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Energy and yolarizability of atoms in a magnetic field: Donors in silicon
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The blinding energy of donors as described by a simple model Hamiltonian in a magnetic field of arbitrary
strength is calculated using an expansion of the wave function in terms of spherical harmonics. All the matrix
elements are calculated analytically and the Hamiltonian is solved accurately. We then calculate the
polarizability by applying a very small electric field. Results are given for P, As, and- Sb donors in silicon
and are discussed with reference to recent experimental data by Castner and Lee.

I. INTRODUCTION

Very recently, ' Castner and Lee have performed
static (actually low-frequency) magneto-capaci-
tance measurements at low temperatures in Si
with low concentration (N~) of donor impurities,
and have interpreted their results as indicating a
reduction in the polarizability, n(II), of weakly
interacting donors by a static magnetic field.

Theoretically, even though a great deal of work
has been done regarding the energy of atoms and
donor impurities in the effective-mass approxima-
tion (EMA)' 4 in the presence of a magnetic field,
not much exists regarding optical properties, such
as dipole-matrix elements, oscillator strengths,
etc 'In a. previous paper, ' one of us (D.L.D.) has
calculated the magnetic-field dependence of the
polarizability n for a hydrogenic atom in a weak
magnetic field. A simple analytical expression
for the ground-state wave function in the pres-
ence of a magnetic field was obtained by a varia-
tional method. The effect of an electric field, to
determine the polarizability, was then calculated
using a variational method introduced by Hasse. '
Analytical expressions for n„(E~~H) and o.~ (E&H}
were given. These analytical expressions are how-
ever quite complicated, the variational minimiza-
tion procedure in the presence of the external
field is nonlinear, and terms of higher order than
H were impracticable to consider. In addition,
the calculation was performed for hydrogenic
atoms only, so that no impurity dependence in n
could appear.

The treatment of the energy of donor impurities
in multivalley semiconductors is quite complica-
ted, ' "and very recently new complications have
been pointed out. " The inclusion of external fields
would make a precise treatment of the problem
even more difficult, and is beyond the scope of
the present investigation. In this paper we intro-
duce an approximation to describe the spatial de-
pendence of the ground state of the different do-

The EMA leads' to the following Schrodinger
equation for a hydrogenic impurity in a uniform
magnetic field II„in the z direction:

K, =-&' —2/r+-,' y'(x'+ y') .
Here we use the quantities

a* = ek'/m*e' R* = m*e'/2e'5'

y = e'K'H, /m*'e'c =el', /2m*cent*,
(2)

as the units of length, energy, and magnetic field;
y= 1 is the magnetic field at which the diamagnetic
energy is equal in magnitude to the Coulomb ener-
gy. [For the free hydrogen atom y = 1 would cor-
respond to 0,=2.35&&10' 6, but for a donor im-
purity it would be reduced by a factor (m*/mg)'
-10 ' or Iessj. e is the static dielectric constant,
and m* the (scalar) effective mass. For purposes
of comparison with experiment we choose m*
=0.3mo and &=11.4. (The value m*=0.3mo has
been chosen so as to give the same binding energy
as that obtained in the single valley case with an-
isotropic masses. } In writing (1) we have omitted
relativistic terms, which yield a spin-dependent
polarizability. These terms have been shown to
be negligible for most purposes. ' To calculate
the polarizability we introduce an additional elec-

nors; in view of the crudeness of this approxima-
tion the results must be regarded with reservation.

First, we describe a method which provides a
good description of the polarizability of the hydro-
genic atom for magnetic field of arbitrary strength.
Section II describes this method and the solution.
In Sec. III we introduce a simple model Hamilto-
nian for donors. An impurity-dependent potential
is introduced and fixed so as to give the measured
donor bindigg energy in the absence of an external
field. Finally, in Sec. IV the results for the polar-
izability are presented and discussed using avail-
able experimental data.

