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Exactly soluble model of interacting classical spins in one dimension with random interactions
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An exact calculation of the thermodynamic properties of a linear chain of classical spins with nearest-
neighbor bilinear and biquadratic isotropic random exchange interactions is presented. Both open and closed
chains are discussed. Only bond disorder is being'considered here. It is shown that in contrast to the
uniform system, "dipolar disorder points" as well as "quadrupolar disorder points" with qualitative and
quantitative differences from the uniform case occur in this system. This is because the competing dipolar
and quadrupolar interactions are further enriched by the random signs of these interactions. It is interesting
to point out that much of the analysis can be made by means of a study of the eigenvalues of the "transfer
kernel. " The method can also be applied to obtain exact results for a linear chain of spinssof arbitrary
dimensionality interacting through an arbitrary isotropic nearest-neighbor Hamiltonian. In the case of the
open chain, the Edwards-Anderson expedient is found to be exact in all the eases considered.

I. INTRODUCTION

Thorpe and Blume' studied the statistical me-
chanics of a linear chain of classical spins inter-
acting with the Hamiltonian

H=J, S] S]„+J2 S; Sg„2. (1)

Here S, is the three-dimensional unit vector at
the ith site in the chain. They found the following
results: (i) At T=O, this system can be either
ordered or disordered depending on the relative
magnitudes and signs of J', and J,. (ii) There can
be no "dipolar disorder point" since the nearest-
neighbor dipolar. correlation function has always
the sign of —J,. And, (iii} only "quadrupolar
disorder points" can exist; there are no such
disorder points uhen J, is negative. For a small
range of temperatures two disorder points can
occur.

In this paper we study the same system but with

the Hamiltonian

a= PJ', S, S„,+ QJc(S, S...)', (2)

where Jl, , J~~ are considered random, and as such
only the bond disorder is considered here.

The analysis presented by Thorpe and Blume'
can be applied in this case also because of the
special feature of the Hamiltonian (2), namely
that the eigenfunctions of the "transfer kernel"
do not depend on the randem variables, J~~ and
J'~. This feature is absent in the quantum case
as well as in the spin-half one-dimensional Ising
chain with random exchange coupling, as is well
known. ' Vfe may also point out that the "transfer
kernel" method can be used bath for open and for
closed chain systems. ' %e will develop the theory
of both these cases in parallel. It is. shown that

in the large N limit, (thermodynamic limit) an
argument involving the "largest eigenvalue" of
the transfer kernel can be made in the random
system also. For the "open chain, " only the
largest eigenvalue appears automatically. &e
calculate the average of the free energy, dipolar
and quadrupolar correlation functions, entropy
and specific heat in Sec. II. In Sec. III, we specify
the probability distribution function and draw
some general conclusions about the phys&cal prop-
erties of this random system. In Sec. IV we
summarize our results as well as make a few
concluding remarks.

II. AVERAGE FREE ENERGY AND CORRELATION

FUNCTIONS

%e firs t note the following identity'

exp [-p J'D S; S„,—p J&o ( S;~ S„,)']

g 4v ~,'(J', , J', ) 1',.(S,)r;.(S...).
l=0 m-"l

T,. (s, , s,.„), -

where (Y', (S)) are the usual spherical harmonics
and

+1

~,'(JD Jo, ) = — e-"P""P"'p, (-x}dxl i (4)

with P, (x) being the Legendre polynomial of degree
l. The notations and the various properties of
F,„, .etc. , are the same as in Ref. 1. Here p is
related to the temperature via 1/kaT with ks,
the Boltzmann constant. This is the basic "trans-
fer kernel" f'or our problem.

We first observe that for a fixed set of param-
eters (Jg, J~o), in view of the properties of Legendre
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polynomials, we have

~X,/X,'~ & I for l =1,2, 3, . . . .
In other words Xko is the largest of the quantities,
jX,f.' Several properties of the Xkl follow at once
from the knowledge of P,(x):

"1
(a) Xok(JkD Jo) = ' e d~ks cosh(pJ x)dx&0.

(8)

(b} Xk(JkD, Jko) = — ~ e d~k" xsinh(p JkDx) dx,
4 0

Z''"d= '' ' T (S S)
4v J 4v

~" Z „(S„,S,).

The condition (12} then leads us to the more com-
plicated expression

N

Zc'ose = Q (2l +1) Xk(JD J )
2=0

The correlations functions can also be similarly
calculated, and they are

and so

(sgn JD) Xk( JkD, J~) ~ 0. (7)

(c) &, (J'k, Jko) = (-1)' X",( JkD, J-ko), fo'r all l . (8)

, , le yk1l+1

k =)-11

E

k=1

00

kQ (2l+1)
r=o

g(2i+ i)
l=o

(S.~ S }closed (14)

The above properties hold for all k. Qle use Eq.
(3) and the orthonormality properties of (Y',„,f in
calculating the various physical quantities of
interest. We discuss the open and closed chains
under separate subsections.

