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Spectral-diffusion decay in echo experiments
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(Received 2 March 1978)

We calculate the decay of phase memory due to spectral diffusion in certain echo experiments. Local-field

fluctuations, at the site of resonant two-level systems, controlled by the spin-lattice relaxation of neighboring

spins, cause the spin diffusion. The results generalize those previously obtained which were valid only at high

temperature.

I. INTRODUCTION

Often physical systems may be represented ex-
actly, or to good approximation, as assemblies of
two-level subsystems. Atomic situations often
occur in which a physical system may be divided
in a natural way into subsystems for each of which
only two energy levels are significant. Nuclei and
atoms in magnetic fields, optical transitions of
atoms and molecules and, it seems likely, ultra-
sonic transmission in amorphous materials, all
furnish examples where this decomposition is ap-
propriate. When such systems absorb power there
will always be broadening of the resonance line.
This may be inhomogeneous or homogeneous. The
former arises from all factors which cause the
long-time average of the energy splitting of the
two-level systems to vary from one system to
another. Examples are splittings due to crystal
strain or spatial inhomogeneity of applied magnetic
field in spin resonance. Homogeneous broadening,
on the other hand, arises from the mutual interac-
tion of two-level systems or from interaction with
an external system (lifetime broadening). It is a
dynamical process and causes the irreversible
loss of phase coherence in the system as a whole.
The standard method of studying this loss of phase
coherence is the echo technique which is applicable
in various cases as spin, ' photon, ' and Raman'
echo. It is customary to speak of the decay of the
echo generated after coherent excitation in terms
of a single-phase memory time, T,. In fact, the
form of the decay is usually complicated and not
characterized by a single exponential function.

One important contribution to the echo decay,
the spectral diffusion, ' comes from the fluctua-
tion of the local field at the site of the resonant
two-level system. It is usual to divide systems in
which this process is important into two classes,
designated as T, and T, systems. In T, samples,
the fluctuation of local fields arises from the flip-
ping of neighboring ions by spin-lattice relaxation
(described by T„ the spin lattice relaxation time);
in T, samples the flipping of the neighbors comes

primarily from spin-spin interactions (T, being
the spin-spin relaxation time). ' We shall be con-
cerned here exclusively with T, systems. The as-
sumptioris of the model are simple. The spins are
first divided into two classes, 4 and B, both of
them of sufficiently low concentration. The A
spins are those whose resonance is being observed.
They will be considered to be isolated from one
another. The remaining B spins are randomly
placed and in thermal equilibrium with the lattice;
they flip at a rate which is characterized by T„
the spin lattice relaxation time. We assume that
the resonance frequencies of A and B are so dis-
parate that we need only use the diagonal part of
their interaction. For simplicity, we present re-
sults for the case of dipolar interaction. If the
interaction has a more general dependence upon
the orientation of the spins but falls off as the third
power of their separation the form of the result is
not changed but the definition of the parameters in-
volved will be affected. An interaction of this kind
has been shown to exist for certain models of the
interaction of two-level systems in glasses. ' The
results may also be generalized to more compli-
cated interactions.

An uncorrelated-sudden-jump model for the sys-
tems considered here was previously analyzed by
Hu and Hartmann. ' The present work generalizes
the results of that paper and we follow the same
notation. However, in the work of Hartmann and
Hu it was assumed that the B spins flip from one
state to another with equal transition probabilities.
This is essentially a high-temperature approxima-
tion. We remove this restriction here and obtain
exact results for the decay of two- and three-pulse
echoes in the general case.

H. TYCHO-PULSE ECHO
AND THREE-PULSE STIMULATED ECHO

Considering anA and B spin, with dipole moment
operators p, ~ and p.~, separated by a distance r,
which interact through the dipolar interaction

K„s=p,„'p~!r' —3(p,„'r)(ps 'r)/r'; (1)
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we retain, as mentioned above, only the diagonal
part of this interaction. The three-pulse stimu-
lated echo is generated by applying three &m reso-
nant excitation pulses separated by v and T. The
two-pulse echo is simply a special case of the
stimulated echo where T =0, i.e., it is generated
by a n' pulse at time v after the first &m pulse. The
stimulated-echo amplitude e(27, T) is given
by4 6,

( T+2T

e(pt, X) = exp el( te(t) et — e(t) et)
0 T+T

(2)

(u(t) = 2p, p,,(t)(1- 3cos'e)k 'r '.
The many-spin solution is obtained from the two-
spin solution by averaging over all A and B spin

sites. We must also average over all B spin-flip histories. We incorporate these operations into
our notation by writing the stimulated-echo amplitude as'

e(2 tp)= (a(e apts e e(J e(t)dt -f e(t)dt) )), ,

where

(o,=2t),„t),s(1 —3 cos'8, )5 '.r,', .
The operator n averages over all B spin-flip his-
tories. The subscripts (). and P refer to A and B
spin sites, respectively. The bracket (( )) rep-
resents the operation of averaging over A spin
sites. We have defined h(t) through p, s(t) = p, sh(t),
so that h(t) has unit magnitude and changes sign
every time its representative B spin flips. The
operator a performs the average over all B spin-
flip histories.

