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We study the one-dimensional Ising model in a magnetic ficld with cach- nearest neighbor J,
assigned at random. For J; =%/, with equal probability, Nernst's law is violated, just as Kirkpa-

trick has found; however, when some uncertainty is introduced into the value of J,; the entropy

vanishes linearly with the temperature, much as in the mathematical two-level model for glasses

of Anderson ¢t al.

The low-temperature properties of spin-glasses are
not very well known. Recently, there has been a fair
- amount of interest in the possible violation of the
third law of thermodynamics'-2 in these systems.
Kirkpatrick® has recently found that a model in two
and three dimensions with a Hamiltonian given by

H==3 Jioo; . (n

i)

with o, =*1 and J; being +J, randomly for nearest

neighbors and zero otherwise, has a nonvanishing en- -

tropy in the T —0 limit. The question arises as (o
what happens if each J; is not restricted to be +J, ex-
actly but is governed by a continuous probability dis-
tribution.

Here we present results on a model that is (a) sim-
ple enough so that a few exact results (in addition to
numerical results) can be obtained, and (b) we believe
it answers, at least partially, the question just posed.

The model we study is the one-dimensional
random-bond Ising model** described by the Hamil-
tonian )

N

Y
H=— 2.’,0’,0‘, a—H 2 o, (2)
i=l

i=1
where the value of each J, is fixed (quenched) in-
dependently and at ranudom. Each J, is set equal to -
+J, + 8J with equal probability and 8/ is any number
satisfying |8J| < %A.I, where AJ is a given quantity
(i.e., the value of each J; is independently assigned by
a probability distribution which is given by two square
hats centered about +J, and —Jy, each having a width
AJ). Note that 3;¥ J,=0 is only satisfied in the
average. Previous results® on this model for J =+J,
(AJ =0) show a low-temperature discontinuity of the
magnetization (M) versus the applied field (/) which
already suggested a violation of the third law of ther-

18

modynamics at the points of discontinuity.

We find that, if each J,=+J, (AJ =0), then for a
wide range of values of H, the entropy (§) does not
vanish in the 7 —0 limit (and furthermore, S depends
on H in that limit). This result is the one-dimensional
version of Kirkpatrick’s two- and three-dimensional

results for H =0. On the other hand, for AJ #0 and

AJ << Jy, then S takes the same values as for AJ =0
it kT 2 AJ, but S =F(H)T for kT << AJ. ,

First we calculate the partition function Z using the
transfer-matrix method.® Then

\Y

Z(BYUiy. BH.N) =TI TG . (3)
i=1

where
) BU,+H) -8,
e e
TUD=| - pu-m]| - 4)
e ‘

e

where 8=1/kT, k is the Boltzmann constant, and N
the number of bonds in the chain. )

Note that for H# =0 the partition function for the
one-dimensional model under consideration is equal
to the ordinary one-dimensional Ising-model partition
function.” However, that is not the case for H #0;
the partition function has not been obtained analytical-
ly in this case.

We perform numerically the N-matrix multiplication
shown in (4) to obtain Z for different values ot H, 8,
and AJ for N =4000. The entropy follows from
S =93(kTInZ)/dT (performed numerically). Figure 1
shows the entropy per spin, S/k, vs T/J, for
H=2.0Jy,and H =1.5J, and various values of
AJ(AJ/Jy=0, 0.1, and 0.3). Note that S fails to van-
ish in the T —0 limit only for AJ =0, in agreement
with Kirkpatrick's* results, but S = f(H, AJ) T ftor
kT << AJ when AJ #=0.
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FIG. 1. Entropy per spin vs the temperature (in units of
Jy) is shown for different values of AJ (the uncertainty in J),
and of the external field (H) in units of J,,.

To get a simple picture for the mechanism behind
this result, consider first the ground state for
Jo < H <2Jyand AJ =0. A moment’s reflection
shows that any two adjacent spins in the chain con-
nected by a ferromagnetic bond point up in the
ground state (since H > Jy). The only possible

ground-state degeneracy must, therefore, come from
chainlets of two or more consecutive antiferromagnet-
ic (4) bonds sandwiched in between ferromagnetic (F)’
bonds. Furthermore, it is easily seen that for chain-
lets with an even number of 4 bonds there is no de-
generacy, since H < 2J, and the two end spins are up.
On the other hand, for chainlets with an odd number
(larger than one) of 4 bonds, one of these bonds

must necessarily be broken (just as closed so called

Srustrated® chainlets in two or three dimensions); it is

not too difficult to realize that the broken bond can
only occur at n +1 places in an (2n +1)-4-bond
chainlet. The number of chainlets with 2n +1 4
bonds in a chain with N bonds is (—;—)2” BN (Nis the

total number of bonds in the chain), and therefore

%)