A. Open chain

yk
k=1

40

Q (2l+1)
t=o

Q (2l + 1}
E"-0

(s ( S ~ S )s l)closed

t+2

k =i-1 '"l1" '

-. =-. ~ (J' J')0+k'

i ier) .i. c yk( JD Jg)k41 0 k~ k
(10)

In Eq. (2), i runs from 1 to N —1 so that the
first member of the chain is i = 1 and the last
one is i =N —1. The partition function is then

dS, dS„( )
4m ~ 4m

T„,(S, „S„)
and using Eq. (3) and the orthonomality properties
of I', , we at once obtain the result

Zoeen yk( JD JQ) (9)
k=1

The following correlation functions are of special
interest to us in the discussions to follow. They
are calculated using the same tricks as indicated
above. The thermodynamic average is denoted
by the usual angular brackets.

The free energy is given by

—PE =lnZ

and we need the average of F and the various cor-
relation functions over the random distribution
of (JkD1 Jko) in order to discuss. the physical pro-
perties of the system. We denote this averaging
by enclosing the function being averaged within a
second set of angular brackets, (~ ~ ~ ).

We assume (JkD, Jko] are independent random vari-
ables and only a distribution law specified by the
function P(JD,Jo}. In this way', we have kept the
possible statistical correlation in J,J~, .for
purposes of generality. %e do not envisage here
a correlation among the parameters of different
sites, J~~ with Jk„ for example, as this would
make the calculation more complex, even if in-
teresting. ' In the open chain case, this averaging
procedure leads us naturally to the following
expressions:

( —(S,~ S,,„)'
— —". yk( JD JQ)

k'="-'i~o(Jk Jk} P(P""}=-(N - I) ~t P(J Z') de
mdO

B. Closed chain

(12)

and we also place the periodic condition on the
coupling strengths. Then,

'

In Eq. (2), i runs from 1 to N with the condition

SN„=S, ,

xd jo Ink (JD Jo) (18)

((S,~ St,„}csee) =(~ ~ P(J'D Je)dJDdJ'O'
„~,(ZD, Zo) l'"

X,(ZD, Z') &
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and

y f JD JQ lt'I

P(J J' )dJ dJ
~ (J J')

(18)

%e are thus naturally led to consider certain
averages of the eigenvalues of the "transfer kernel"
over the distribution of the random coupling pa-
rameters. The similarity in the formulation for
the pure system case is thus demonstrated. From
Eq. (16), we may note that the Edwards-Anderson
trick is exact in the open chain case. Explicitly,
we have quite generally, the result

( ) I

(A, 1
lim = lim t
n 0 n n-0 X

exp s ln X0

=lim, —-

exp n ink' -1

The "disorder points" will be discussed by
studying the nature of the correlation functions,
Eqs. (1V), (18) as a function of temperature and
parameters specifying the distribution function
P.

The disorder points occur because of the com-
peting interactions among the spins in this sys-
tem. They occur as oscillations in the spin-spin
correlations, Eqs. (17) and (18), in contrast to
their usuaal exponential decay. In the random sys-
tem, it is clear from the expressions derived
above that these spin correlations being further
averaged over the random variables open up
interesting possibilities. In particular, in the
uniform case, the signs and magnitudes of J~,J
played important roles in determining the disorder
points. In the random system one may allow for
both signs of interactions with differing strengths,
thus incorporating the various possible conditions
for occurrence of disorder points becomes rel-
atively easy; one has a further competition in-
troduced into the system viz. ferro- and anti-
ferromagnetic interactions along the chain. %e
discuss these in Sec. IH.

The average energy of the system is also of
interest and it is given by

n 0

= g(Ink~),

in the thermodynamic limit.
The discussion of the. closed chain case is some-

what complicated as is clear from the outset. In
the thermodynamic limit, N- ~, the distinction
be'tween open and closed chain systems must
disappear, and it indeed does so in the present
case. From Eq. (13) we have

Te
tO

p.&pclceed) |V'
~ p{JD JQ) d JDd JQ ]ny ( ID JQ)

From (16) and the properties of the Legendre
polynomials, we observe

&&») s &&& )
N BP N

The entropy of the system is given by

Ot

(18)

