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We present measurements of the dynamic longitudinal susceptibility near the Curie temperature of CrBr3 in

magnetic fields up to 30 mT applied parallel to the easy magnetic axis. The frequency dependence of X is

monodispersive except very close to T„where a second unknown relaxation process comprising a small part
of the total y appears at low frequencies. Above T, the critical slowing down of the main (fast) process is

explained with the help of recent mode-coupling results as arising from spin-spin relaxatidn in an uniaxial

ferromagnet. With rising magnetic field the relaxation rate increases steeply below the dipolar crossover

(& & 0.03), while above it a gradual decrease is found. Both observations seem to be inconsistent with

existing ideas about the field effect on critical relaxation. Below T, the fast (para-) process is observed to
speed up again.

I. INTRODUCTION

In ferromagnets the magnetic field couples di-
rectly to the order parameter, the homogeneous
magnetization, and thus it can strongly influence
the critical behavior around the magnetic ordering
temperature. As far as static properties are con-
cerned, e.g. , susceptibility and magnetization, the
field suppresses the critical anomalies being ob-,
served on a large number of uniaxial and cubic
ferromagnets, among them the archetypal ex-
amples CrBr„' Gd, ' and Ni, ' Eu0.4 Much less
information is available so far about the magnetic
field effect on the critical dynamics of ferromag-
nets, for instance, on the magnetic relaxation
rate l, characterizing the long-time decay of the
order parameter to an equilibrium state,
M(f - ~) -M„~exp( —I"f). Though several theo-
retical treatments of the critical behavior of jL" in
zero magnetic field exist, ' " the field dependence
of I has received only a little attention.

Above T, Maleev' predicts for uniaxial ferro-
magnets that I' will increase anomalously even
in extremely small fields, which do not affect the
static susceptibility. Kawasaki' assumes the mag-
netic field to be of no importance as long as the
Larmor precession cannot disturb the dynamics
of the critical fluctuations, i.e., yB«l, ~-i is
satisfied. Here I', ,-& denotes the damping con-
stant of the critical magnetization modes having
wavelengths comparable to the correlation length

Assuming to stay within this zero-field limit
for the critical relaxation, several experimental
workers attempted to interpret the critical be-
havior of magnetic resonance linewidths of Ni, "
EuQ, "CrBr3, ' and Gd," in terms of the cited
theoretical results. In no case, however, could
convincing agreement be achieved and this has

mainly been ascribed to the non-negligible effect
of the magnetic fields of at least, 300 mT applied
in these experiments at X-band frequencies. Only
very recently, a systematic study of the critical
behavior of EPR linewidths in the cubic ferro-
magnet CdCr, Se4" quantitatively confirmed the
theoretical zero-field results. In this system the
linewidths proved to be sufficiently small, so that
(by reducing the microwave frequency to 0.7 6Hz)
the field of resonance could be lowered to 25 m T.
Thereby, at least in a certain (outer) part of the
critical region Kawasaki's condition, yB«X'~-i,
could be shown to hold, in which case the EPR
linewidth of a cubic ferromagnet delivers the
zero-field limit of the longitudinal relaxation rate
P 5s 13

A much more suitable but from the experimental
point of view, also more elaborate method for
examining the field dependence of F is to mea-
sure it directly via the frequency dependence of
the longitudinal susceptibility of the order param-
eter which, in case of the aforementioned ex-
ponential decay, takes the Debye form

x.,(T', &)
) I+t[~/r(r, a)] '

By this method one eliminates the resonance con-
dition and is therefore able to measure I' in
arbitrarily small fields starting from B= 0. So
far in low fields, B~ 20 mT experi'mental values
of I (T, 8) are available only for the cubic ferro-
magnet, EuS." Above T, and for 0 & B ~ 20 mT
the critical behavior of the corresponding kinetic
Onsager coefficient, being independent of the shape
of the sample, could simply be described in terms
of the internal equilibrium susceptibility,
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II. EXPERIMENTAL PROCEDURES

(2)

which is consistent with the dynamic scaling hypo-
thesis. " While in EuS the critical fluctuations
can be assumed to be governed by the specific
anisotropy of the dipolar interaction, "experi-
mental investigations of F in cubic ferromagnets
with much stronger Heisenberg exchange inter-
actions CdCr, Se4, CdCr, S4 are iri progress with
the aim to extend the examination of the field effect
on I' into the direction of the exchange critical
regime. "

