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Effect of random anisotropy on magnetic properties of amorphous systems
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We consider the random anisotropy model for amorphous magnetism by making a local-mean-field

approximation (LMFA) on arrays of spin-one particles. Hysteresis loops and the temperature (T) dependence

of several thermodynamic quantities are presented for various values of the ratio of the strength of the
exchange (J) to the strength of the uniaxial anisotropy (D). Using the LMFA limits us to systems with a
small nuinber (N) of spina, of which we explicitly consider N = 64, 216, and 1000. We assume periodic
boundary conditions on a system with N'" spins along an edge, nearest-neighbor coupling of constant
strength, and six nearest neighbors (as for a simple cubic lattice). For J & 0 the free energy of spin-glass-

like states is higher than that of corresponding states with remanent magnetization. The dependence of the
coercive field (B,) on J and D is discussed and the apparent discrepancy of Chi and Alben vis d vis Callen,
Liu, and Cullen concerning the behavior of B, for large D is clarified. A calculation of the temperature

dependence of B, is presented which is reminiscent of experimental results. This random anisotropy is found

to give rise to a second peak in the specific heat for suitable values of D/J. The magnetic susceptibility

Qr) is calculated for both positive and negative j and shows positive and negative paramagnetic Curie-Weiss

temperatures, respectively. The slopes of the gz '(T) curves for T well above the critical temperature (T,)
have values that are roughly equal to 3/2, the value appropriate to D = 0 and 5 = 1. The local order
parameter q is used to identify T„which correlates well with the critical temperature identified from other
thermodynamic quantities. The presence of the random anisotropy is found to reduce T, by up to about 2S%.
The results of several temperature-dependent calculations are summarized in a phase diagram and regions of
paramagnetic, random ferromagnetic, and random antiferromagnetic (or spin-glass-like) behavior are
identified.

I. INTRODUCTION

In recent years, there has been much interest
in various models describing magnetism in amor-
phous metals. Basically, these descriptions have
been proceeding along two paths. In one approach,
it is assumed that the most important effect of
amorphous structure on magnetism is that it in-
troduces fluctuations in the exchange interactions. '
In a second approach, the one considered in this
paper, the crucial feature is assumed to be the
existence of local-random-anisotropy fields. 2 Of
course, the problem of describing an amorphous
magnetic material is more complicated than just
choosing one of these descriptions. For example,
questions involving the nature of the interactions
and the nature of local-environment effects other
than anisotropy may also be asked. Also, the
disorder must be sufficiently characterized to
allow unique calculations to be made; yet, it is
often unclear how well this characterization will
describe a real material. In addition, an amor-
phous solid has no translational symmetry and
many of the traditional calculational procedures
of solid-state physics are not applicable.

The formulation of any model for an amorphous
system contains, as an essential idea, some con-

cept of disorder. Therefore, a short discussion
of the general concept of disorder may be appro-
priate. In magnetic systems, disorder can arise
in several ways. ' One example is that of a crys-
tallline alloy in which there are two types of
atoms (say, A and B) with at least one being
"magnetic. " This is an example of a site-disorde~
problem in' that the bond between any two sites
(AA, BB, or AB) is determined by the state of
occupancy of each site. A second example of a
disordered magnetic system is that of an amor-
phous structure containing magnetic ions. To de-
scribe such a system, one often uses a bond-disor-
der model. For example, suppose one wishes to
describe an amorphous magnet having only one
type of atom. The simplest bond-disorder problem
arises by assuming nearest-neighbor (nn) bonds
(which may even be considered as fixed in number)
that are statistically independent and whose
strength is specified by some probability distri-
bution. Another possible type of disorder in
amorphous systems is that in which all magnetic
ions are the same but reside in different environ-
ments which are characterized by different aniso-
tropies. ' Qf course, for an amorphous system,
even more complicated forms of disorder are
easily imagined. This paper primarily will deal
with the case in which all magnetic ions the same,
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and in which the disorder arises from a random
anisotropy characterized by a probability distri-
bution.

Even supposing we may characterize an actual
amorphous magnetic solid by giving some proba-
bility distribution for a fluctuating quantity [such
as the magnitude of nearest-neighbor (nn) bonds
or the direction of a uniaxial anisotropy of con-
stant strength], there is still a decision to be
made. Ne need to say whether we are considering
the randomness as spatially frozen or whether we
allow some spatial correlation in the randomness
if this correlation results in a lowering of the
free energy. ' The former case is called the
quenched case and, if the bonds were the fluctuat-
ing quantity, this approach considers the bonds of
particular pairs as random but fixed independent
of the temperature. The later is called the
annealed case and, in the bond example, this ap-
proach still assumes all bonds in the solid were
chosen by the same probability distribution as for
the quenched case but now allows them to arrange
themselves in space so as to give the lowest free
energy. %e only consider the quenched case be-
cause it seems to most nearly correspond to the
usual experimental situation.

In recent years it has been realized that disor-
der in, for example, model systems that would
be ferromagnetic without the disorder, may re-
'sult in more drastic changes than a lowering of
the Curie temperature (Tc) or a reduction of the
magnetization at temperatures below T~. The
disorder may bt.'come so severe as to cause the
magnetization for a range of temperatures below
some temperature T& to be zero, but nevertheless
the system may retain a type of magnetic order
in this temperature range. One way to understand
this is to imagine that below T& the spins are
frozen in random directions, a. phase which is
neither paramagnetic nor ferromagnetic. More
generally, such a phase can be characterized as
one in which a, long-range-order parameter van-
ishes and a local-order parameter, chosen to mea-
sure the degree to which each spin is frozen in
orientation, does not vanish. Such a phase has
been given the name spin glass. '

Alloys of noble metals (e.g. , Ag, Au) with a few
atomic percent admixture of transition metals
(e.g. , Mn, Fe) have shown behavior which has
caused them to be called spin glasses. ' In such
alloys, the magneti'c susceptibility shows a cusp
at a particular temperature T& (which would tend
to indicate some kind of ordering) and neutron
scattering indicates the absence of any long--range
order below T&. Remanence, which decreases
more or less logarithmically with time, has been
seen in the magnetization below T&. The specific

heat seems to be linear in temperature at low
temperatures and does not show a well-defined
peak at T&, but rather a broad maximum which
occurs at a temperature somewhat higher than
T&.' It is not completely clear that experimenta, l
examples of spin glasses correspond to the char-
acterization of a spin glass as given in the pre-
ceding paragraph. ' (It is also not clear that T&
characterizes exactly the same phenomena as
does the Tz of theoretical models. ) Also, be-
cause the specific heat does not show a well-de-
fined transition temperature, one might wonder if
the transition to a spin-glass "phase" is realIy
a phase transition. Other problems, which will
be mentioned later, remain in attempting to con-
struct simple models which account for all of the
characteristic experimental features of spin
glasses.