One must now use Eq. (5) to essentially drop the
second term from further consideration, since
averaging over the distribution of (Jf,J~o) will not
spoil the inequality in any significant way. Exactly
similar arguments must be used in computing
the averages of the correlation function, , Eqs. (14)
and (15). We are thus led to consider the expres-
sions for the open chain case only. %e shall drop
the nomenclature of "open" and "closed" henceforth
with the understanding that we have taken the ther-
modynamic limit.

hand the specific heat is

Performing the indicated differentiations and
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using the properties of the Legendre polynomi-
als, t;he specific heat is found to be

3 g 15 X )'

q, (8 X, 4 X', 26 X, 62)i'
'(35 Xo 9 &, 63 A.o 315)

(23)

x,(J„-J',)
+A, (1 -A, ) '(J" J,')

2

x,(J„J,)+(1-A,)A, '(," ')

+(1-A
0 1~ 2

(27)

In Sec. III we shall discuss the consequences
of these calculations by taking a special but rep-
resentative form for P and contrast the results
with the uniform case considered in Ref. 1.

III. MODEL RANDOM SYSTEM

97e choose the probability distribution function
P in the following form:

P(J Jo)=[A 6(J -J,)+(1-A,) 6(J + J', )]

=A, A, 1nko(J„J,)

+ A, (1 -A, ) lnXO(Z„- J',)

+ (1 -A. ,)A, , ink, (J'„J',)
+ (1-A,)(1 -A, ) ink, (J'„-J,'), (25)

x, (J'„J',)«S S;,x» =A, A2 -'(J"J')
0 1% 2

~,(J„J,)
+ A, (1 -A, ) '(

J' J(I A )A 1( 1& 2

x[A, 6(J —J,)+(1—A, ) 6(Je+ J,')] .
(24)

This is normalized to unity explicity. It gives
the uniform system as a special case when we
take A, =1=A,. This function has the feature
that it has both positive and negative signs of
JD and J~ built into it with appropriate weights.
In this way we have allowed for both ferro- and
antiferromagnetic interactions in the system.
The constants A„A„J„J'„J„andJ', characterize
the random system. We now have: (we use the
properties of A, B,C of Sec. II in deducing the
properties below)

7/e shall now consider special situations:
Cese (A) Taking A =1 A =l. or A =0 A =0.

or A, =1,A, =0; or A, =O,A, = 1; do not give res-
sults different from those already discussed by
Thorpe and Blume. '

Case (8): If we take a symmetrical distribution
of the coupling strengths, i.e., J,'=J; and J,'=J„
then we obtain

«S, S„,»e =(2A, -l) ~A, "( " ')
0 1P 2

+(1-Am) ' " '
~

(28)

and

«-,'(S,'S„,)'- —,') &, =A, ,',J"J',
oh 1y 2

+(I A ) 2(J1& JQ)
x (J'„-J )

(29)

The disorder points occur when « S, S,„))or
when (& -', (S, 5,„)'——,')) change sign, as a function
of temperature. In view of Eg. (8}, we note that
toe cannot have "dipolar disorder" as in Case (A)
but "quadrupolar disorder" cari exist as in Case
(A). Since there is no "quadrupolar disorder" for
negative J„ in the uniform case, we may deduce
from Eq. (29) that we teil/ have guadrupolar dis-
order for certain values of J, and A, . By letting
A, be nonzero, we have allowed for some negative
J, to occur inthe system. This is anew feature.
Another point, also stemming from the result of the
uniform case, is that there can be two disorder points
for a small range of temperature which rhay or may
not appear now depending on the value of A, . Thus,
we find a qualitative as well as quantitative change in
the nature of the results even for a symmetrical dis-
tribution of the parameters.

Case (C): Take A, =1, but keep the asymmetry
in the distribution of J ~. Then
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,(J„J,)

The case with A, =O is similar.
Here we have a new situation, because we can

now have both dipolar and quadrupolar disorder
points. This is because the random distribution
of J~ allows an unsymmetrical disposition of
ferro- and antiferromagnetic interactions along
the chain. When A, =0 or A, =1, we have no di-
polar disorder but as A, becomes fractional lying
between 0 and 1, this disorder begins to develop.
In this case, we find a qualitatively different nature
of the results compared to cases (A) and (B}.

Case (D}: If we keep A, and. A, arbitrary as well
as maintain the asymmetry, we obtain results
similar to cases (B) and (C) but which will differ
from them only uantitatively.