In view of these current activities with cubi@
materials, we found it natural and interesting to
proceed a step further by examining the influence
of the field on the critical spin relaxation in an
uniaxial ferromagnet like the hexagonal insulator
CrBr, . In this system, in addition to the Heisen-
berg exchange and the dipolar interaction, two
more magnetic anisotropies are present. As will
be explained below in greater detail, uniaxial
dipolar critical behavior should prevail for
e«0.03, while at larger z two-dimensional Heis-
enberg behavior should dominate. It is believed
on general grounds that dynamic critical proper-
ties are much more sensitive to details of the
magnetic Hamiltonian than static critical proper-
ties are" and, therefore, we expect new effects
to occur. For the zero-field case and by using
the known magnetic interaction parameters for
CrBr„"we intend to perform a quantitative check
of the theoretical estimates existing for the para-
magnetic side. Below T, the present understanding
of the critical relaxation seems to be much less
advanced. We are aware of only one result ob-
tained experimentally by Hutten and Verstelle"
on the uniaxial ferromagnet CuHb, Br~ ~ 2H, O
(T,= 1.874 K), who could interpret their X(v)
data in terms of a sum of two Debye functions
above 1 —T/T, =0.03. Assuming a predomain
state in this critical part of the ferromagnetic
region, the fast and slow relaxation process, re-
spectively, were ascribed to paramagnetic spins
and strongly coupled spin clusters, rather than
to the relaxation of the mobile wall spins and of
those in domains, as it is usually observed in the
more saturated state.

The remainder of the paper is organized as
follows: in Sec. II we give a brief description
of the experiment@1 setup used for measuring the
longitudinal dynamic susceptibility. The results
are presented in Sec. ID, followed by the dis-
cussion in Sec. IV. The summary and the prin-
cipal conclusions of this paper are contained in
Sec. V.

The sample under study was an ellipsoid with
principal axes of 5.0 & 3.5 & 2.5 mm' cut from a
good quality single crystal. The short axis which
coincided with the easy magnetic direction was
always oriented para11el to the static and alter-
nating magnetic fields. So all relaxation experi-
ments probed the dynamics of the order para-
meter of CrBr, . Figure 1 shows the experimental
arrangement. By means of a sapphire rod pro-
viding good thermal contact to the Ge thermo-
meter, the sample was placed into an inductance
which together with a variable capacitor forms
the resonant circuit held at (constant) low tem-
perature. It is weakly coupled to a broad-band
magic tee (Anzac type H9 and HH108), separating
the reflected from the incident signal. The phases
of both voltages were compared in a vector volt-
meter (hp 8405 A) detecting changes of the res-
onance condition caused by a change of X'(e). By
means of the error signal the voltage controlled
oscillator (Schomandl MS 200 M) was pulled to
the new frequency (counted by hp 5264 L) at con-
stant magnetic field as a function of temperature,
or vice versa. In the present case of small dif-
ferences between the frequencies of the empty
(&u) and the filled (&uz) resonator, &u —&u&«e, the
dispersion of the external dynamic susceptibility,
x'((o}=ReX(&u}, could be easily determined from
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FIG. 1. Block scheme of the arrangement measuring
the dispersion of the dynamic susceptibility by frequency
counting. pid: proportional integral differential control.

In the interesting range of frequencies 10-120
MHz the filling factor q does not depend on co,

because we used the same inductivity. The abso-
lute value of g was determined from an adjustment
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of X'(v/2~= 10MHz) to the isothermal susceptibility
a,t T & 33.5 K and B=0, where no relaxation could
be detected (also supported by the absence of any
absorption). The isothermal susceptibility was
measured at 78 Hz by a calibrated mutual induc-
tance bridge (Oxford Instruments MIB 70). As an
example, Fig. 2 shows X'(a&) curves as measured
around T, in zero magnetic field and calibrated
according to Eq. (3). Identifying the susceptibility
plateau below T, with I/N, we find, for the de-
magnetization factor, A' =0.48(2), as compared
to 0.47(1) estimated from the sample geometry.
An independent check of the calibration has been
made by fitting the internal 78-Hz susceptibility,

Xr,.=(Xr' —1V) ', to the power law

CrBr~

l

g '+0.92 I

d

Xr, )(T;B=0)=Ca ", (4) &c -1)

