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The critical behavior of the dilute Ising model on a Bethe lattice of coordination z is studied in the
percolation limit (T~O) by means of a new moment-expansion procedure. Exact numerical results for the
magnetization as a function of magnetic field at the critical concentration, p = p„are presented for z = 3
and z = 4. In particular, the critical exponent 8 is expected to agree well for very low field's with the
approximate value 8~ = 2 obtained by Essam et al. The nature of deviations from the value 8~ = 2 is
discussed and their consequences are noted. The case p Q p, is also discussed.

I. INTRODUCTION

The study of critical properties of quenched
dilute ferromagnets in which magnetic (nonmag-
netic) atoms occupy at random a fraction p (I -p)
of the sites of a regular lattice is of current in-
terest. The model normally considered is that
in which the magnetic atoms are represented by
Ising spins and an exchange interaction g (00) be-
tween the spins exists only for spin pairs occupy-
ing nearest-neighbor sites on the lattice. Here we
shall be interested essentially in the temperature
range k~T «8, where percolation behavior is ex-
pected since in this limit the pure system (p = 1)
would be ferromagnetic. If one gradually decreases
the fraction of magnetic atoms from p = 1 a critical
fraction p, of magnetic sites will be reached below
which the system no longer exhibits a transition
to ferromagnetic order at any finite temperature.
For p=/, the critical temperature is at O'K. - The
critical value p, is the concentration below which
there are no infinite clusters of nearest-neighbor
magnetic atoms in the system, and is referred to
as the percolation threshold. '

Detailed studies of critical behavior of the dilute
Ising model in the percolation limit (T -0), as well
as for T x0 (pe p, ), have appeared recently for the
case where the spins are arranged on a Bethe lat-
tice." It is generally believed that the criti.cal
behavior of real three-dimensional lattices will
have at least some features in common with the
Bethe lattice. ' At finite temperature the transition
to magnetic order is inhibited by thermal fluctua-
tions and therefore it occurs at a value p &p,
= (z —1) ' (z is the lattice coordination number).
For the Bethe lattice the critical temperature at
a given concentration p or, alternatively, the
critical concentration at a given temperature is
defined by" ptanh(J/ksT) =p, . The fact that the
critical exponents near the finite temperature tran-
sition are found to be quite different from the cor-
responding exponents in the percolation limit rais-

es the interesting question of the crossover be-
tween these two types of behavior. '

The present paper is devoted to a study of the
magnetization in a nonzero magnetic field in the
percolation limit. At the critical concentration
P = p, (T -0) one expects the mean magnetization
per occupied site (m) in an applied field h to vary
as

(m) = Ah'~'p

for sufficiently low fields. Here 6~ is a critical
exponent and A is a constant depending on details
of the system such as the lattice coordination num-
ber, etc. A relation of this type with the value
5~= 2 has been derived approximately by Essam
et al. ' for the Ising model on a Bethe lattice,
starting from an exact expression for the magneti-
zation as an average over the distribution of sizes
of (finite) clusters of nearest-neighbor spins, iso-
lated from the rest of the lattice by a boundary of
nonmagnetic sites. From the discussion of Sec. IE

it appears, however, that the approximations made
by Essam et al. ' (see also Ref. 3) in obtaining their
value 5~= 2 are not mathematically justified. As
a result, the value 6~ = 2 is not exact and could
be at best a reasonable approximation only. In
Sec. II we derive an exact moment expansion for
the configuration-averaged magnetization for the
dilute Ising model on a Bethe lattice, which we
then study numerically for z = 3 and z =4. The
numerical results indicate, however, that the val-
ue 5~= 2 of Essam et al. ' represents a good ap-
proximation for this critical exponent for extreme-
ly low, fields, h~ 10 '(0P) '. The approximate nu-
merical value of the prefactor A obtained by
Young' is also consistent with our exact results.
Finally, for p w p~ our treatment readily yields the
value 1 for the exponent y~ which characterizes
the divergence of the- susceptibility" for p —p,
(T = 0). Some final conclusions are drawn in Sec.
III and further consequences of the deviation of
5~ from the value of 2 are pointed out.
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Consider a Bethe lattice for which the eentral-
site, denoted by 0, has z nearest neighbors denoted
by i, i=1, . . . , s, and each of the neighbors is con-
nected to z —1 further nearest rkeighbors going out-
wards (i.e., neglecting the origin) and denoted byi, where o. =1, . . . , z —1. Looking outwards into
the network each of the sites i is again connected
to s —1 nearest neighbors and so on. W'e intro-
duce as usual a random variable a& equal to unity
if there is a magnetic atom characterized by an
Ising span at site i and zero otherwise. The prob-
ability distribution p, (e») of e» is thus given by