Let us denote, . 5, „by cos8«„. Then the
disorder points occur whenever

((cos8, , „))=0 (dipolar),

or

((cos'8, ,„)) =-,' (quadrupolar) .
In this form, the ease with which the disorder
points occur in the random case may be physically
more transparent. In the uniform (nonrandom)
situation, the thermodynamic average alone deter-
mined how the spins align or misalign with respect
to one another at a given temperature. The new
aspect of further averaging over the randomness
allows for more possibilities of spin correlations
of the type -we are looking for. The quadrupole
interactions tend to disalign the antiferromagnetic
arrangment (when J', is negative) which gives
(cos8, , „), a negative value; by allowing for
both ferro- and antiferromagnetic interactions to
exist in the random case, the possibility of dipolar
disorder point in spite'of the quadrupolar interac-
tions becomes evident. ' For the quadrupolar dis-
order point to occur, we require that on the aver-
age the spins must orient themselves in all direc-
tions in an equally likely fashion so as to give
((cos'8, ,„))= —,'. For certain strengths of J'„J','
then we may achieve this disposition of spins in
the random case in contrast to the uniform situa-
tion.

We have thus shown that in the model system
considered here we can have a rich variety of
disorder points in contrast to the ease discussed
by Thorpe and Blume. ' By changing the structure
of P from that given by Eq. (24) we do not expect

IV. SUMMARY AND CONCLUDING REMARKS

We have shown that a system of classical spins
interacting isotropically with a Heisenberg and bi-
quadratic exchange between nearest neighbors but
with random interaction strengths can be solved
exactly in one dimension. The discussion can be
carried out in terms of the averages over the ratio
of eigenvalues of the transfer kernel to its largest
eigenvalue, ((X,lX,)), over the distribution of the
random variable. This point may be of general
theoretical interest in the discussion of these and
other random systems. One major feature of our
analysis is that we may have both dipolar and
quadrupolar disorder points in the random case
in contrast to the uniform system. This is be-
cause in the random case, the competing dipo-
lar and quadrupolar interactions are further
enriched by the possibility of having random signs
of these interactions as well. It may be noted in
passing that we can compute all the properties of
the system when the quadrupolar interaction is
absent. Fisher' was the first to discuss this uni-
form system of continuous spin, nearest neighbor
Heisenberg Hamiltonian. The random case has
been discussed iridependently by Thorpe' and by
Tonegawa et al.'

We may calculate the average spin-susceptibility
of our system by including a small magnetic field
term in the Hamiltonian, Eq. (2) and calculating
the ave~age free energy to second order in the
field. In the thermodynamic limit then, we obtain
in the usual notation,

( ( )) Ng psP 1+u
12 1-u (32)

where

u = ((S. , S.)) = (~,/~, ) = Eq. (26) (33)

for our model. In fact, the momentum-dependent
static susceptibility is

any drastic changes in the properties of the system.
This can be achieved by making the delta functions
spread out with preassigned widths, etc. We shall
not discuss this any further.

From Eqs. (21) and (23), it::may be noted that as
one crosses the "disorder points" one does not ob-
tain a dramatic change in the thermodynamic quan-
tities. This is because they contain other terms
besides those involving the disorder points. This
observation shows that disorder points are perhaps
best studied by a direct examination of the spin
correlations themselves. One such experiment is
the study of neutron scattering which would give us
information about the dipolar disorder points, as
will be shown in Sec. IV.
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Ng'ps2 P 1 —u'
&x (~, &)&=

where a is the distance between nearest'neighbors,
and q is the wave vector. This quantity is of in-
terest in discussing the neutron scattering from
such random systems.

If we consider an anisotropic Heisenberg model,
with continuous spins, the trick used in this paper
will not work because the eigenfunctions of the
"transfer kernel" will depend on the exchange,
coupling. ' We then obtain

N- j.
Z'„".' =

I [(Ok~0k+1)X~], (35)
Qel

where (Ok ~0k+1) is the overlap integral of the
wave functions between nearest neighbors.

The method empoyed here works also for d-
dimensional spins with the interactions of the form
given by Eq. (3),' as well as arbitrary isotropic
nearest-neighbor interactions, '""given by

a=+ f g, ~ 5...) . (3

Here f, is an arbitrary function, and S,. is a d-
dimensional spin vector with the constraint ~S, ~'
=A. In the case of the open chain, the Edwards--
Anderson trick is found to be exact. For the

Heisenberg model with A = 4, in the limit d -~,
we obtain the results for the randomized version
of the Berlin-Kac model discussed by Stanley. '

From Eg. (34) we note that the dipolar disorder
point may be experimentally observed via a neutron
scattering setup. We may also draw the attention
to the reader to the review article of Steirier et al. '~
where a detailed account of theoretical and experi-
mental studies on one-dimensional magnetic sys-
tems is given. In this article, among the new di-
rections for investigation, the study of disordered
chains was suggested. The present article is a
contribution towards this area of research.
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