(& —= T/T, —1) using the critical exponent y= 1.215
from the magnetization measurements of Ho and
Litster. ' As is illustrated by Fig. 3 reasonable
agreement exists between Eg. (4) and the experi-
ment, at & ~0.07. The critical amplitude C
=0.023(4) also is consistent with 0.025 from Ref.
1, thus confirming the calibration. On the other
hand, our Curie temperature T, = 32.60(2) K is
much closer to the result of Senturia and Benedek, '4

32.56(2) than to that of Ref. 1, T, = 32.844 K.
Also by the mutual-inductance technique we

measured the isothermal zero-field susceptibility

g(T;QJ J

T =32.60(2)

y = 1.215
(HO, LITSTER Ref.1j

C =0.023 (4J

0--=—
32 34 36

FIG. 3. Inverse of the internal zero-field susceptibil-
ity of CrBr3 measured at 78 Hz parallel and perpendi-
cular to the easy axis. Full curve through y z ~ repre-
sents a power-law fit, assuming p= 1.215 from Ref. 1.
The inverse of the perpendicular susceptibility can be
described by displacing y &'& by ~p =0.92.
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B=0

X~ in the heavy direction. As is evident from Fig.
3, the internal values (X'r, ) "= (Xr') ' -N' can
adequately be described by displacing the inverse
of the measured order parameter susceptibility
according to

[X&,~(T, B=0)] '=[X&,~(T B=o)] '+&X ' (5)

7 6
where the displacement term hx '= 0.92 is experi-
mentally defined. We shall refer to this result
in Sec. IV.

III. ORDER-PARAMETER RELAXATION

Q
32 33

I

34

r/~J

The frequency dependencies of the dispersion
in zero and finite magnetic fields are reproduced
in Fig. 4 for co/2v& 1 MHz. It: is obvious that all
curves are very closely described by the real
part of the Debye function [Eq. (1)]

FIG. 2. Temperature dependence of the zero-field
dispersion of CrBr3 around the Curie temperature,
evaluated from recorded resonance frequencies [cf.
Eq. (3)] and, at 78 Hz, from a mutual inductance mea-
surement. The rf field is aligned parallel to the easy
magnetic axis. Full curves are drawn as guides to the
eye.

'&o e B.= " ' ~1MHz 6X ( I o )' 1 [ /F( B)]2 I 2
' ( )

As noted above, this behavior corresponds to a
time-dependent magnetization, tending exponential-
ly towards equilibrium with characteristic time
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(a)— 1/I'. In the following we will consider, separately
for zero and finite magnetic field, the critical be-
havior of the quantities of primary interest, i.e.,
the relaxation rate I'(e, B) and of the plateau sus-
ceptibility X„(a,B), both extracted from fitting
the measured dispersion curves to Eq. (6). ]3e-
cause I'(c, B) still depends on the shape of the
sample, .it is meaningful to correct it for demag-
netization in order to deal with the internal re-
laxation rate I'„ the quantity usually discussed by
the theory. For this purpose we use the general
relation between external and internal dynamic
susceptibilities
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(see e.g. , Ref. 25) which, in a frequency region,
where X(&o) is described by a single Debye function,
like Eq. (6), leads to

1.5--
-6.2 I', (e, B)= I'(t, B)[1 NX,—(e, B)] .
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A. Results in zero magnetic field

We first consider the measured amplitudes of
the Debye function depending on the state of equil-
ibrium to which the magnetization relaxes. In
the right-hand part of Fig. 5 X»(t&O, B=O) is com-
pared to the isothermal susceptibility measured
at 78 Hz. Apparently both susceptibilities agree
up to X~= 1.2, i.e., the whole magnetization of
the sample reaches thermal equilibrium during
1/I' for e &0.02. Near T„however, X„remains
below Xr with a maximum difference of 15/0 at
T, . In order to obtain more information about
this effect we carried out an additional dispersion
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FIG. 4. Frequency dependence of the longitudinal
magnetic dispersion at various temperatures in zero
field above (a) and below (b) T~ and in finite magnetic
fields parallel to the easy axis of CrBr3 (c). Full
curves indicate fits to the real part of the Debye func-
tion, Eq. (6).