The average over all the A spin environments is
straightforward and we obtain'

e(pe, X) =exp (-ae„,a

x pgt dt — ht dt

where

s(o,„=(16m'/9v3)nt), p, K ' (3)

ht dt- kt dt-

and the above expression. is correct to the first
order in the concentration of B spins. n is the
number density of B spins.

Here we have neglected a term which corre-
sponds to a finite frequency shift due to the unequal
number of up and down spins. This is justifiable
as long as there exists an appreciable amount of
other inhomogeneous broadening of the spin sys-
tems.

From the definition of h(t) it is clear that

can be written 2
~
v, - v, ~,

' where r, (v) is the time
spent by the B spin in the upper state during the
interval (0, v) and v;(r) is the corresponding quan-
tity for the interval (7 +T, 27'+ &).

Given a fixed sequence of successive time inter-
vals, r, T, and r, each history has a definite v, (v}
and v~(7), so that it is then sensible to ask for the
probability that a given history has an assigned
value of s= v, (r) —v, (v}. This probability is clearly
a function of r (and of s and T). To study its de-
pendence upon 7 we first suppose the time intervals
to run from -v to 0, 0 to T and T to T+ 7. and com-
pare the situation with one in which they run from
-v. -dr to 0, 0 to T and T to T+ a+de. We can al-
waysfind a history in. the second case which ex-
actly duplicates between —T and T+ T a given his-
tory of the first case and the relevant probabilities
for 7 and 7+d7. can therefore only change as a re-
sult of the behavior of the second case in the inter-
vals -~-47. to -v and T+ ~ to T+ 7+dT. This will
depend on the spin state of the system at —7 and
T+ 7; We are thus led to define four probabilities
P))(s, 7), P)&(s, 7), P&)(s, T), and P&&(s, 7), where
P) &(s, r), for example, is the probability that the
system is in the upstate at t= -v and at t= T+ T

and the difference 7, (T) —T, (T) = s.. The required
average of I T, —T, I is now

f(27, T) = [P ))(s, 7)+P iI(s, 7.)
~00

+P
~ i(s, r) +P ~~(s, 7)j i s (ds, (4)

and the amplitude of the stimulated echo is

e(2r, r) =exp[-2&(o,(,f(2i, &)].
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By comparing the states of the system for inter-
vals v and 7 —dt we may derive partial differential
equations satisfied by the P's. Consider, for ex-
ample, P (t(s, T). If the system is to be in the up-
state at start and finish with 7,(T) —T,(T) =s, then
at T-dT it was in one of four conditions: (i), up
at -T -dT, up at T+ T-dT, s unchanged; (ii), up
at -a+de. , down at T+ v -dv, s replaced by
s —O(dT); (iii), down at T+-dT, up at T+T dT-,

s replaced by s+O(dT); (iv), down at T+-dT, up
at T+v -dv, s unchanged. To the first order in
dv we have

P(((s, T) =P(((S, T —dT)(1 —2w, dT)

+P (((S~ T}w+T+P ((w~(fT

or

x (w +w e (wlg+Ml 2)T}
2 1 t

P (((s, 0) = & (s)[w,/(w, +w, )']

x (w w-e (~~+~2'r),
1 1

P, t(s, 0) = &(s)[w,/(w, +u,)']
x (w -w e ("~' 2' )2 2

P „(s,0) = 5(s)[w,/(w, +w, )']

(ea)

(eb)

(ec)

finding the system in the upstate at the start and
the down state at the end of an interval of length
T. %e assume the initial probabilities to be those
of an equilibrium distribution, namely w, /(w, +w, )
for the up state and w, /(w, +w, ) for the down state.
The initial P's are now readily found to be

P (((s, 0) = &(s)[w,/(w, + w, )']

&P (((S, T)
87

= -2w&P(((s, T)
x (w +w e (~('~2'T) . (ed)