I

II. HYDROGENIC ATOM: METHOD AND SOLUTION
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tric-field term

K, = —e a*E,t /R* = —g t,
or

3: =-gx= —$
v2

R= 560+R) ~ (4)

where t stands for z or x, parallel or perpendicu-
lar to the direction of the magnetic field H. The
Hamiltonian in the presence of an external magne-
tic and electric fieM is therefore given by

The following relationships can therefore be used

(
I(v'+ —f (r) Y, „=F,

The polarizability a is defined by

E(H„g)=E(H„0)--,' ug',

i.e. ,

(5)

|('d' 2 d I(l +1) 2iIf ( ) (1 )
)dr' r dt' r~ t'j

TJ(r)1', „=MS' (r)xg[(2)' + ))(2) +))]'i'

E(H„O)-E(H, , t)
L~p

(6)

Depending on the direction of 5 we obtain the com-
ponents ni if )i', and nII if $ II/.

We now seek the eigenfunctions of the Hamilto-
nian in Eq. (4). We write the solution g(r) as

X,= —V' —2/r+, y'(2r' -M TO),

where T' represents the mth irreducible compo-
nent of the tensor of rank /, as defined by Ed-
monds. ' Obviously hex e

((r) = f,(.)I'«., (t], q ),
j

i.e. , we expand it in terms of spherical harmonics.
in the absence of any external field, l and m are
good quantum numbers and therefore there would
be only one angular term in the expansion (7).
Once the magnetic fieM is introduced, / is no
longer a good quantum number but m and parity
still are. Therefore for the ground state, the sum
in (7) will contain only terms with fixed m and even
l. When the electric field is turned on, parity is
no longer a good quantum number and m will still
be if the electric field lies in the same direction
as the magnetic field, otherwise even m is no
longer a good quantum number and the sum in (7)
will contain terms with any l and m. In order to
evaluate the expectation value of the Hamiltonian
(4), we must calculate its matrix elements in the
basis (7). To take full advantage of the present
method, it is convenient to rewrite (4) in terms
of irreducible components of tensor operators
whose effect on the basis functions (7) can be cal-
culated using standard angular-momentum rela-
tionships. " Equation (1) can be rewritten as

„(2«'i
(0 m m') 'o o o&

(-l)~ F, i „t. (13)

T„'f (r)Y, „=f(r)r'Q [(2l'+1)(2I +1)j'/'
1 m

x L, f, )t(1 f, r, i
m')&0 o 0)

( 1))N y' (14)

M

f, (r) =+C, ie "&' . (15)

The eigenvector coefficients C, ~, and the corres-
ponding eigenvalues are obtained by solving the
secular determinant of

Q Cg, (Hg ~ ES ) i ) = 0 .- (16)

The size of the secular determinant in (16) is N
x M, where His the number of terms in (V) and
M the number of terms in (15). The parameters
g& are not treated as variational parameters. Vfith
a sufficiently large number of terms (M) describing
the physically interesting spatial range of the wave
function, the specific choice of the g, 's does not
matter, as discussed more extensively in Sec. IV.
We also note that it is not necessary to include
any powers of r with each exponential in (15).

Using these relationships we can treat exactly and

analytically the angular part of the matrix elements
of (4) in the basis (7). One is therefore left with

systems of radial differential equations for the
f, (r). These systems can be solved very accu-
rately by making the following ansatz,

r,'=M(2&'-x'-y') =~( r'r„,.
The electric field term can be written

X,= —gz = —$T[0'i= —)M~&rF, 0 (10)

III. MODEL HAMILTONIAN FOR DONOR IMPURITIES

The first successful theoretical investigation of
donor spectra in semiconductors was given by Kohn
and Luttinger" using the EMA. In indirect-gap
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TABLE I. Values of the parameter K (in atomic units),
which are obtained by requiring that the calculated donor
binding energies equal the experimental ones. We have
used & =11.4 and m~=0.3mo. The energy unit is ~eV.

TABLE III. Ground-state binding energy for P, As,
and Sb donor impurities in Si, using the model potential
described in Sec. QI. The energy unit is the effective
Rydberg.