FIG. 5. Comparison between the isothermal suscep-
tibilities p z and X z &, calculated according to Eq. (4)
(T&T~) and Eq. (8) (T& T~), and Xy&, determined from
fits of the high-frequency dispersion to the Debye law
(Eq. 5). Near T, a second relaxation region appears,
indicating a dynamical rounding [cf. insets, showing
X' (co) at a=0.0316 (0), 0.0064 (+), 0.0010 (), -0.0015
(U), —0.0062 (X), —0.0186 (6)].
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temperature F, exhibits a steep increase with
magnetic field, which soon reaches a limiting
value of 0.16 0Hz being independent of B, and e.

The behavior of X» in finite magnetic fields is
shown in Fig. 8. For reasons of comparison the
isothermal susceptibility gr(e, B) calculated from
the existing magnetization data is indicated, too.
At first, i.e., at low fields, the difference between

X~ and X» becomes larger with increasing B.
This would be consistent with the conclusion that
near T, the magnetic relaxation of t rBr, is dom-
inated by spin-spin interactions" establishing
thermal equilibrium within the spin-system only,
and, therefore, the plateau susceptibility should
be equal to the adiabatic susceptibility of the spin-
system. According to thermodynamics, X,d is
given by Xr —T(BM/BT)~~/csIIO with (BM/BT)2s in-
creasing from zero (at T~ T, ) when a magnetic
field is applied. Thus X,~ remains always smaller
than y~ in finite magnetic fields above T,. Un-
fortunately, the existing data about the specific
heat at constant field cs (Ref. 28) are not precise
enough near T, to allow a reliable estimate of the
difference y~ —X,~. In Sec. IV, however, . which
discusses the decay rate in more detail, we
will obtain additional arguments favoring a dom-
inance of the spin-spin interactions in the critical
relaxation. At large magnetic fields X~ and Xp)
tend to coincide which cannot be explained by the
disappearance of (BM/BT)2s/c~ alone. This result,
of course, also requires that the low-frequency
relaxati. on process observed in low fields has
merged in the relaxation region of the bulk of
the susceptibility located between 10 and 100
MHz, similarly as it is seen in some distance
from the critical point at zero field (cf. Fig. 5).

IV. DISCUSSION

As noted in the introduction, it is the kinetic
(transport) coefficient of the homogeneous mag-
netiza-tion

1.5,

o
0.5-

E' =5.52x10

0 I

10
I

20
8 (mTJ

I

30 40 50

FIG. 8. Magnetic-field dependence of the plateau
susceptibility y» determined from Debye fits to the
high-frequency relaxation region fEq. (5)]. For com-
parison are shown the isothermal susceptibilities
calculated from the magnetization data of Ref. 1.
Error bars contain the combined uncertainties of mea-
surement and calculation of X z.
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below T,. On the paramagnetic side of T, and in
zero field, L decreases gradually for & ~0.01
while in the immediate vicinity of T, it behaves
noncritically. This is in contrast to the region
below T, [Fig. 9(b)], where L diminishes approx
imately like (-e) 0'" ~go,;~.for e &-0.004, i.e.,

L =- FXpg

which is of primary concern in critical dynamics.
By considering L instead of F, we eliminate the
thermodynariiic slowing down caused by the static
susceptibility and, moreover, we deal with aquantity
which, as we shall see, is intimately related to
the dynamics of the magnetic fluctuations. We
also recall the fact that L constitutes a material
constant, independent of its (ellipsoidal) form, in
which field effects enter only via the internal mag-
netic fieM. 'As a principal result of this work
Fig. 9 represents the temperature dependence of
the kjnetic coefficient of CrBr, at constant B, in
the critical region above T, as well as-at B= 0

1
I

L
fGHzj

I I I

CrBr~
T» Tc

0
O~

B=O

O~
O~

QwO

0
0

I I

0.01

FIG. 9. Kinetic coefficient of the homogeneous easy-
axis magnetization, L = I'X» vs reduced temperature:
(a) at different internal magnetic fields above T„and
(b) at zero field below T~.
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outside the range of the dynamic rounding.
In finite fields at T & T„L exhibits a simpler

behavior than I',: the overall effect of B, is to
reduce the kinetic coefficient, especially in the
immediate neighborhood of T,. Thus the steep
rise of 1", at small c and B, in Fig. 7 must entirely
be ascribed to the strong decrease of the thermo-
dynamic factor Xpp $ which overrides the sup-
pression of L by the magnetic field. With in-
creasing g the field effect on L becomes less
significant which appears to be consistent with
Kawasaki's idea' outlined in the introduction: due
to the growing decay rate of the critical fluctua-
tions, I', ~-x, the field-induced Larmor preces-
sion loses its importance for the critical dynam-
ics. In Secs. IVA and IVB these behaviors of
L(c, B) are explained in more detail, separately
for the cases of zero- and finite-magnetic field
at T& T,.