and (5) for a spin of specified direction at site»
one gets

g 1,

c,=x],'fR»,
dan =I

where R, is given by the analog of Eq. (6) for the
site i . Thus Eqs. (6) and (8) form a closed sys-
tem of (nonlinear) algebraic equations for the vari-
ables 8, for a fixed configuration of the disordered
system. Using Eqs. (3) and (5) the magnetization
at the eeritral site assumed to be occupied is de-
fined by

mo= 1 —X, R) 1+ X 8]
f.(~;)=&6(~» —1)+ (1 -P)6(~») (2)

z &
(»h ) [ (z» e»)-e»J z» &-»))'»J') (4)

where (8 = 1/i»aT and 1» is the external magnetic
field. The quantity Z,' is the partition function for
all the spins in the z —1 branches going outwards
from i, but with the spin at site i fixed in direc-
tion. Using the notation Z'»/Z'» = C, one obtains
from (3) and (4)

I'0= X,A],
1=1

where

R, = (1+C,v, )/(v, +C, )

(5)

(6)

V =8'"

By repeating the argument leading to Eqs. (4)

In order to ealeulate the magnetization per oc-
cupied. site averaged over the magnetic site con-
figurations, we start from the general formula-
tion for finite temperatures, given by Young. '
Thus, following Young, ,

' we introduce the prob-
ability I', that the spin at the origin is down for
a given configuration of occupied sites divided by
the probability that it is up for the same configura-
tion. I, is simply given by

F,=Z, /Z»,

where Z, (o = '0 or 0) is the partition function ob-
tained by performing a trace over all spins except
that at the origin whose direction o' is specified.
Since for a Bethe lattice the traces over spins in
the individual branches leaving from the origin
are independent, the quantity Z

&
may be written

in the form

for' a given configuration of the spin system. The
mean (site-independent) magnetization (m) per oc-
cupied site is then obtained by averaging Eq. (9)
over configurations. ' Denoting by p„(R,.) the prob-
abili. ty distribution of the site variable R,. and re-
calling that for a Bethe lattice the R, are indepen-
dent random variables we have

(m)= "~ j I dR, i,„{R,)

x 1 —X R) 1+A R

R, = 1 —e,.+ e» (1+vC»)/(v+ C,), v = »;",
based on the observation that &, only takes the
values 0 and 1. In the percolation limit, k~T «J,
this expression simplifies to

»g 1

R»=1 —f»+Kg» ( R» +O(v ').
%=1

(12)

Since the variables R, for different sites on the
lattice are statistically at par the probability dis-
tributions pa(R, ) for the variables R,. must be
such that when used in the right-hand side of Eq.
(12) it leads to the same probability distribution
for the variable R, on the left-hand side of this
equation. From this it follows that p„(R;) satisfies
the self-consistency condition:

(10)
The problem now reduces to the determination of
the probability distribution pa(R») as a function of
magnetic field, and to the calculation of {m) by
means of Eq. (10). Here this problem is solved
exactly in the percolation limit.

We shall determine p„(R») self-consistently from
Eq. (6) after rewriting the latter in the more con-
venient form'

(13)
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In the absence of the external field (X = 1) this
equation may be solved by inserting a simple bi-
nary distribution

P„(R;)=RE(R( —1)+ (1 —R)5(R;), (14)

g(R,.)= . ..-f (R,. -1)+O(h')2pPaa'-'
1 —pp-, 'a'-2

and from Eq. (10)

R''
(m)=)-R'+R'()+ ) . ..-jl3R+O(R').

PAg

(18)

(19)

Thus for p4p„(m) varies linearly with h as dis-
cussed, for example, by Young. ' In particular,
Eq. (19) shows that the zero-field susceptibility,
g= (s/sh)(m) ~„„diverges for p-p, with a critical
exponent y~ = 1."'