The models of amorphous magnetism which con-
sider fluctuating bonds ' have been used to de-
scribe spin-glass behavior. These models are
based on. a relatively simple idea. For example,
suppose that the bonds (or exchange interactions
J) arise from an Ruderman-Kittel-Kasuya-Yosida
(RKKY) type interaction, then in an amorphous
metal [or perhaps in crystalline alloys like Cu(Mn)]
we can see how the J's may fluctuate, even in
sign. " At low temperatures, the molecular field
at; a site will be nonzero and the spins will freeze
into an orientation along this field. If the molecu-
lar fields at different sites are randomly oriented,
then the average moment, associated with many
sites, may be small or even zero. %hen the J's
are assumed to fluctuate with a Gaussian distribu-
tion, the model is called the Edwards-Anderson'
(EA) model. Using this model, EA did a classical
(basically mean-field) calculation to demonstrate
that there could be a cusp in the magnetic sus-
ceptibility even when there was no overall long-
range order. Shortly thereafter, Sherrington and
Southern and Fischer did the corresponding
quantum-mechanical calculation (Sherrington and
Southern generalized the original EA model to
allow for the possibility that the average of the
J's was not zero). All of these treatments pre-
dicted a cusp in the magnetic specific heat which
i;s not seen experimentally. Later, Monte Carlo
calculations on EA-like Ising systems were made
by Binder and Schroder'2 who obtained a magnetic
specific heat which better agreed with experiment.
However, all of these calculations predicted that
the magnetic field necessary to produce a rounding
in the cusp of the magnetic susceptibility was
greater than that seen experimentally. Recently,
Walker and Walstedt 3 have done computer model
calculations of dilute randomly distributed classi-
cal spins og a face-centered-cubic lattice with
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RERAN interactions. Their results give a satisfac-
tory description of the approximate linear low-
temperature specific heat. Luttinger'4 has done
a mean-field "random-site" calculation and obtains
a transition to an apparent spin-glass phase (for
appropriate values of the parameters). He finds
a cusp in the susceptibility as well as a discontin-
uity in the specific heat.

The second approach that has been considered
as a possibility for describing amorphous mag-
netism (including spin-glass behavior} is the ran-
dom anisotropy model. ' ' 6 In this model, the
fluctuations in exchange interaction are ignored,
but a site-dependent uniaxial anisotropy term is
added whose strength remains constant but whose
orientation varies randomly from site to site.
This model has been used in an attempt to inter-
pret" the reduction of the Curie temperature and
magnetization (with respect to the crystalline
state} of- TbFe, as well as to account for the large
coercive forces observed. However, it seems
questionable whether such a model can show a
phase transition to an equilibrium spin-glass
state for positive exchange. In view of the results
of Chi and Alben, "Harris and Sung, "and the
authors, ~ it would appear that the spin-glass state
originally predicted by Harris and Zobin" is
metastable in that it has a higher free. energy than
the random ferromagnetic state. ~' Of course,
such a metastable state could be experimentally
significant. Mention should also be made of the
classical, zero-temperature mean-field calculation
of Callen, Liu, and Cullen, whose predictions for
the reman. ence and coercivity agree with neither
Harris and Zobin" nor Chi and Alben. " Related
calculations for the random anisotropy model
have also been done by Darby" and Richards. 23

In this paper, we consider the random aniso-
tropy model in a loca/-mean-field approximation,
thereby treating site-to-site fluctuations in the
mean field without further aPPxoximation. In
Sec. II, the random anisotropy model is presented
and a description of our assumptions, approxima-
tions, and calculational technique is given. In
Secs. III and IV our results and conclusions are
given. The major results of this work are as
follows: (i) the effect of random anisotropy on the
temperature dependence of several thermodynamic
quantities is given; (ii) the apparent discrepancy
found in the results of Chi and Alben vis a vis
those of Callen, Liu, and Cullen concerning the
behavior of the coercive field for large D is
clarified; and (iii) a magnetic phase diagram for
the equilibrium state is constructed, and regions
of paramagnetic, random ferromagnetic, and ran-
dom antiferromagnetic (or spin-glass) behavior
are identified.

II. MODEL STUDIED

A. Model Hamiltonian and appmximations

We assume the following Hamiltonian:

H =H„+H +B,
where H„ is the isotropic Heisenberg exchange

H, is a sum of single-ion uniaxial anisotropy
ter~s

H, = -D Q (h) ' S))2, D & 0, (3)

and H~ represents the Zeeman-interaction energy

(4)

Here S, is the spin operator associated with site
i and J,&

labels the exchange coupling between
sites i and j. The exchange coupling may be
thought of as arising from either a direct'~ or an
indirect" interaction. The magnetic anisotropy
term can arise from the interaction of the gradient
of the crystalline electric field with the quadrupole
moment of the change distribution of, say, a rare-
earth ion. "" This term can also arise when the
orbital angular momentum of the ground state is
quenched. In this case, the spin-orbit term mixes
an orbital contribution back into the ground state
and a Hamiltonian such as Eq. (3) can be appropri-
ate for local uniaxial anisotropy. " The fk,]»e
unit vectors which determine the local easy direc-
tions and D is the strength of the anisotropy. %'e
have assumed that the random nature of the lattice
causes the local easy directions to vary randomly,
but we have ignored fluctuations in the strength of
the local anisotropy by making D a constant, "
which is an admittedly oversimplified picture. '
We assume $=1, which is the smallest S value
for which H, will make a dynamica1 contribution.
Of course, higher spin values are appropriate for
rare-earth ions. Equation (4) represents the
Zeeman contribution to the energy with B as the
externally applied magnetic field. We have as-
sumed an isotropic g factor for simplicity. A dis-
cussion of how to convert our Hamiltonian to units
that are experimentally useful is given in Appendix
A.