=3 (P nln +1)

ko3
which yields S/k =0.0340, in agreement with the
T —0 limit shown in Fig. 1 for H =1.5Jy and AJ =0.
On the other hand, the situation is qualitatively
different for AJ #0. Again, consider the fairly
representative case in which / is in the neighborhood
of 1.5/, but now with 0 < AJ << J,,. In this case
(AJ #0) each of the n +1 different positions for the
broken bond in chainlets with 2# +1 4 bonds
corresponds to a different energy in general; thus, the
degeneracy is lifted. For instance, a three-4-bond
chainlet with exchange constants —Jy +8J,, —Jy +8J,,
and —J, +8J; has two levels separated by the energy
2|8J;—8J,|. The average entropy of a system of m
energy levels distributed randomly and uniformly in
an-energy interval 2AJ is

—
_ 200 LAV 28
S =j:) de,, Ple,,) j:) de, Ple, ) - - - j;) de, P(e)S, (e, €. ..., €,)
where
Sm(€|v€1 ..... f/n):—aa_r /\'Tlnlgl(’_ﬁs/]

and P(¢,) is the probability distribution of the energy of the ith level. Equivalently,

2

_ LAY T Q
S,=m! de,, P(e,,) de,_Ple, ) - - - de Sley, e, . ..
0 0 0

Now, for AT << 2AJ/m, only the two lowest levels
contribute significantly; therefore,

c _ mKkT

n=5 7 do dxlin(l +e7™ +x(1 +e9) Y]

whence,

S, =0.82mkT/AJ for mkT << 2AJ . (5)

. €,)P(e))

r

Since the number of chainlets with 2n +1 4 bonds
is N(1/2)°" "3 and each of them contributes with # +1
energy levels, the total mean entropy per spin is

;S:: l\l"“ 1yan+3
=082 3 #D(3)

which yields
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S/k =0.0797kT/AJ ,

in agreement with the low-temperature results shown
in Fig. 1 for AT << AJ.

Figure 2 shows S/k vs H/J, for various tempera-
tures and AJ =0. Note that s depends on H in the
T —0 limit, showing singular values at H/Jo=2/m
(m=1,2,3,...). For an insight into the origin of the
peaks at H/Jy=2/m, consider the case of H/Jy=2; in
contrast with the Jo < H < 2J, case, where only
chainlets with an odd number of 4 bonds have degen-
eracy in the ground state, the chainlets with an even
number of 4 bonds do contribute for H =2J,. Con-
sider, for instance, two A4 bonds sandwiched between
two F bonds. Clearly, the spin in the middle can ei-
ther be up .or down with no change in energy.

More generally, to obtain the degeneracy ((,,) of a
n-A-bond chainlet with the two end spins up (i.e., the
spins at the positions zero and n are up), divide the
states of the chainlet into two sets. In one set (set 1),
the spin at position 2 is up, while in the other set (set
1), the spin at position 2 is down. Thus,

‘2,, = (l,,_z(l) (lz“) + (2,,._2(”) (22(”) ,

where ,,(1) is the number of states of a chainlet of
m A bonds with the two end spins up, and Q,, (1) is
the number of states of a chainlet of m 4 bonds with
one end spin down and the other end spin up. Now,
O, =Q,_,and Q,(I) = Q,. Note now that if a
spin is down, then its nearest neighbors are both up,
in the ground state. Therefore,

Q0D =0,
and
Q,(D =1
Consequently,
Q,=20,,+Q,5 ,

which, together with ;=2 and €;=23, can be used
to generate the value of any Q,. Then the entropy
per spin in the 7 —0 limit given by

S_ S Lyne2
'IT-—”EZZ(?) ¢ InQ,,

yields S/k =0.143, in agreement with the value shown
in Figs. 1 and 2.

We thus conclude that Nernst’s law is not fulfilled
for J;==+Jy, (AJ =0), but if there is any uncertainty in
Jo (AJ #0), then at very low temperatures, the sys-
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F1G. 2. Entropy per spin vs the applicd field () in units
of Jy is shown for AJ =0 and different values of the tem-
perature (7) in units of Jy. Note that S depends nontrivially
on Hin the T -0 limit, against Nernst’s law.

tem provides a concrete model of the Anderson ¢t al.’
mathematical two-level random model and, according-
ly, s vanishes linearly with 7, as exhibited in Fig. 1.
The error analysis we have performed follows close-
ly the treatment of Ref. 5. There are two main
sources of error: (a) the fact that calculation is per-
formed for a finite chain, and (b) the fact that the
results for a chain of N given J’s are not averaged
over an infinite set of chains with different distribu-
tion of J's. The resulting error is shown in Fig. 1.
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