A. Kinetic coefficient in zero field

Recently, Maleev' and Finger, "employing dif-
ferent theoretical methods, calculated the kinetic
coefficient of spin-spin relaxation in ferromag-
nets considering simultaneously anisotropic ex-
change and dipolar interaction on a cubic lattice.
For uniaxial systems both treatments arrive qual-
itatively at the same results (in contrast to the
planar and Heisenberg cases). We will base our
discussion on Finger's mode-coupling calculation
because this formulation also allows quantitative
estimates for L, which in the case of the cubic
ferromagnets EuO (Ref. 29) and CdCr, Se„"have
been shown to be in extremely good agreement with
experiment.

The essential quantities entering in the mode-
coupling equations are the static magnetic sus-
ceptibilities at long wavelengths describing the
correlations between the modes of the magne-
tization components M;, parallel and perpen-
dicular to the easy axis

I

the homogeneous magnetization is expected to
exhibit a "critical speeding up,

" first predicted
by Kawasaki' and Huber. ' From Finger's work"
we obtain

L& o=QqV (q. &)
~

& "q

Q
hi)t 8~i~ Xr. iG k T

j~ sH
(12)

with G„= (gpss)'/V, ~„po. Roughly speaking this
speeding up can be ascribed to the suppression
of the well-known exchange narrowing of the di-
polar forces responsible for the magnetic relax-
ation by the increasing short-range order when
approaching T,.' In the reverse case, i.e., near
T, (where g '«q„q„), both anisotropies reduce the
degrees of freedom for the critical fluctuations.
This leads to the so-called conventional behavior"
of the relaxation rate l c X~' defined by a non-
critical kinetic coefficient. This behavior is def-
initely observed on CrBr, below z = 0.01. Riedel
and Wegner initially derived this result for iso-
tropic exchange. For the case of uniaxial ex-
change Finger's generalized treatment" yielded
the following explicit equations for L depending
on the relative strengths of the exchange and di-
polar anisotropy:

L.=Qq. ',

(q /q )7/2 g
2 (( qR(( q2

In order to compare these findings quantitatively
with CrBr„we have to take account of the hexa-
gonal lattice structure and other sources of an-
isotropy (e.g., single ion a ") in this ferromagnet,
all differing from the underlying theoretical model.
Near T, ($ '( q'„q„'), however, it is possible (see
Appendix) to approximate the correlation functions
of CrBr, by Eqs. (9) and (10), and to estimate the
parameters in Eqs. (9) and (10) by the following
expressions:

xr, g/P
Xr(q ) ] 2+ 2+ q 2(q /q)2

xr„/5
Xr(q ) ]2~ a+ 2+qg

(9)

(10)

X r„- /8 = G~ P, ,

ql = (G~ /~. )fl/(1 + Xr, i )),
q', = (G, /~, )(1/&x) .

(ls)

(17)

respectively. q„and q, represent wave vectors
characterizing the dipolar and exchange aniso-
tropies, and the critical behavior of L depends on
whether the inverse correlation length g

' is small
or large compared to q~ and q, . In the latter'
case, both anisotropies do not affect the critical
correlations (q = g ') and their dynamics are dom-
inated by exchange-induced isotropic spin dif-
fusion. In this region, the kinetic coefficient of

Here ~, denotes the second spatial moment of the
exchange interactions defined by Eq. (A7), des-
cribing the dispersion of the transverse (equal to
"'easy dipolar""' ")modes of the order parameter,
i.e., of'S propagating perpendicularly to the
~ axis. The exchange integrals in CrBr, have been
carefu11y. measured by Samuelsen et al."up to the
fifth nearest neighbors leading to Z, =171 (10)
peVnm'. . The numerical values involved in the
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TABLE I. Comparison between measured and calculated [Eqs. (12)-(17)] kinetic coefficients of the uniaxial ferro-
magnets CrBr3 and GdC13(Ref. 17). The following columns contain the parameters involved in the calculation being
estimated by using the magnetic coupling constants from Refs. 22 and 34. All data refer to T& T0, B=O.