Inorder to make thi:s Hamiltonian tractable, we
make a local-mean-field approximation (LMFA)
on 8„. A derivation of this approximation from
the principle of the free-energy minimum is sum-
marized in Appendix B. It is important to note
that the presence of the anisotropy term does not
inhibit us from making the LMFA. We assume
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a, =g I,+c(T),
j-"1

where

J)~ (S)) '
S~ -D(k~ S~) —B '

S~ (8)
g(nn to g)

c(r)=-P J„(s,) ~ (s,).2 g)

C(T) corrects for double counting of the exchange
terms when calculating the mean energy. If A is
some operator, by (A) we mean

(A)=Z ~Tr(e WHOA),

where

Z= Tr(e ~"o)

(8a)

(8b)

is the partition function for a canonical ensemble,
P = I/kT, k is Boltzmann's constant, and T is the
temperature. The trace is taken over the 3"-di-
mensional space appropriate for the N spin-one
ions. If A =B& only operates on the subspace ap-
pripriate to a single spin S&, then Eqs. (8) reduce
to

(B~)=Z,'Tr(e ~"&B~),

where the single-site partition function is

Z =Tre t'h

(ea)

(8b)

and the traces only need to be taken over the ap-
propriate three-dimensional subspace.

nearest-neighbor (nn) coupling only and a constant
coordination number Z=6 (as for a simple cubic
lattice). In the LMFA, the Hamiltonian becomes

if B& is a single-site operator, we have

Tr(e ~"yBq) = Q e
P ga fftgy tÃg

x(m~~B, ~mq)(m~( pq)(m~( p~)*. '

(S~) =Z~'Tr(e '"~ S,) . (14)

Because D WO, one cannot assume that any of the
components of (S&) vanish, nor that (S,) =(S&) for
i4j. Therefore, because the h& depend on the
(S,) belonging to the nn's of site j, Eq. (14) repre-
sents 3N coupled equations. These equations are
solved (with periodic boundary conditions) without
further fundamental approximations by iteration
and a self-consistent set of the N (S&)'s are ob-
tained. This procedure limits us to fairly small

¹ Our objective is to obtain information about
the set ((S~)) and the other thermodynamic quanti-
ties as a function of P, D, J, and B. The use of
the dimensionless parameters t= 1/PD, j=J/D,
and b = 8/D is convenient. For example, as shown
in Appendix A, the thermodynamic quantities we
calculate either depend solely on t, j, and b, or
scale with D for fixed t, j, and b.

Once the (S&) are obtained self-consistently, the
other thermodynamic quantities can be readily
written. The magnetization per spin is defined as

Note that the site matrix M~ is a function of
JZ«„„»(S,), D, k&, and B He. nce, its eigenval-
ues and eigenvectors are' determined by these
same quantities.

The relevant thermodynamic quantities can now
be written down. The quantum statistical averages
of the spins are

B. Evaluation of thermodynamic quantities
N

m= —g (S) ~ (1S)

%e restrict ourselves to spin-one ions and chose
a representation for which the S2& and S,&

are dia-
gonal

S, ) (ioa)

S,& ~
m &) = m& ~ mj), m& = 1,0, -1 . (],Ob)

For each site, we define a site matrix M~, which .
has elements

M~ „,=(m, ~h, ~m~), (ii)
eigenvalues E„,, and eigenvectors (in the same
representation) whose components are (m~~ p~),
where tp, ~) is an eigenket of h&. Using the repre-
sentation for which M~ is diagonal, the needed
traces can be evaluated. Since the

~ p~) are given
by

~
p, ~) = Q ~m, )(m~ ~

p.~),

the order parameter q, which measures the ex-
tent to which spins are locally "frozen" in orienta-
tion, is defined as'

q= — S ' S

the free energy (f) per spin is

f =—(-kT lnZ) = lnZ&+
1 kT C (T-)

the internal energy per spin (u) is

u= ' =—Q (hq)+
(a,) i " c(T)

g=l

and the entropy per spin is

s = (u f)/T . -
In Eq. (18), (h&) can be computed from the self-
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consistent ((S&)) which determine the eigenvalues
of the corresponding site matrix. Within the
LMFA, the nn correlation function is given by

(20}

The specific heat per spin at constant field (Cs} and
the magnetic susceptibility per spin at constant
temperature (Xr) can be numerically obtained di-
rectly by use of Eqs. (15}and (18)

C, = au/AT =k~u/&(I/P} (21)

x, = a~,/m„ (22)

C. Calculational techniques and summary of assumptions

and approximations

The basic calculational problem is the iteration
of Eq. (14) to obtain a self-consistent set of solu-
tions ((S;)}for a given set of (k, }with fixed t,
j, and b. The (k, } were chosen to have random
directions uniformly distributed over the unit
sphere. Essentially two types of calculations were
made. One set of calculations, the "temperature
runs, " were done with fixed j and b (typically,
b6+»( j () and varying t. We found that by starting
at temperatures t well above t, = kTc/D, we were-
less likely to obtain metastable states. (In the

boy of this paper we use the subscripts c and C
to denote any critical temperature including the
Curie temperature. ) To start our temperature
runs at t&t„we had to start at t&4~j ) because
for D WO, t, varies from about Sj to 4j. (For
D =0, kTc =4( 7) as shown by Appendixes C and D.)
The initial values for the ((S,)}were chosen to
be (5,) =e,k„where e, =+I is chosen by the pre-
scription given in Appendix E (which outlines an
initiation procedure which is not necessary in the
temperature runs because of the rapid and unique
convergence at high t, but it was important in the
"field runs" described below}. We iterated through
the lattice and at each site evaluated the eigen-

where ~, and DT are numerically very small
and ~m~—= m. We also evaluate the mean square
energy fluctuations

(23)