Material Eq (calc.) E& (expt. ) As

Hydr ogenic
p
As
Sb

0.574
0.515
0.608

31.41
45.45
53.70
42.68

45.47
53.69
42.69

materials, the multivalley nature of the conduction
band gives rise to a multiplet structure of the do-
nor-impurity ground state, because the intervalley
components of the impurity potential remove the
degeneracy between the zero-order states obtained
independently for each valley. ' This "valley-orbit"
interaction is quite substantial, as it increases the
binding energy of the ground state by about 35% for
P in Si,"and should therefore be included in the
theoretical description of these states. An accu-
rate description of this effect is very difficult,
however, as has long been appreciated and re-
cently emphasized anew. " Furthermore, the
donor-binding energy depends on the given impuri-
ty, e.g. , P, Sb, and As donors in Si have different
binding energies. " A proper analysis of these
"chemical shifts" is not yet available, and we do
not attempt one here. Instead, we use the sim-
plest formulation possible which incorporates in
some average way the effects described previously.
We do so by introducing a phenomenological im-
purity dependent potential of the form

0.0
0.2
0.4
0.6
0.8
1.0
2.0
3.0
4.5
5.0

10.0

1.447 29
1.437 10
1.408 21
1.364 01
1.307 69
1.241 70
0.817 36
0.301 28

-0,265 73
-0.865 67
—4.12349

1.709 83
1.702 09
1.679 79
1.644 95
1.599 70
1.545 83
1.18807
0.740 47
0.241 07

-0.292 55
-3.237 00

1.359 08
1.347 75.
1.31586
1.267 53
1.206 41
1.13523
0.682 82
0.13800

-0.457 52
-1.085 62
-4.479 14

p(r) = —(e'/er)[1+ (e —l)e "] . (17)

The coefficient X determines the strength of the
screening of the potential V. In fact when K
Eq. (17) reproduces the static screened potential,
while for K = 0 it gives the unscreened Coulomb
potential. The value of K for each impurity is de-
termined by requiring the calculated binding en-
ergy to agree with the observed one for that im-
purity. The use of this potential does not comp¹
cate the solution of the problem because it does
not involve any new type of integrals. In Table I
we give the values of K for As, P, and Sb in sili-
con.

TABLE D. Energy of the hydrogen ground state as a
function of the magnetic field. Comparison with Cabib
et al. (Ref. 2) is also shown. The energy unit is the ef-
fective Rydberg. 0.9

0.8

I I I I I I I I I I

As

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.5
2.0
2.5
3.0
4.0
5.0

Efs (present)

-1.000 00
-0.995 05
-0.980 76
-0.958 37
-0.929 21
-0.894 42
-0.854 92
-0.81145
-0.764 57
-0.714 74
-0.662 34
-0.370 71
—0.044 43

0.304 93
0.670 94
1.438 4
2.239 2

Ess (Cabib et al.)

-1.000 00
-0.995 08
-0.980 76
-0.958 41
-0.929 23
-0.894 47
—0.854 94
-0.81142
-0.764 57
-0.714 73
-0.662 41
-0.370 76
-0.044 50

0.304 90
0.670 87
1.438 4
2.239 2
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00. 2 3
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FIG. 1. Plot of the calculated radial part of the ground-
state wave function [actually r &&f(r)7 as a function of r
in the absence of applied fields for various impurities
in Si.
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FIG. 2. Plot of the expectation value of r, (r), as a
function of reduced magnetic field for 8, I', As, and
Sb impurities in Si.

FIG. 3. Calculated magnitude of the radial wave
function at the origin for various impurities in Si as a
function of reduced magnetic field.

IV. NUMERICAL RESULTS AND DISCUSSION

We first address the question of convergence of
the binding energy as a function of the basis func-
tions in (15). In principle, the exponents q, should
be allowed to change in a variational way and to
depend on any given state. In practice, however,
as we have previously seen, "the g,- can be fixed
and not considered as variational parameter, if
one chooses a sufficient number of terms in (15)
and if the g, 's are selected in a sensible way. We
have seen that it suffices (i) to include 15 terms in

