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Entropy of a random-bond Ising chain
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e study the one-diniension;il Ising rnodcl in;i ni;ignetic field vrith e;ich nc.irest neighbor J,
;issigned;it r;indons. For J, =+Jo v ith equ;il prob;ibility, Ncrnst's l,iw is viol;itcd, Iust, is Kirkp, i-

trick h;is f'ound; however, when son&i uncert;iinty is introduced into thc v;ilue of J„ the entropy

v,inishes line;irly vr'ith the tensperalure, much, is in the pi;ithen&atic, il two-level niodel for gl;isses
ot' Anderson ct «l.

The low-tet11perature properties of' spin-gl'isses;ire
not very well known. Recently, there h is been i t';iir

;imount of interest in the possible violation ot' the
third law of thermodyri imics ' in these systenis.
Kirkp itrick' has recently f'ound th it;i model in two
;ind three din1ensions with i H imiltoniin given by

H =—g J„a,&r;

with IT, =+I 'ind J„being +Jo r,indomly f'or ne irest
neighbors and zero otherwise, h is I nonv;inishing en-
tropy iri the T -0 IImit. The question;irises is to
wh it h ippens if' each J„ is not restricted to be Jfi ex-
;ictly but is governed by;i continuous prob, ibility dis-
tribu t ion.

Here we present results on I model th it is ( i) sim-
jile enough so that a tew ex ict results (in;iddition to
numeric'il results) can be obt iined„ ind (b) we believe
it inswers, it least partially, the question just posed.

The model we study is the one-dimension il

r;tndom-bond Ising model" described by the H imil-
tonian

(2)

where the value of' each J, is fixed (quenched) in-

dependently and at r,liidom. E ich J, is set equ il to
+Jo+ hJ with equal probability;ind hJ is;iny number
satisf'ying ~SJ~ ~ —AJ, where AJ is a given qu;tntity

(i.e., the value of each J, is independently issigned by
;i probability distribution which is given by two squ ire
hats centered about +Jo and —Jo, e'ich h iving I width
AJ ). Note that g, , J; =0 is only satisfied in the

average. Previous results' on this model for J =+Ji~
(AJ =—0) show a low-temper'iture discontinuity of' the
m ignetization (M) versus the ipplied field (H) which
aire idy suggested a violation of the third 1 iw of ther-

modyn;in1ics;it the points ot discontinuity.
We find th it, if'e ich J, =+I,) (4J =—0), then f'or;i

wide ringe of' vilues ot' I-I, the entropy (S) does not
Y;lnish Ill the T 0 Illlllt (,'illd furthernlore, S depends
on 0 In th it lin1it). This result is the one-dimensional
version ot' Kirkp'i'trick's two-;ind three-din&ension;Il

.results tor H =0. On the other h;ind, f'or AJ AO;Ind
AJ « Jo, then S tikes the sin1e v'ilues is f'or AJ =0
it kT & AJ„but S = F(fI) T tor kT « AJ.

First we c'ilcul;ite the p;irtition function Z using the
tr;inst'er-n1'itrix method. ' Then

Z(p (JI v, PH„IV) = Tr g T(i, )

where
1

p(J.+8)
I

T(J) = pj
e

where P =1/kT, k is the Boltzmann constant, and N
the number ot bonds in the ch iin.

Note th it f'or II =0 the pirtition t'unction f'or the
one-dimension il model under consider ition is equ il

to the ordin'iry one-din1ensiotl il Ising-n1odel p;irtition
function. ' However, thit is not the cise 1'or II &0;
the p;irtition function h is not been obt'tined;In'Ilytic il-

ly in this cise.
We perf'orm numeric illy the N-m'itrix n1ultiplic;ition

shown in (4) to obt'iin Z t'or different vilues ot II, P,
;ind AJ f'or N =4000. The entropy f'ollows from
5 = rf(kT ngf)/ t)(Tperformed numerically). Figure l

shows the entropy per spin, 5/k, vs T/J„ f'or
II =2.0J, ind I-I = I.SJ, ;ind v;irious v;ilues of'

AJ(AJ/J) =0, O. l, and 0.3). Note that S f'ails to van-
ish in the T 0 limit only for AJ =0, in;igreenient
with Kirkp itrick's results, but S = f (II, AJ) T tor
kT « AJ when AJ &0.
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To get;i simple picture for the mech;inisnl behind
this result, consider first the ground st;ite f'or
J() ( 0 ( 2J„'ind 3J = O. A nlon) en t's reflection
shows th;it;iny two 'idj icent spins in the ch;iin coll-
nected by;i f'errom ignetic bond point up in the
ground st;ite (since H & J„). The only possible

f'i&i. l, 1'.ntropy per spin vs the teniper;Iture (in units of'

J()) i» shown f'or difterent v'Ifues of AJ (the uneert;linty in J ),
;usd of' the extern;&l field (.fI) in units ot Jo.

ground-state, degener;icy must, therefore, come f'rom

ch;iinlets ot' two or more consecutive antiferronl'ignet-
ic (A ) bonds s'indwiched in between ferronl;ignetic (F)'
bonds. Furthermore, it is easily seen th;it f'or ch'iin-
lets with in even number of 3 bonds there is no de-
gener'icy, since fI (2JO ind the two end spins are up.
On the other h ind, for ch «inlets with an odd number
(l;irger th in one) of' 3 bonds, one of these bonds
must necess'irily be broken (just is closed so c'illed
/i. «sfjafee/" ch;iinlets in two or three dimensions); it is
not too difIIictilt to re'ilize that the broken bond can
only occur it n + I places in an (2» t I ) -3-bond
ch;iinlet. The nunlber of ch;iinlets with 2» + I 3
bonds in;I chain with 1V bonds is (—) "" W (lV is the

I 2„ 13

tot il number of bonds in the chain), 'ind therefore

—= $ ( —,')'"'-'ln(n t-1)
k

which yields S/k =—0.0340, in agreement with the
T=0 limit shown in Fig. 1 for H =1.5JO 'ind AJ =O.

