2 0 16

x
2 1 6 ) 1

. 68

Using (6.8) to eliminate the factor

2 l —1 6

—
g (I) g e (I/s)~ (6 13)

When this nonlinear field is small it is proportional
to a linear combination of [u(l)- —'] and [v(l)- —'4:]
and it can be expanded in a power series in them
about the fixed point on the v=6u line.

To derive an expression for the nonlinear scaling
fieIdg, we rearrange (4.24) to obtain

in (6.7), yields IGf(l) —Il t 16f,—11

[2f(l) —I('' i2f, —I/' (6.14)

The curve

at3 u ' 3u .17
+

10 4 v 2 v 16, (6.10)

is a principal trajectory on the u-v plane in that
it passes between the fixed points on the Ising
line v = 6u and the x -y line v = 2u. All trajectories
that start in the region 0& u&-', v approach this
curve- as they propagate towards the u = 0 edge of
the stability wedge. This principal trajectory is
indicated by a dashed curve in Fig. 5. The princi-
pal trajectory joining the fixed point on the x-y
line with the fixed point on the v = 0 Ising line is

u = —— 60 — -30 —+ 4 6 ——1 . 611
10 v v v, 'v

[2f(l) 1]' 1 1 (2fo 1)'—
+Gf (l) —1]' v(l) v (6f,—1)'

The nonlinear scaling field g~(l) can be obtained
from this equation. Taking the inverse cube root
and multiplying both sides by (128/81m)' ' so that

(6.12)

It is also indicated by a dotted curve in Fig. 5.
The left-hand side of (6.9) with f(l) replaced by

u(l)/v(l) is an irrelevant nonlinear scaling field.
It can be expanded as a power series in [u(l) ——' e]
and [v(l) ——' e], the differences between u(l) and

12
v(l) and their respective fixed point values on the
v=6u line. It will prove convenient later on to set
this sealing fieM equal to zero.

If, now, we multiply (6.9) by v(l) and replace the
left-hand side of the resulting equation by the right-
hand side of (6.8) we obtain, after some rearrange-
ment,

Multiplying by the cube root of (6.12), we obtain

-1/3
g, (1) -=t(l) —l»(l) —v(l)

l

18 1/
t —l2u v e" '/'"

Z (I) =('—"4[f(1)]'--'f(l)+ '—'])"'
810 16

x [1 Gf(l)][1 2f(l)] '/' (6.16)

g4(1) = t(l)(-', 4[f(l)]'- mf(l)+ '-,',])"'
x[1—2f(l)] ' '. (6.17)

The free energy in the previous section was eval-
uated at the l* for which f(l~) = 0. At that l*

g (ly) g e (4/3)l+
( 44 )1/3 (6.18)

where the far right-hand side was obtained by set-
ting f(l) = 0 in (6.16). Thus

l*= (3/g) in[(64)'/4/g ] (6.19)

To find g, and ~M at the transition, we need to know
v(l*). From the fact that the system is on the

+ {2 6/3) g (6.15)

The extra factor (-' s)'/' has been inserted so that
18

g,- t at the tricriti. cal fixed point.
In principle it is possible to express t(l), u(l),

and v(l) in terms of g, (l), g'~(l), and the irrelevant
nonlinear scaling field in (6.9). The construction of
explicit expressions is difficult in this case and
will not be attempted. Fortunately, it turns out
not to be necessary for our present purposes.

We will, instead, start by placing the system
on the principal trajectory (6.10). Then the scaling
fields g~ andg, are given by
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principal trajectory (6.10) and f(l*) = 0 we obtain C,/C =2v(l*)+ O([v(l*)]')- (17&/80)+ O(e'), (6.23)

v(l*) = 17m/160.

Then, from (5.12), (5.15), and (6.19)

(6.20) X+/X-=. +O(&). (6.24)

g ~e I/2(17'/160)(153) )./3)g ( e4 ) )./8]6/&+o(eo)
80 . 6 405

(6.21)

at the first-order transition. Similarly, from
(5.13), (6.19), and (6.20)

bM=e ' (17&/160) ' '[g ( —) ' '] " " '. (6.22)& &Os

The scaling predictions following (6.6) are borne
out.

As 3, final result we present lowest order in c
calculations for the specific heat and susceptibility
rations, C,/C. and y, /y where C, is the specific
heat at h = 0 just above the first-order transition
C is the specific heat just below. y, and y are
similarly defined for the isothermal ordering sus-
ceptibility =(sM/sh),

~ ~,. These ratios are readily
obtained from the free-energy expression in Sec.
V. The ratios are

APPENDIX: l* INDEPENDENCE OF THE FREE ENERGY

The l* independence of expression (5.1) is
demonstrated by taking its derivative with respect
to l* and verifying that the derivative equals zero
to order [e,u(l"), v(l*)]0. The leading-order con-
tribution to the free energy is

gQ

tl'e "cg
0

+ e ' ~[t(l*)M(l *)'+u. (l*)M(l")']. (Al)

These terms are of order [e,u(l*), v(l*)] '. In the
case of the trajectory integral it is because
t(l)'e '" varies slowly with l for small [c,u(l), v(l)].
For the remainder of the expression it is the large
value of M(l*) that causes this leading-order be-
havior. See (5.13).

The l* derivative of (A1) is of order [c,u(l*),
v(l*)]'. Using (4.4), (4.5), and (5.2) we obtain for
the derivative

2(() )'e ' +8 ' -( „ I()") —2M( ))((( )+ M(l )+(d —"4)g(l )M(l ) )
=-2t(l*)'e '*'+ e ' '[-12u(l*)t(l*)M(l*)'- 2v(l+)t(l+)M(i*)' -36u(l*)'M(l*)'- v(1+)'M(1+)']

The leading-order contribution to the l* derivative of the remaining terms in (5.1) comes from the
derivative of the logarithms. To leading order in [e,u(l*), v(l*)]

(A2)

&~ ln[t(l*)+ 6u(l*)M(l*)'] = 2+ O([e, u(l*), v(l*)])

and
I

„,[-,'e '*'f(t(l+)+ 6u(l*)M(l+)')+ —,'e '*'f(t(l+)+ v(l)M(l*)')]

=e-'*'([f(l+)+6u(l*)M(l~)']'+ [f(l+)+v(l*)M(l+)]']

=e ™[2t(l*)2+6u(l*)f(l*)M(l*)+2v(l")t(l*)M(l*) +36u(l*) M(l*) +v(l*)'M(l*) ]. (A3)

Adding (A3) to (A2) we obtain zero to order [z,u(l*), v(l*) J'.
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