(15), and (ii) to choose the largest and smallest
g, to be 50 and 0.05, respectively, with the inter-
mediate ones chosen in geometrical progression,
to insure convergence in eigenvalues to better than
one part in 10'. The next question regards how
many terms should be included in (7). This num-
ber obviously increases with the strength of the
magnetic field. In Table II the ground-state bind-
ing energy, using six terms in (7), is given. In
the last column the results of Cabib et al. ' (CFF)
are also given for comparison. We see that our
results reproduce accurately the sophisticated
calculations of CFF for Z' s up to 5. We have also
compared our results for y up to 100 with the re-
sults of Baldereschi and Bassani' and the agree-
ment is excellent, thus showing that the present
method can handle any value of the magnetic field.
In all the subsequent calculations we shall always
use up to I =10 (i.e. , six terms) in the expres-
sion. In Table III we report the magnetic field de-
pendence of the ground state binding energy for
P, As, and Sb in Si, respectively, using the model
potential described in the previous section. In
Fig. 1 we show the ground-state wave function in

I I I I I I I I

V)

X
3.0

2.5

2.0

1.5

I.O—

0.5—

0
0

I I I

0.2
I I I I I I

04 0.6 08 1.0

FIG. 4. Calculated polarizability components in
effective units as a function of y2 for the hydrogenic
impurity in Si.

the absence of any external field for the four cases
considered in this paper. The expectation value
of r for the ground state, as a function of the re-
duced magnetic fieM, is shown in Fig. 2, for the
various impurities while the value at the origin,

I ((0) I is given in Fig. 3.
To determine the polarizability 0. we calculate

the binding energy using a very small value for
the electric field and then use expression (6). To
ensure that the electric field is indeed "infinitesi-
mal, " that is, only virtually perturbs the wave
functions, we have performed calculations with g
= 0.05, 0.025, 0.01 with essentially the same results
(to four significant figures). The introduction of
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FIG. 5. Same as Fig. 4 for the P impurity.

the electric field requires the odd L terms in ex-
pression (7) and in the calculation we have used
all odd terms up to L, ,„+1.For H, = 0, the cal.—

culated polarizability 0. for hydrogen can be com-
pared with the exact value. " We obtain for n a
value which compares very well (i.e., to four sig-
nificant figures) with the exact value -', . In Fig.
4 we show the magnetic field dependence of a& and

These results compare reasonably well with
those obtained in a previous paper in the low y
region by one of us (D.I,.D.), and in addition, they
are valid also for large y.

In Figs. 5-7 the polarizabilities for P, As and
Sb are given and w'e see that the magnetic-field
dependence gets weaker with increasing binding
energy. This is reasonable since the wave func-
tion becomes more localized with increasing bind-
ing energy and therefore the external fields are

I I I I I I } I

4.0—

LLJ

2.5—
LLJ
L 2.0—
4
LLJ

I.O—

FIG. 7. Same as Fig. 4 for Sb impurity.

less effective in perturbing the wave functions.
The comparison w'ith experiment is to be per-

formed with caution since we have used here a
crude approximation for the description of the
donor-impurity dependence, The calculated de-
crease of e for H., =0 in going from Sb to As is in
agreement with observation. In fact, we predict
11x10'a~ for Sb, 8.2 & 10'ap for P, 4.9x 10'ap for
As, while the experiment gives 21X 10'ap 16
x 10'ap, and 6.7x10'a,', respectively. Also in
agreement with experiment is the weaker depen-
dence of a with magnetic field in going from Sb to
As. The calculated absolute value of these -depen-
dences however is quite different from the ob-
served ones. Specifically, the calculated depen-
dences are much weaker than for the hydrogenic
atom which in turn are much weaker than the ex-
perimental ones. Even though these results are
obtained using a crude approximation, the fact that
the experimentally observed dependence of a on H,
is much larger than even the hydrogenic case is
puzzling. Ideally one should perform calculations
using a more realistic model for the donor impuri-
ties which include a proper description of the elec-
tron anisotropy, intervalley coupling, and central-
cell effects but in fact one would expect that, since
the observed binding energies for the various do-
nors are always greater than for the hydrogenic
case, any calculation, even a more sophisticated
one, would give the sam@ qualitative results as
those obtained here. More experimental informa-
tion is also required to interpret the disagreement
between theory and experiment.

0.5—
az
I I I I

0.2 0.40

72

I I I I

0.6 0.8

FIG. 6. Same as Fig. 4 for the As impurity.
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