In Eq. (28}, if H, is replaced by H, and e-~"0 is re
placed by e~H, then C~ 'wouldbe the exact specific
heat. One can also show that Cs&" = Cs when all (8,)= 0.
Thus, insome sense, C~ 'isalsoameasureof the
specific heat. The presence of more than one
specific heat, depending on the way the approxi-
mations are made, is not, of course, unique to
our calculation. 2'

values andeigenvectors of the corresponding site
matrix M~. From these, we calculated a new
value for the thermal average (S~), evaluated
&& =-((S&)"'"—(S,)"J, and replaced. (S&)" by
(S,. )"'" in the set ((S~)}. After one complete pass
through the lattice, & = (I/N)g, ,b, , was evaluated.
The iteration procedure was continued until b,

was less than a number F.z~ which was typically
chosen to be the order of 10 '. It should also be
emphasized that at each site j in the iteration the
latest available thermal averages of spins f'or de-
termining M~ were used. After a self-consistent
solution was obtained, the temperature was re-
duced to t —5 and the procedure was repeatedusing
as our initiating set of ((S,. )} at f -6, the self-
consistent set((S,.)) which we found at t. As ex-
pected, the convergence of this procedure was
slowest for temperatures near t, . The number
of passes needed for convergence depended on the
value of t, N, and F.„~. Typically, for t t„100
or more passes might be needed for N = 64, where-
as for t» t„often three or four passes might be
sufficient.

The other type of calculation, the field run, was
similar, except that we set t equal to a constant,
usually much less than t„and varied h, in such
a way as to trace through a hysteresis loop. 5,
was usually started near zero.

The major complication of our calculations was
that for t& t„more than one nonvanishing set of

(5,)'s which satisfied Eq. (14) was found. As
shown in Appendix 8, Eq. (14) results from ex-
tremizing the free energy, but different sets of
solutions of Eq. (14) could correspond to different
local extrema in the free energy. It seems likely
that these local extrema are in fact local minima
in the free energy. If D =0 and T =0, the non-
vanishing solutions must correspond to the (5&)'s
pointing along the molecular field —an energy
minimum. More generally, by using our iteration
procedure, convergence on maxima solutions
seems unlikely. Where more than one. solution
set((5&)} was found, the set with lower free ener-
gy was viewed as the more stable set. Those solu-
tions with higher free energy may approximate
physically realizable, but at best metastable
states.

Finally, we summarize the assumptions and
approximations which went into our model cal-
culations: (i) the spins were coupled by a con-
stant nearest-neighbor Heisenberg exchange in-
teraction and experienced a uniaxial anisotropy
of constant magnitude and random orientation;
(ii) only 8 =1 spins were considered; (iii) periodic
boundary conditions on a system with N'~' spins
along an edge were used; (iv) the topology was
preserved in the sense that we assumed the num-
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a more precise characterization is obtained from
the full hysteresis loop.

(d) B, was essentially zero for all cases with
J& 0 that we investigated.

(e) The hysteresis curves are for thermody-
namic "equilibrium" (or guasiequilibrium in the
sense that the solutions ((0&)} are obtained when
the free energy is an extremum in the space of
the ((S&))). If D is very large compared to J,
there is a huge "D barrier" for reversal of the
spin at any site, but our calculation does not and
should not give a coercive field proportional to
the barrier. This point is discussed later.

(f) Figure 4 is included to illustrate the effect
of a nonrandom exchange anisotropy on the random
anisotropy model. For these caves g is defined
by writing the original exchange Hamiltonian as

a„=--.'J g s,,s,,
(nn)

—2K Q (S(„S)„+S;~s)~).
ij, (nn)

Note when J/K is relatively large, the hysteresis
is relatively square with a large coercive field
of about 0.8 (when K=O, B,=ZJS at T=O). and
when J/K is relatively small, the coercive field
is much smaller (&0.2). This is what we would
expect because a large J/K means it is energetic-
ally favorable to magnetize in the s direction
whereas a small J/K makes it favorable to mag-
netize in the x-y plane. This figure is reminiscent
of hysteresis fata obtained by Clark" for sputtered
amorphous TbFe, annealed in a magnetic field at
304 C. Comparing this figure with Clark's data
suggests that annealing iq a basal magnetic field
introduces an exchange anisotropy similar to that
given by the above Hamiltonian.

(g) Figure 5 shows that the m, (B,) curve for

I.O

0.8

0.6

04

02

05 t.0
B

f

FIG. 5. m.,P, ) above the critical temperature with
D = 1.6, N = 216 pines) and N (Ezz,) = 0.0005; and for
8 = 64 (circles) and& (E&~) = 0.001, There was no sig-
nificant difference for D= 0 betweenN= 64 and N= 216.

0.25-

0.20-

= t5.0
=0.2

D 4 0 lies below that curve for D = 0, even when
T& T~. This could be useful in trying to establish
the relevance of the random anisotropy model
to an experimental situation. Qf course, for suf-
ficiently large 8, at fixed T or sufficiently large
T [and for all B,& 0 such that PB,«1, PD «1,
pJ«1, see Eq. (D8)], the two curves will come
to gether.

(h) In Fig. 8, we show how the coercive field

0.15-
0.4m

o.lo-

0.05—

0.2- 0.4
I

0.6

I

FIG. 4. Two hysteresis loops illustrating the effect of
exchange anisotropy. The "square" loop has J= 0.5 and
&= 0.2. .The 'bow-tie" loop has J= 0.2 and E'= 0.5.
Both loops are for N = 64 and H(E») = 0.001.

FIG. 6. B, (solid line), q (dashed line), and mvs T.
In calculating q and m, B, = 0.0001. "-Error bars on &~
come from determining the coercive field from hystere-
sis loops by interpolation between points. Note that &~
drops more rapidly with temperature than either m or q.
For aQ points, N = 64and N(EN&) —0.001.
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varies with temperature. The rapid increase in
B, with decreasing temperature is reminiscen
of ex erimental measurements of the coercive
field made on amorphous magnets. These N=64
results are only preliminary. W

~ ~

e did not do a
calculation for larger N because each point re-
quires a hysteresis calculation making more ex-

te that the coercivetensive results expensive. Note
field drops rather rapidly with temperature com-
pared to either m or q. This tends to indica e
that a cooperative effect is rather efficient in
reducing the coercive field.

j ~ F 7-9 show typical temperature vari-
mallations of the thermodynamic quantities for sma

tained by starting at high temperatures (above Tc
and "cooling" so that any ordering which appears
is not an artifact of the initiation process used
for starting the iteration. Starting at low temper-
atures and "heating" tended to yield curves with
discontinuous jumps. Such jumps also appeared
in the free energy and were interpreted as due
to transi ions et b tween metastable states. Because
we decided to focus our investigation on the equi-
librium states, this "cooling" procedure was
adopted.