On the other hind, the situ'ition is qualit;itively
different f'or AJ WO. Again, consider the f'airly

representative c;ise in which H is in the neighborhood
of 1.5J(~, but now with 0 & AJ (& Jo. In this c ise
(3J &0) e;ich of the» +1 diA'erent positions for the
broken bond in ch'iinlets with 2» +1 A bonds
corresponds to i diA'erent energy in general; thus, the
degeneracy is lif'ted. For inst ince, a three-A-bond
ch iinlet with exch inge constants —Jo t-AJI, —Jo %6J2,
;ind —Jo ~AJ3 h is two levels sepir'ited by the energy
2

~
8J3 F&Ji (. The average entropy of' a system of in

energy levels distributed r indomly and unif'ormly in
;in energy interv;il 2AJ is

p2 t)J p23J 23J
~of I Cl Eof P(+of) I Cl fn& —

I P (&of--I) ff 6I P (eI ) Sf)((&I &2 ~

0

where

I)l

S„,(ai, a&, . . . , a„,) = kT in $r'
. i =I

;ind P(.e, ) is the prob;ibility distribution ot' the energy ot' the ith level. Equivalently,

t 23J
S», = w! I r(a», P(a»r) Jl rim», ~P(a», ~) J ill~ S(ei, a~, . . . , a»)P( )ei

Now, f'or kT « 23J/in, only the two lowest levels
contribute significantly; therefore,

Since the nunlber of chainlets with 2» +1 A bonds
is iV(f/2)-"" and each of them contributes with» +1
energy levels, the total mean entropy per spin is

whence,

S„,=0 82inkT/AJ 1'or inkT «. 2AJ (s) which yields
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S/k =—0 079. 7kT/AJ

in igreement with the low-temperature results shown
in Fig. 1 for kT « AJ.

Figure 2 shows S/k vs H/Ja for various tempera-
tures and AJ =0. Note that s depends on H in the
T -0 limit, showing singular values at H/Ja = 2/m
(in = 1, 2, 3, . . . ). For in insight into the origin of' the
peaks at H/Ja=2/m„consider the case of H/J0=2; in

contr'ist with the Jo & H & 2JO case, where only
chainlets with an odd number of A bonds have degen-
eracy in the ground state, the ch iinlets with an even
number of 3 bonds do contribute for H =2JO. C.'on-

sider, tor instance, two 1 bonds sandwiched between
two F bonds. C'learly, the spin in the middle can ei-
ther be up or down with no ch inge in energy.

More generally, to obtain the degeneracy (kk„, ) of i

»-3-bond chainlet with the two end spins up (i.e. , the
spins at the positions zero and narc up), divide the
st ites of the chainlet into two sets. In one set (set I),
the spin at position 2 is up, while in the other set (set
II), the spin at position 2 is down. Thus,

r& „= && „., (I) ~&, (l) t- r& „.,(II) ~&, (II) ,

where fl„,(I) is the number of states of a chainlet of
in A bonds with the two end spins up, and E?„,(II) is

the number of states ot a ch iinlet of in 3 bonds with

one end spin down and the other end spin up. Now,
B„,(i) = ()„.2 and B,(l) = 02. Note now thai if a

spin is down, then its nearest neighbors are both up,
in the ground state. Therefore,

fk „.)(II) = (?„3
and

~&, (11) =1 .

C'. onsequently,

k)„=2k)„p+ f? „3
which, together with f)2 = 2 and E? 3

= 3, can be used
to generate the value of any 0,„. Then the entropy
per spin in the 7 0 limit given by

0.52—

0.28—

'I
I

I

+

+

+
+

+

I

T/Jp

+ 1.0
s 07
4 04
~ O. l

0.03

I
I

I
I

'
I

QJ=O

0.24—
+

I ~

0.20 —'
~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~

44
~ ~

0.16—
~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~4 ~
4 ~

4
4

+ 4

+

+

+ +

~ ~ ~ ~ ~ ~

S/4

0.12—
~ 44

0.08—
4

444 44 44444 4 4 4 4
4 4444

4
4

~4 ~4
44 E ~ ~ ~ ~ ~ ~ ~ ~ 44444~ ~ ~

~4

QQQ ~ 'r l I l I j I

0 0 0.4 0.8 1.2 1.6 2.0
H/Jp

i'. I

2.4

F'1(i. 2. Entropy per spin vs the applied field (H) in units
ot' Jl& is shown tor AJ =-0 ind ditTcrcnt v'ilucs ot' thc tcni-

perature (T) in units of J(). Note that S depends nontrivi illy

on II in the T,. 0 linlit, against Nernst's law.

tern provides a concrete model of the Anderson et at. "
mathematical two-level random model and, according-
ly, s vanishes linearly with T, as exhibited in Fig. l.

The error analysis we have performed follows close-
ly the treatment of Ref. 5. There are two main
sources of error: (a) the fact that calculation is per-
formed for a finite chain, and (b) the fact that the
results for a chain of N given J's are not iveraged
over an infinite set of chains with difTerent distribu-
tion of' J's. The resulting error is shown in Fig. 1.

—= g (—,)""lnB„ ACKNOWLEDGMENTS

yields S/k =0.143, in agreement with the value shown
in Figs. 1 and 2.

We thus conclude that Nernst's law is not fulfilled
for J; =+Jp (AJ =0), but if there is any uncertainty in

Jo (AJ AO), then at very low temperatures, the sys-
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