+u,[P (((s, T)+P(((s, T)] . (7a)

sv, and u2 are, respectively, the probability of
jumping from the upper and lower state. Similarly
one may derive

8+ ((+wx( H+P& () ~

8P )) 8P))
8v 8$

+ - — = -(w, +w, )P ((+w,P ((+w j'((, (7c)

where

d2
, —l*(v)) Z=-A5(s), (10)

, a(o+2w, +2u, )
&'( )=( +,+,)'

Note thatP(((S, O) = P((S(, O).
From Eqs. (8), we may find an equation satisfied

by P ~~+P ~~
= Z. This is

(a+ 2w()P (( —w2(P ((+P (()=P (((s~ 0) ~

(0'+ 2uI()P ((-w((P ((+P ( ()=P (((s ~ 0),
8—+a+wi+w2 P(( —wiP(( —wj ((=P(((s, 0),

(8a)

(8b)

(8c)

8P)y 8P )) = —(w( + w2)P ((+w(P ((+w2P ((. (7d)
8+ 8$

We define P t((s, 0) = fv" e P (((s, T) dT and similar
expressions for the other P's. Then we find

Q,nd

A=2 ( w(wm (0'+w(+w2)

l((w +w ) (a+ 2w()(a+ 2w2)

x [(0+2w(+2w~) —ae (~~™&~T].
The equation for Z has the solution

e-Ik{fy) Is
2k(a)

A eI'{'iI', s & 0.
2k(a}

(13)

(
8 A &la—+0'+w&+w2 P((—w&P(( —w+((=P(((s, 0) .

(8d)

%hen v =0, clearly s can only be zero so the initial
P's all contain a factor 5(s). The remaining factor
[in P (((s, 0), for example] is just the probability of

rk

For T =P ~~+P )t+P &&+P k~ we now have

}+wmZ P tt(s, 0)+w, Z
+ +~+ 2~, 0'+ 2%2

The &(s) terms in the P (((S, O) and P(((s, 0) will
contribute nothing to the integral f '„"T(s, 0) (s ( ds
and we have

T(s o)(s(ds= 1+ ' + '
(

(s(e '""'ds= 1+ MI2 A@1 A

a+2w, 0+2w, ) 2l(a) „a+2w, a+2w, ) k'(a)

2w,w, (0 + 2w, + 2w, ) —oe
(wx+w2) [(a+2w, +2w, )(a+2w, )(a+2w, )a']' '
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(o+2w, +2u, ) —oe (~2'~2)r

[(o+2w, + 2w, )(o+ 2w, ) (o+ 2w2)a ]

Thus, we arrive at the expression
c+$~

( )
2w(w~ 1

(W( + w2) 2([i

where c is real and the path of integration lies to the right of all the singularities of the integrand. If we
write

x=(w, +w)~,

g = (w, —w, )/(w, +w,),
(16)

(17)

g=o/(w, +w )+1,
we obtain

2W W e 2: c e(ee (g+ 1) (g 1)e (rc(e222)r

(w(+w~) 2(T( ( [(g2 )2)(g+ 1)(g 1)2](r 2

2w(wm e-2' c'e(~ 2+ (g 1)(1 e-(rc(erca)T)
gX

(w, +w, )' 2((i; („(g' g')'r" (g' I)'~ 3(g 1)
I

(1S)

with the path again to the right of the singularities.
Carrying out the inverse Laplace transforms, ' we
find

2ZU~SU2
f(2r, T) =( )SU~+ SD2

where b, (o,&2 and g are defined by E(ls. (3) and (17).
%hen ie, =zv„ the high temperature limit, we

have g = 0 and the functions F and G reduce to

F(0, x)=2e" x'[I (x')+I (x')]dx'
0

where

X [F((.x) + (1 e-(rcgerc2)T)G(g. x)] (20)

F( (x)= e2* f r [((x x')]
0

C(O, x)=e * f r, (x')d»'.
. 0

and

x x' [I,(x') +I, (x')] dx'

G(g;x) =e" I,[&(x-x')]I,(x')dx'.
0

(21)

(22)

These results agree with those derived by Hu and
Hartmanne by another procedure for this special
case.

There are a number of ways of expressing the
function G(x, g) which may be useful for computa-
tion. One of these is

&0 and ly are modif ied Bessel functions of order zero
and one. Note that BF(g;x)/&x=2G($;x). '

In terms of the functions F ($;x) and G ($;x) the
amplitudes of the two-pulse and three-pulse stimu-
lated echoes, e(2v) and e(2r, T), are given by

420~ZD2
e(2»)=e»2 (-&te„, ,

($0~ + $02)

xF[(, (re, ere, )e))

X2ce~ 1+ ~22[
G(x, g)=e"

(2n+l)~ ~ F"
2g

n=

where P„ is the Legendre polynomial of order n.
For small $ this reduces to

&2n+ j.