(j) In Fig. 7, q rises from zero at a tempera-
ture we identify as T~. For the case shown, T~
is about 20% lower than the ordering temperature
for 7=0.04 and D =0 (arrow) Noti.ce that m and
the nn correlation function (Fig. 9) also become
appreciable below T~.

(k) yz. , shown in Figs. 7 and 8, obeys a Curie
Weiss law for S =1 at high temperatures. By Eq.
(D8) this behavior is expected, but it is per aps

06-

g 04-

0.5-

0

0.8-

m
0,4-

0.2-

- 1.0
08

- 0.6

04 XT

- 0.2

O. I 0.2
kT

0.4 0.5

surprising that the linear behavior of x~' seems
to persist (see Fig. 8) to T so near Tc. In fact,
the '(T) curves are possibly not quite linear
at these low temperatures; which would p

ex'
their failure to extrapolate to 4I J~ as indicated
by Appen ixd' D. Certainly our temperatures are
too low to guarantee the accuracy of Eq. 8 . ItD8 . It
should be noted that if D is large enough the slope

3of -'(T) is greater than 2 for kTs 0.2D.o xr
(1) The curve for the specific heat may be the

most interesting. one in Fig. 7 (see also Fig. 8).

C Cs'i and m vs T for I/I =0.04,FIG. 8. gz, g, , an
00 andN(E ) = 0.005 (for N= 216) or 0.01 (for N= 10 ), an

Bg =0.00038. For J&0, m——0 02 and it was not plotted.
Results for N = 1000 and J & 0 are denoted by crosses,

f N = 216 by s'olid dots (J & 0) and open circlesthose or
(J& 0). Hesults for N = 1000 were obtained only
temperatures just above 2'~. Val ues of 4B used for

al tin the p were -B =10 5, which may account
for the scatter in points. Position of the c

indistin ishable.solid dots on specific-heat curves are in i gu'

-0.4

-0.6—
D=I

-0.8-

o.s—
I

/

/
/
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0.6
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0.2 '

S/In 3

"o.o O. I- 0.2 0.3 0.5
I
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I

p4PI $ 02 p.50.0
kT

FI . . rG. 7. Order parameter q(2'), magnetization m T),
suscepti leg g gbil .q (1') and specific heat Cz(1'). Arro

em with J= 0.04d' t dering temperature for a system wlca es or
g

— AB —0.].Band D = 0. For these curves 8, = 0.0004, 48 =
N =216, and N(EN~) = 0.005.

kT
FIG. 9. s/k ln 3, (Cia), q, and E (as in Fig. 1) vs. T

I JI E B and all symbols as in Fig. 8. Again,Nb 9 a ~

results for N= 1000 were obtained only for &. gSli ht
=216 and N=1000 re-s i In ehift in the free energy between N=216 an

suits can be accounted for by the fact t a he s f ih ttheset 9)
is different in these two cases.
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The low-temperature peak, which rises sharply
at T~, is wbat one would expect for a mean-field
theory. The second peak is purely an effect of
D, occurring at kT=—0.44D. Note (Fig. 8) that
Cs =C('~ for T&Tc and B=O. For T& Tc, Cs
peaks at a higher temperature and has a more
pronounced maximum than does C~' .

(m) Notice that for Z&0 (Figs. 7 and 8) the mag-
netized (m & 0) solution appears rather than a spin-
glass-like solution (m =0). We believe this oc-
curs because the system essentially was brought
to thermodynamic equilibrium at each temperature
before lowering the temperature.

(n) Figure 8 compares yr'(T) for g&0 and 4&0
(same magnitude). m(J& 0) is essentially zero for
all T. T~ and the thermodynami. c quantities ex-
cept m and y~ are not affected by the sign of J
(see Appendix C). The fact that the minima in
Xr'(T) occur at slightly different temperatures is
probably due to the fact that neither F.~~ nor the
set of the [k;j were the same for the two cases
shown. (However, it should be noted that values
of X& very near T~ have no physical meaning be-
cause of effects due to the finite size of our sys-
tern; however, these effects should not be im-
portant, even for %=84, if klT- Tcl& 3t, which—

'

corresponds in a simple mean-field model to the
correlation length per atomic spacing being less
than unity. ")

(o) Figures 8 and 9 also compare variations in
thermodynamic quantities with N. The N= 1000
results are limited to T & T~ because of the ex-
pense of this calculation. The slight shift in free
energy (Fig. 9) is due to the fact that the set (k, )
are not the same.

(p) As shown in Fig. 9, q remains unchanged
under the 4--Z transformation. Similarly f, Cs,
CP, S, and (C») are invariant under J'- M, as
shown in Figs. 8 and 9.

(q) In Fig. 10 we show the results of one calcula-
tion which indicates that spin-glass-like states at
low temperatures are not stable if ja 0.12. We
have assumed that the I& 0.2 state for our small
system is somewhat analogous to a spin-glass
state. It is interesting that the j =0.12 value is
very near the critical value of j below which one
gets sizable coercive fields.

(r) By making many temperature runs of the
type in Figs. V-9, we were able to construct the
phase diagram (Fig. 11) for the equilibrium states
of the Hamiltonian in Eq. (5). The curve shown
should be regarded as accurate to no more than
a few percent. kT =4[j') represents the ordering
temperature as D -0 [see Eq (D14)j . T.here are
three regions. The paramagnetic region m =0,
q=0, the random ferromagnetic region J&0, m0
qe 0 and the random antiferromagnetic (or spin-

- -6.0

0-15.0
kT=0.I

- -10.0

}.0 .