L [GHz] L [GHz] L& [GHz] &~ [p eVl ~2 [pe~nm'] q [nm ] q' [nm ']

CrBr3
GdC13

32.60(2)
2.211(1)

0.76 (4)
19(2)

0.54(9)
6(1)

1.73(5)
11(1)

26.6
28.0

171(10)
2.20 (8)

0.143(9)
4.4(8)

0.074(4)
3.3(4)

calculation of the kinetic coefficient L, and L„are
compiled in Table I. For CrBr, it is evident that
Q', & Q~, but the limiting condition of very strong
uniaxial anisotropy underlying Eq. (14) is not ful-
filled. Nonetheless, calculating the kinetic co-
efficient from Eq. (14) we obtain L, =0.54 (9) GHz,
being only slightly smaller than the measured value
L =0.76(4) GHz. L is, moreover, bounded from
above by L~ =1.73(5) GHz, calculcated from Eq. (13)
for the other limiting case of dominant dipolar
anisotropy. Obviously our measured I lies within
the crossover region between uniaxial and di-
polar anisotropy and we argue that it can perhaps
be estimated to better accuracy by a numerical
treatment of the appropriate mode-coupling equa-
tions instead of using the asymptotic formula
(14). This method was utilized recently by Ragha-
van and Huber' to calculate the critical relaxation
in the exchange to dipolar crossover region of
cubic ferromagnets, - the results of which were

. shown recently to be consistent with measurements
on EuO,"and CdCr, Se,."

Table I also includes corresponding data of the
low-temperature ferromagnet GdCl»" where the
exchange couplirig is known up to the second near-
est neighbors. ~ Owing to the smaller exchange
interaction and uniaxial anisotropy in this system
the kinetic coefficient is predicted to be more than
one order of magnitude larger than in CrBr, and
also should be closer to L« than to ~, . From
Table I it is evident that again the experimental
value confirms these expectations.

It might be interesting to estimate the tempera-
ture range where the conventional behavior should
hold for CrBr, . Using Eq. (15), the inequalities
$ '«g~, q', can be reduced to Xr;»1+Xr q,
which ceases to be valid for X, , (e+)=1+X', , (e+).
Inserting our experimental susceptibilities for
CrBr~ we obtain ~*=0.03, where the measured ~
has in fact already left the plateau (Fig. 9). Ob-
viously, around &* a dynamic crossover occurs
which is complicated by the fact that not only do
the dipolar and uniaxial anisotropies become less
important here for the critical fluctuations (g
= $ '), but that just in this same region CrBr, be-
comes a quasi-two-dimensional Heisenberg ferro-
magnet" because of the weakness of J;, parallel

B. Kinetic coefficient in finite field

In order to compare the magnetic-field effect
on the kinetic coefficient of CrBr, with the results
of the corresponding investigation on EuS,"where
L was found simply to depend on & and &; via the
static susceptibility, i.e., L(&, &, ) =f(X „,, (&,&,))
we have plotted I vs Xpf in Fig. 10. It is evident
that, in contrast to EuS, where all data in this
representation collapsed onto a single curve, the

0.8-

0.4-

~~+~ CrBrz

e= TIT -1

1.0 x 10

2.4 «10

4.9 «10

7.9 x10

1.01 x10

1.99 x10

3,98«10

4.S «10

5.52« 10

0.08-

1

Xp/ j

FIG. 10. Kinetic coefficient of the order parameter
vs internal plateau susceptibility. Upper curve corres-
ponds to B= 0, all others are for constant temperature
and internal fields B; &25 mT, except for e= 0.046,
where B& extends up to 165 m T.

to the c axis." The two-dimensional (2-D) short-
range order can be observed, e.g. , by the signi-
ficant reduction of the Curie temperature relative
to the mean-field value &~ = 73.5 K following from
Eq. (A5) with exchange parameter of Ref. 22. One
may also conjecture, that the critical exponent of
the static susceptibility, y =1.215, represents an
effective value" in the crossover betweeri 2-D
Heisenberg [large y (Ref. 35)] and uniaxial dipolar
(y =1.07),"rather than a short-range 3-D Ising
exponent (y =1.25). The critical behavior of L in

such a 2-0 ferromagnet has not yet been calcula-
ted. Richards" argued that I' should strongly di-
verge approaching &„which, however, is not born
out by our data at large &.