12 2'"(e~)'(2» e 2)

e(27, T) =e px(-a (2)&,[4 w, w, /( w, +w, )']

x[F(g; (w, +w, )y)

+ (1 —e '~2'~2' )G(5; (w, +w, )7')]f 2

(24)

x 1+. 2+0 4 . 26
2n —1

gy rearranging the terms in g as power series in
s =1 —g~ and resumming one obtains the
expansion
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FIG. 1. Function E($; x)/2x vs x for different values
of $.

FIG. 2. Function G((; x) vs x for different values
of $.

G(, () e s —— Slnhx
(p!)2 2p dxxp-.

=e "(sinhx ——,'s( coshx- sinhx) + —'s'[(x'+3)smhx —3x coshx1

——„', s'[(x'+ 15x) coshx —(Gx'+ 15)sinhx]+ .) ~ (2'r)

Any of these expressions may be integrated term
by term to yield E(x, g)=2 fo"G(x', g)dx'. For
large values of sx, G(x, g)-2e '"~'I, (-,'sx) and there
is a rather cumbersome expansion;

. =-:'," (-:) '("-".' —:)

dx s —+~+~I ~ ~ ~ s —+2p
d8 ) ds

e" Ip 28

In Fig. 4, we have shown the decay of the stimu-
lated echo signal. The decay is always of the form
exp[ —c(1 —e '"&'"2'r)], the only difierence being.
the values of c for different values of $. Again it
is shown that the dependence of c on $ is only ob-
servable for &(d, /27 &1~

1.0

0.5

where z = + sx.
In Figs. 1 and 2, we have shown the function

E(g, x)/2x and G(g, x) on a semilog plot for different
values of g. For small values of x, i.e., x= (w, +w, )r
«1, there is hardly any dependence on the value
of $. This is easily understood because this corre-
sponds to a situation where the probability of flip-
ping in the time interval v is small and we only
have to take into account single flips. For larger
values of x, where multiple flippings in the time
interval v become important, the dependence on $

is quite drastic. In Fig. 3, we have shown the echo
decay as a function of &z/27 for different values
of the parameter q—= 2~~,~,/(w, +w,). The decay
behavior is quite different for g=0.2 to 2 as is evi-
dent in the figure.
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FIG. 3. Echo decay as a function of Geo&/2v for differ-
ent values of q

—= 2 4 co f/2T/(w f+w 2).
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FIG. 4. Stimulated echo decay as a function of
6Q) f/27 for different values of g = 24 cof /27' /(ao ~ +m2) ~

III. CONCLUSION

Using an uncorrelated sudden jump model, we

have presented here a calculation of the phase
memory time involved in a typical echo experi-
ment. Though this paper is essentially an exten-
sion of the previous work by Hu and Hartmann, ' the
mathematical approach is different and more gen-
eral. This allows us in a natural way to take into
account the fact that the 8 spins may flip from one
state to another with unequal transition probabili-
ties. For application to electron spin resonance,
our results provide a necessary correction to the
previous work in the cases of high frequency and

in the low-temperature domain. However, in most
experiments done up to now, and, where the com-
parisons have been made with the theory, ' "the
correction is quite small and negligible. This is
because at lower temperatures the experiments
are in the region of (w, +w, )r ~ 1 and for higher
temperatures, though (w, +w~)7. ~ 1 the value of
E/2kT is correspondingly decreased.

Spectral diffusion in NMR, of course, has been
studied earlier. 4 Although, in that case, the decay
mechanisms and the distribution of h spins are
quite different from those considered here, the
echo decay curves show many qualitative similari-
ties.

An interesting and direct application of present
theory has already been applied by us to the study
of phonon echo decay"' in glasses at very low
temperatures. As we pointed out there, the results
indicate that more extended observation of the echo
would enable one to verify the prediction of the
tunnelling model. Another simple extension of our
present work will be the application of our theory
to the study of spin coherence in photoexcited trip-
let state under the influence of vibronic relaxation,
e.g., in parabenzoquinone and liquinone. '
these and other experiments, "the temperature
dependence of the linewidth can be studied in addi-
tion to the echoes. It is straightforward to extend
our calculation to find the linewidth. It is noted
that in the special case of equal flipping probability,
this is the well-known linewidth problem first
solved by Archer and by Anderson. "
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