0.8-

0.6-
~~ m

il
II
I
I

0.2-

0 04 08 1.2 1.6
J

20 24

FIG. 10. & (see Fig. 1), q, 6&2, and m vs. J. Note
the transition for j = 4/D =—0.12. For these curves, B,
= O.OOO1, N= 64, and X(E») = O.OO1.

I.O

0.9-

08-

0.7 .
Random Ferromagnetic (0&0)

Random Antiferromagnetic (&&0)
I I I

2 6

FIG. 11. Magnetic phase diagram showing effect of
local anistropy strength on the ordering temperature.

glass-like) region+&0, m=0, qg0. Notice that
Tc(j & 0.02)= 0 V5Tc(D. =0). As we have already
indicated, evidence for metastable spin-glass-
like states for positive values of j s 0.12 was found,
but an attempt to indicate these states by phase
lines was not made because they have highe'r free
energy than the random ferromagnetic states and
appear to be nonunique in the sense that different
metastable states (with highly variable m) can be
reached at low temperatures (with 8 =0) depending
on the random set of [k,} chosen and on the in-
itiation procedure.

(s) The initial drop in Tc with increasing D/IZ[
agrees qualitatively with the phase diagram of
Harris et al. ,

"but we do not obtain an appreciable
subsequent rise in Tc for large D jiJ(. Such a'
rise could perhaps be accounted for in a nonequi-
librium statistical calculation by allowing for a
metastable state with many spins trapped by the
D barrier. The rise would then represent a "cri-
tical temperature" for a spin-glass-like state
(as originally obtained by Harris ef al. ) rather
than a T~ for an equilibrium random magnetic
state. Because we arg doing equilibrium statistic-
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al calculations, we do not see such effects. Per-
haps they were originally obtained by Harris et al.
because of their approximation to the molecular
field or because of insufficient convergence.

IV. DISCUSSION AND CONCLUSIONS

Perhaps the most interesting question concerning
the random anisotropy model is whether with T
and j small enough i.t allows for spin-glass-like
behavior for Positive exchange. Our hysteresis
calculations tend to confirm those of Chi and
Alben" iq that they support the following idea:
the (( S&)) solutions at low T and j which have
q/m' fairly large are higher in free energy (for
the same values of all parameters) than those
which have O(q) =O(m') and which correspond to
states on the hysteresis curve. By our numerica)
procedure, we never know if we have found all
solutions, and so we cannot absolutely rule out the
possibility of an equilibrium spin-glass-like solu-
tion (for J& 0) which has lower free energy than
all other solutions, but we believe this is unlikely.
We should also mention that there is always the
possibility that there are metastable spin-glass-
like states that equilibrium statistical mechanics
give no hint of. Nonequilibrium calculations would
be needed to settle this point.

Whether one wants to call the fairly large q'/m
solutions spin-glass. -like or not, we leave open.
But we do suggest if these solutions also have
C» small (for large N), then they are more likely
due to spin glassiness than to the polydomain ef-
fects which have been suggested by Chi and Alben.
An example is given in Fig. 10 where, for J& 1.8,
C» is relatively small; yet, for such a small
lattice, the distinction between a spin glass and
a polydomain admittedly seems rather artificial.

Another interesting feature of our calculation is
the qualitative effect of j on various properties
of the system. When j& 0.2, we observe a very
small, essentially vanishing, coercive field. For
large j we would expect the spins to be "locked"
together at low temperatures and hence turn as
a, unit in the hysteresis cycle. Because the {k,j's
are random, turning of the spins does not change
the anisotropy energy appreciably, and so B,
should be small. If j is very small, then the spins
are essentially independent. At low temperatu'res,
we would expect B, to be approximately equal to
the net energy required to' turn one spin, and be-
cause this spin resides in an exchange field of
O(J), we would expect B, of O(J). This is what
our calculation yields. Notice that because we
are dealing with a thermal activation from a meta-
stable state to another state (which is probably
stable); the large "D barrier" between these states

does not affect the coercive field. This is to be
contrasted with. the results of Callen et aE."who
find a strong D dependence in the coercive field.
It is possible, however, for the relaxation time
[for the spin to turn over in a field of O(J)] to be
very long. Then a coercive field of O(J) may not
be the experimentally important one. From energy
considerations one would then expect a coercive
field of O(D). In particular, because thermal
activation is not possible, at. T =0 one would expect
the result of Callen et al. to be the correct one.
Our calculations also suggest that there is fairly
sharp transition from a large coercive field of
O(J) to a small coercive field. This transition
occurs at j-—0.13 or roughly Zj —-1. This is in
qualitative agreement with Chi and Alben's" zero
temperature classical calculation. Thus evidently,
the coercive field obtained by Chi and Alben is
really only a possibility at finite temperature.

We already mentioned the effect of j on the spe-
cific heat Cs. If j =1/Z, then Cs has a fairly
Prominent tail for T& Tc. If j& 2/3Z, then Cs
has two peaks, a broad one near kTc =0.44D and
a sharper one at kT~ 4J. The occurence of two
peaks in experimental data for C~ on amorphous
systems would be a reason to consider the random
anisotropy model as appropriate for interpretation
of the data. It should be mentioned that Coey and
von Molnar" have measured the low-temperature
specific heat of an amorphous Dy-Cu aHoy and
that thei'r data may be fitted well to the random
anisotropy model for D /'k = 4.5 K (see Appendix
A for a definition of D as well as a discussion
on how to convert the parameters used in this
chapter to those that 3;re more useful experiment-
ally).

We have mentioned that the susceptibility follows
a Curie-Weiss law for T greater than and not too
near Tc. This holds true even if

~ J( is small.
Further, the slope of the I/yr curves is fairly
close to what one would get for D =0 provided T
is sufficiently large. For large D and intermediate
T, further calculations have shown slopes greater
than -', .- As is expected, the I/yr curve for J &0
lies above the I/yr curve for J &0 corresponding
to a negative paramagnetic Curie temperature
in the /&0 case. All of these results are con-
sistent with Appendix D, but the nearly linear
behavior for T& Tc is not predicted (nor prohib-
ited).

The entropy curves also reflect the effect of D.
A large D (&ZJ) leaves the system partially
ordered even above T~, and the entropy s -0 ln3
only for kT&D.