J. KOTZLEB, AND W. SCHEIYHE 18

transport coefficient of CrBr, does not show this
simple behavior. Especially in low fields there is
a considerable divergence of the I isothermes
from the curve at & =0. Looking for a confluence,
one finds an indication at small & and large B&,
but unfortunately there are not enough data to sup-
port this trend. Thus, it is convenient to assume
that the different field effect on the critical dy-
namics of CrBr, is associated with its uniaxial
anisotropy and/or with the quasi-two-dimension-
ality of the magnetic system. The latter should
manifest itself for X~, ;& 2, where the magnetic
field effect on the I —g», & plot appears to be
strong. As noted above no theory is available to
date for critical relaxation in 2-D ferromagnets,
neither for &=0 nor finite fields.

On the other hand, for ««*, CrBr3 can be
characterized as a 3-D uniaxial dipolar fepro-
magnet and, thus it might be appropriate to com-
pare the results from this region to Maleev's cal-
culation. ' Recalling the steep increase of I'; in
small fields, Bq 1 mT (Fig. 7), his prediction
that I'; should increase anomalously in small
fields, appears to be satisfied. However, con-
sidering the kinetic coefficient we find from Mal-
eev's work [Eq. (48)] that L also increases with
growing magnetic field. Such a behavior is incon-
sistent with our observation (Fig. 9) of a strong
reduction of ~ even in very small fields.

A final remark should be devoted to previous
EPR work by Seehra and Gupta' on Crier, near its
Curie temperature. The authors based their dis-
cussion of the critical behavior of the linewjdth on
the zero field estimates for the relaxation rates
of the order parameter and of the perpendicular
magnetization. Our results show, however, that
this assumption leads to incorrect conclusions
near &, (e «*), because the critical behavior of
I' is strongly modified even in moderate fields up
to 20 mT (Fig. 7) while the EPR measurements
were carried out at 320 mT. In the quasi-two-
dimensional region of CrBr, (& &a*) L also signi-
ficantly depends on the field, indicating that Kawa-
saki's condition (deduced for isotropic 3-D ferro-
magnets} as applied to CrBr, in Ref. 14 does not
hold here.

V. SUMMARY AND CONCLUSIONS

In the preceding sections we have described and
discussed the temperature and field dependence
of the relaxation rate I' of the order parameter
around the Curie temperature of the uniaxial ferro-
magnet CrBr„where I' was extracted from the
Debye shape of g'(~} at ~/2v~ 1 MHz. The ob-
served conventional critical behavior of I' in zero
magnetic field for 0«& 0.01 is in full qualitative

and good quantitative agreement with recent re-
sults of the mode-coupling approach assuming the
spin-spin relaxation to be dominant. Though no
quantitative estimate exists so far for the magni-
tude of the spin-lattice interaction in CrBr„ the
corresponding kinetic coefficient I,&

i.s expected to
be essentially independent of temperature in the
critical region" and, therefore, we can infer from
our results, Fig. 9, that I«& 0.3 GHz. Thus, J &

is significantly smaller than the measured ~
=0.76 GHz, so that our quantitative comparison
for I is not seriously affected. Somewhat above,
at ~ + 0.01, a dynamic cross over to nonconvention-
al behavior is found which might originate from the
increasing two dimensionality of the critical fluc-
tuations.

&hen passing 7.', we found I' to behave contin-
uously and most likely to arise at 1"& &, from the
relaxation of paramagnetic spins in the ferro-
magnetic phase which would be consistent with an
earlier observation on RbCu, Br4 2H, O." In con-
trast to above &„ I' exhibits unconventional be-
havior (&; ~ g,,",') which remains unexplained as
well as the appearance of a second relaxation pro-
cess in the vicinity of &„—0.004- &- 0.02, de-
noted as dynamical rounding, affecting a small
part of the total susceptibility.

Applying a magnetic field, the relaxation rate
rises steeply at low fields for «0.03, while at
& & 0.03 a gradual decrease is observed. Both re-
sults differ distinctly from the field effect as ob-
served on the cubic dipolar ferromagnet EuS."
They cannot be understood within the frame of ex-
isting ideas and hq, ve to be clarified. In view of
these results it might also be advantageous to re-
vise the simple model of CrBr, as a 3-D-Ising
ferromagnet so far used to explain the critical
behavior of the static magnetization' in the
&~ —& region examined here.
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APPENDIX: STATIC MAGNETIC CORRELATIONS
IN CrBr3 (T & T, )