Perhaps the most important result of our cal-
culation is summarized in the phase diagram of
Fig. 11. W'e believe this phase diagram is ap-
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propriate when the spins are in their true equi-
librium states. In Appendix C, which uses the
LMFA applied to our system, we show that the
ordering temperatures shown in the phase diagram
are required to be symmetric under J- -J. Since
our technique of calculation did not seem to lead
to unique, low-temperature metastable solutions,
we leave open the question of how to subdivide
the random ferromagnetic region into a spin-glass-
like subregion and a ferromagnetic-only sub-
region. Although Harris and Zobin" made such a
subdivision and our Fig. 11 suggests that this is
possible, the nonuniqueness of these metastable
solutions is troubling. If the nonuniqueness is only
an artifact of our using small systems (since we
got these different solutions with different jk;) ),
then there is no conflict. However, we suggest
that the character of the metastable solutions and
of their relation to actual experimental results
needs to be further clarified. We should also point
out that our LMFA treats the local mean field
exactly (in contrast to Harris and Zobin's" cal-
culation), although at the cost of limiting us to
small systems. Since hysteresis and temperature
variations of the thermodynamic quantities are
not changed appreciably by increasing N from 64
to 216, it would be unlikely that the qualita. tive
nature of the metastable states were strongly
dependent on ¹

(5,j are dimensionless. The reduced quantities
are now defined by

j= J/D = J /D

t = 1/PD = k T /1P,
& = &/D =gp, &'/D'

Thus j =1 becomes J =I/, t=4j becomes T
=4J /k, and 5 =1 becomes & =D /gp, s.

By Eq. (18), the internal energy per spin (u)
has the property

(A2)

(A3)

(A4)

u=u(J', D, ~,P) =D u(j, 1, b, t) . (A5)

Many of our calculations were done with D = l.
Ef D 41, we can use (A5) to determine u. A

similar remark holds for the free energy per
spin. It is also easy to show that the entropy per
spin, specific heat, and C~~i[Eq. (23)] are unaf-
fected by changing D (for fixed j, h, t).

If p is the number of ions per unit volume, the
actual magnetization is

M =gp, ,pm,

where m is given by Eq. (15) and depends only on

j, b, andt.
The corresponding isothermal susceptibility

(Xr') is
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APPENDIX A: CONVERSION TO PRACTICAL UNITS

or

and

b, =B,/D=f(j, t)

&,=Df(j, t) .

(A8)

Also,

B,= Jg(j, t)

where X r is given by Eq. (22).
The coercive force can also be shown to scale

with D (or J) for fixed j and t. We know that
m, =m, (j, b, t); therefore, O=m, (j, &„t)

It is convenient to write the Hamiltonian of Eq.
(1) as

where

jg=f (A9)

I = - —Q J,', 5, 5, -D' Q (S, .B,)'

gPs+ '—Z~c ~ (Al) kr, =Dh(j) (A10)

Even the Curie temperature has a similar prop-
erty, for 0=m(j, 0, t,) or t, =h(j), therefore,

where the superscript E denotes that J,D, and'
gp~&, along with kT, all have the units of
energy. Here p, s (the Bohr magneton) and k
(Boltzmann's constant) both have conventional
units. The Lande g factor (g), the (kg. and the

kr, = JS (j),
where

h =jI'. (A11)
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If the free energy I" corresponding to the
Hamiltonian II is

E(H) = -(I/P) ln(Tre '"),
then it can be shown that '

z(e} &(e,) + &0'), =-& ., (If),

where mod stands for the model defined below

H-=H +H'

(BI)

(B2)

(as)

&If'),= Tr(e '"Off')l»(e '"') . (B4)

We wish to use the inequality (B2) to obtain an
approximation for the Hamiltonian H of Eq. (I).
We choose Ho, which wil. l be our approximate
model Hamiltonian, by linearizing the bilinear
exchange terms of H. Hence

APPENDIX B: LMFA FROM THE PRINCIPLE OF THE FREE-
ENERGY MINIMUM

APPENDIX C: INVARIANCE OF QUANTITIES
UNDER Jli ~ -gi

We a'ssume the LMFA, B=O, and nn inter-
actions with six nn's. We can break our system
into two "sublattices" in which every spin of one
sublattice is a nn of a spin of the other sublattice.
Let these two sublattices be called a and b. Let
the corresponding molecular fields by H„
=Q& i»~ J«»&5,,) and H» =Q&J,&»&S«), and let
X«and B» be vector operators associated with
the sites ad and b&. Then for fixed p, D, (k„,
k,,),

(A„)= g, (H„) = &,,
' Tr (e 6"«A„}, (Cl }

It is easy to see that if Eq. (B9) is satisfied, then
&(H,}=&,d (H,), where H, is given by Eq. (5).
Using Eqs. (B4) (with H' replaced byA, any
operator of interest for our system), (B5}and (B9},
we can compute in the LMFA the statistical
average of A.

Ho= —Q J)dS( '5g+C(T) —D Q (kd Kd)'
ff

—OT 5d-=Qhd+C(T),

where S~ is a temperature-dependent vector,
C(T} is a temperature-dependent scalar, and

Id d
= - Q J( )S

q Sd —D'(kd ' 5d ) - 5 '
Rd .

(B5)

(B6)

where

Z =Tre»a
0»

.and

&a»)=h, (H,,}=&,,'Tr(e»a, ,},
where

Z = Treag—

and where

(C2)

(CB)

(C4)

+PJ,s, &5,),.
(J

If S~& is the dth component of S&, then

(8't)

dd dk

(BB}

Clearly, a solution which extremizes E,d (H} is

S, = &5,), . (a

The (5&j are chosen in such a way to extremize
E~~ (F), which is independent of C(T). C(T) is
chosen so that F,d (FI) =E(H,), making H, a logical
choice for a model Hamiltonian. It should be noted
that by choosing a Ha'miltonian in this way, no
additional consideration for double counting need
be taken, e.g. , &H), = &H,),.

Combining Eqs. (B2}-(B5}we find

h„= —H, , 'R„-D(k«5, ,)',

At the site a, (or 5&}, if we let H, --H„(or
H»-- H»}, we can reproduce the original physical
situation at that site by -an inversion of the co-
ordinate system at that site. Thus

gg(- H, ,}= —g,.(H„),
h, (-H„}= - h, (H,,) .