P

From Samuelsen's et al. neutron work" and
Bene's EPR measurements on Cr pairs on BiI„'"
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it follows that the magnetic Hamiltonian of CrBr~
consists of a dominant Heisenberg exchange plus
an anisotropic part

H=- Q&g; S('Sg+H~ .
gssj

H„=+5) ' Dry' Sg —Q ZsgS& S', -~(S', )', (A1)
fvsf jets j

1 ( gl's)' ~

2 4K po (&g g &~) j
(A2)

II& contains contributions from dipolar, exchange,
and single-ion interactions

While accurate numbers for ~&, and D are not yet
available, it seems to be certain that the exchange
is responsible for the alignment parallel to c(&'
&0}, while the smaller crystalline D & 0 and dipolar
fields both direct the magnetization into the per-
pendicular direction. To discuss the critical corre-
lations of such an uniaxial ferromagnet with dipolar
interaction we follow the treatment given in detail
by Ref. 39. As starting point we use the mean-
field approximation (MFA, e.g. , Ref. 40), where
the susceptibilities of the order parameter and
of the heavy modes of the magnetization can easily
be shown to take the form

. 0 yy A.

&+p.—em +p. q'. +x/[1+x'„&(e,/e)'](e. /q)' (A3)

x (q-0) =2 [x""(q-0)+x""(q-0)]=x/(&-&,'+p, q', +p, q', ) . (A4)

Here & denotes Curie's constant, S(S +1)G„/3&~,
and the Curie temperature is given by

LS.
(A5)

x';(q-0) =~—'
2

r-T„, T, —r~
A +q2 0 A

p~ Pj

and

L5.
2S(S +1) P [J ~ (Dxy Dyy]

3 a s(«)
(A6)

Kith these preparations we can mow write

x,(q-0) = ~' I +Xr. ~ (4',iq)'

where the summations are to be carried out within
the Lorentz sphere. Similarly the expansion co-
efficients of the q-dependent terms are determined
by the magnetic interactions: they reduce to the
simple form in Eqs. (A3) and (A4) when the small
part II& is neglected, with

S(S +1) ~ 2 S (S +1)2 ~~, (q, ~ r,~)'q-'=
3 B g(ya g) B

(A7)

S(S+1) g ~ (
y

)y
S(S+1) ~, (A6)3k („) ' ' 3k

Approaching &„we know from the theory" that the
first term of the denominator in Eq. (A9) is re-
normalized by the critical fluctuations, whereas
the other entities are assumed to retain their
mean-field values. Consequently, by comparing
Eq. (A9) with Eq. (9), the homogeneous suscepti-
bility is found to be related to the correlation
length 4 by Eq. (13}, Due to the depolarization term
in Eq. (A9} ~ (Q,/q)2, arising from the long-range
part of the dipolar interaction, it is only the corre-
lation function between the transverse order-
parameter modes, S'~-, that diverges near &,.
Thus near &, one is allowed to neglect 9', -0 in

Eq. (A9) and to replace (p /q) by one, so that we
in fact arrive at the form of Eq. (9) assumed by the
mode-coupling theory with I~a given by Eq. (16).
It might be noteworthy that both results, Eqs. (15}
and (16}, have been found to be consistent with ex-
perimental findings on the uniaxial ferromagnets
LiTbF4,"' ' and GdCl~, ' respectively. Applying
the same arguments to Xr(q-0) one obtains, from
(A10), Eq. (20) with Q', = (To —&0)/p~. Since the
parameters of H„ involved in &, —&0 [Eqs. (A5)
and (A6)] are not yet known precisely, we mea-
sure& the homogeneous perpendicular susceptibility
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near 7, . The experimental result, Eq. (5), is in
full agreement with what follows from Eq. (A10):

(A11)

from which one obtains directly Eq. (17) 'using Eq.
(15). Comparing our measured value of ay= y'r, .

(T„M = 0) = 1.09 with X'r,(T„1.85 mT) =M/B„= 0.83,

following from Dillons ' measurement of the ani-
sotropy field by ferromagnetic resonance at 23.4
GHz, B„(T,)=200 mT, and the corresponding
magnetization M(T, ) =185 mT,"a slight discrep-
ancy is observed which indicates that X~,. dimin-
ishes with increasing magnetization. This is also
supported by the neutron" and FMR results both
yielding B„=650mT at 6 K, where& =340 mT,
and thus X'r f6 K, 340 mT) =0.52.
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