It also follows that the statistical average of a
site dependent scalar operator would be left in-
variant to a change in sign of the molecular field.

From the above we can say that if g,&)
'l and

(5~ )i'~ are self-consistent solutions for all nn

J«~ —= J'~'.
~~ &0, then &5,&)i ~= &S«)M and &5~ )i i

(5~ )&+& are self-consistent solutions with all
bg

J, »-= Je,b
-=- J,',b . This follows because if the

J'„» change sign. and if the (&S«)j donotchange
by the definition of Hb, we have H, ,-- Hb, which
makes &5, )-- &5, ) by Eqs. (C6) and (C3}. This
by the definition of H„and Eq. (CI) is seif-con-
sistent with the original assumption &5,,)—&5,,). A similar argument shows that &A,&)
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APPENDIX D: PARAMAGNETIC AND FERROMAGNETIC

CURIE TEMPERATURES IN LMFA

We first derive the paramagnetic Curie tem-
perature. We assume 8=B,z and that the system
magnetizes in the z direction and we use

&S„&= Tr( -e'"& S„)/Tr(e-'"~),

where

(Ol)

hq = -Q J;)&S,&. Sq —D(k~ Sq)' —B,sq, .

Expanding each term to O(P2) and using

(O2)

&S~,&=P&s~,&~+ -', P'(S~,&0' (since &S&,&8 0=0),

and &B»& are invariant under J„~ --J„», where
A„and B~ are scalar operators. In particular
Z„and Z~ are invariant.

From this we conclude (with B=0) that q,f, a,s,
and c are left invariant under J...&--J«», but
neither m nor y would be left unchanged by this
change of sign of the J's.

It should be noted that this proof depends upon
the existence of two equivalent sublattices.

(O10)T r(h ~ S),) = 2D(1 + k
q g)Z Jm,

[to O(D) and retaining terms linear in &S~,&], we
have

&Sqg&(3 + 2PD) = 2P +J(q &S)g&+ P 'D m, ZJ(l + k q,)

(Ol 1)

to O(D). Then using m, =(1/N)g~&S&, &, ZJm,
= (1/N)Q, J, (S„&, and (1/N)Q, k '„=—, , we have

3m, (1 ——,PZJ)(1+ —, PD) =0 to O(D). (O12)

Note that 6~ is independent of D. %e can only be
certain of the validity of (O8} when PB„PD, and
PZJ are «1. Note also that this D independence
depends critically on (1/N)Q& k2&, ——,

' =0, i.e., on
the random anisotropy model.

To obtain the ferromagnetic Curie temperature,
we set B,= 0 and seek a, nonzero but arbitrarily
small m, . We do this calcu, lation only for Zj &+1.
Explicitly, we expand the traces in Eq. (Ol } re-
taining only linear in D terms. Also, because we
are seeking a solution for &S&,& which is nonzero
but arbitrarily small, we only retain terms which
are linear in &S&,&. Using the middle three equa-
tions (O3) and

Trh, . = -2D, TrSj,- ——0,
Tr(lg, S„)= -2(g J„(s„)+rr

Tr(h,'.S,,) =2BQ(k~&, +1) to O(PO),

we have to O(P },

(P(S„&,'+ —,
'

P '(S„),")(3+ 2PD)

(o3} We thus conclude that the ferromagnetic Curie
temperature Tc is

r, =-,'(ZJ/k) to O(D). (O13)

tc =he/D =4j for Zj»1. (O14)

This implies (dTc/dD)s 0=0, so the Tc =T~(D =0)
+O(D') = 3 (ZJ/k)+O(D'), or with Z =6,

=2P J)~ 8], +B, + B~D k~+1

Equating coefficients of P and P' we have

Note by (O9) and (O13) that to O(D) the ferromag-
netic Curie temperature equals the paramagnetic
Curie temperatures equals the "crystalline"
Curie temperature (D =0).

3p&s,.)0 = 2pB. ,

2p'D&sg. &o+ kp'(Sg. &0'=2p' Q J(g&s~~&o

(O4)

APPENDIX E: INITIATING PROCEDURE

+P'B,D(k~&, +1). (O5)

Using Eq. (O4), Eq. (O5) becomes

—p'&Sq, &(') =Qp'ZJ'B + 'p'B D(k2 -—-)
Thus, correct to O(p') we have

(Oe)

m = ~ PB~ (1+3PZJ) to O(P2), (OS)

from which we identify the paramagnetic Curie
temperature e~,

e, = f(ZJ/k) to O(P'). (o9)

&S~,&= 3 pB,[1+3pZJ+ 2pD(k) —3}l. (o7

Because m, = (1/N)Q~ &S~,& and (1/Ã)Q &
k 2~, = 3', we

have

(E1)

where ~~ =+1. The ~~ were chosen so that the

&5j& were self-consistent zero-temperature solu-
tions for j-0 and B-0; a& =+1 if C&, the k& com-
ponent of the molecular field (at site j), is in the
positive k& direction and &~ = -1 if C~ is in the
negative k~ direction. Because -the C~ are given
by

The set (&5&&) used to start the iteration proce-
' dure was chosen so that each &5&& lies along the
gxjs of the random uniaxial anisotropy directions.
The purpose of this procedure was to stimulate
the system to converge to spin-glass-like states
at low temperatures. Specifically, the initial
g~& were chosen such that

&f~& = e,k, ,
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C, =( Q J„(f,) ~

~ k,
i (nn toy)

J„e;k; kq,
t(nntoy)

it follows that

i(nn to j)

(E2)

(E3)

Equation (E3) was then iterated, for fixed (k;}and
g„., to obtairi a self-, consistent set of (e,} .To
start this iteration procedure, an initial set of
(e,.}was used in which the e, were randomly
chosen to be +1.

As stated above, the purpose of this initiating
procedure was to stimulate the system to con-
verge to spin-glass-like states at low tempera-
tures; however, this same procedure was used
at temperatures well above T~ because at those
temperatures convergence was rapid and this pro-
cedure was as good as any.
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