On the other hand, in the case p =p, (where
A = 1) Eq. (18) breaks down and a solution of Eq.
(13) in closed analytic form is not possible. How-
ever, an exact solution in terms of the successive
moments of ps(R,.),

F„= dR(R(ps(R(),
m Og

(20}

may be obtained quite easily. 'The range of inte-
gration in Eq. (20) reduces effectively to the in-
terval (0, ~) since R, is intrinsically positive. By
substituting (2) into (13), multiplying both sides of
the resulting equation by R"„and integrating over
R,. from -~ to ~ we get

which expresses p„(R,) as a sum of a contribution
from finite clusters (which do not contribute to
the mean spontaneous magnetization) and a con-
tribution from infinite clusters. By inserting (2)
and (14) in Eq. (13) one finds that a solution is ob-
tained for R satisfying the equation

8=1-p+pR
which, in fact, defines R as the probability that a
particular branch emerging from the origin is
finite, in accordance with Eq. (14). According to
this interpretation of 8, the spontaneous magneti-
zation is just

(m) =1-R',
as may also be verified explicitly by substituting
(14) in (10). This equation leads to a variation
of (m) linear in p —p, for p -p„and thus to a
critical index I3~= 1."

We now consider the solution of Eq. (13) for
finite values of h (Xo 1). For p op, the exact solu-
tion of Eq. (13) to lowest order in h is straight-
forward. Writing

p (R;) =Re(R, —1)+ (1 R)5(R, )+ g(-R;),

where g(R, ) is linear in h to lowest order, we get

P,(R, ) = O(R, )+ g —,—"~'")(R,.),
tl=1

(22)

where O'"I(R, ) denotes the nth-order derivative
of the 5 function. For h=0 (F„=R, nx0) this equa-
tion reduces to Eq. (14) because of the identity

For @+0 and p tp, one verifies that the solution
of Eq. (21) to linear order in h coincides with the
nth moment of Eqs. (17) and (18).

Finally by inserting Eq. (22) into Eq. (10) one
may express the magnetization directly in terms
of the moments E„. Using the relation

.= 2c"(-I)"n! (n o 0),
d" 1 —gg
dx" 1+ cx

we obtain for (m) the exact moment expression

(m) =1+2g (-~)"F'„,
ff=l

which we shall use to compute (m) for p =p,
= (z —1) ', from the solution of the Eqs. (21).
Among the z —1 solutions of Eq. (21) for a given
z we must choose the one which satisfies E„-A
-0 in the limit p-l.

In order to exhibit the variation of (m) as a func-
tion of k and z for p =p, we have performed ex-
plicit numerical calculations for z = 3 and z = 4.
The acceptable solutions of (21) for p =p, are given
by

F„=V"[I —(1 —~")'"] z = 3

E„=(2/)tX ) cos{-,'[cos '(-v X")+4((]j, a=4. (24b)

For convergence reasons one is not allowed, in
general, to expand Eqs. (23), (24a), and (24b) in
powers of the magnetic field, keeping only the
lowest-order term. We also note that for small
values of 2Ph the series (23) converges very slowly
since, e.g. , for 2Pk= 10 ' one needs about 104 terms
to get the correct value of the sum in Eq. (23) to
four significant figures. The results for the mean
magnetization (23) determined with the above ac-
curacy are plotted in Fig. 1 for the range 0.001
& 2Ph & 0.1. Values of the magnetization (m) —= q, ,
z = i, in the range 10 ' & 2PA, ~ 1.410 ' are listed
in Table I. The latter values were obtained by
including in the summation of Eq. (23) all terms
~10 ' which, typically, involves summing 10' terms

E„=1-P+PX"E'„'-', n ~0

which determines E„in terms of z and of the pa-
rameters h and p. The expression of p~(R,.) in
terms of the moments E„,is obtained in a standard
way from the moment-generating function [Fourier
transform of p„(R,)] and is given by
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where p, =0.7602 (Ref. 3) and the critical exponent

5~ has the value 5~= 2. It is instructive to show
how Eq. (25) may be obtained in the framework
of the present treatment. Going back to Eq. (10)
we first expand the denominator in the integrand
in the form of an infinite power series in the quan-
tity gl —XII, ,R,), which satisfies the condition
0- —,(1 —& lI;,R,) ~ 1 for any given configuration of
the system. Next we insert Newton's binomial
expansion for the quantities (1 —X IIf,R;)" in the
above series and use Eq. (22) for p„(R,) to per-
form the integrations. In this way we obtain the
exact expression

p, . I I I I I I I I I I I I I I I I I

00006 MOl 0.01 0.) 2ph

FIG. 1. Magnetization per occupied site for the dilute
Ising model as a function of magnetic field h, at the
percolation threshold (p =p~). The full line represents
the exact results and the broken line the approximate
formula [Eq. (25)] of Essam et al. , Refs. 2 and 3.

for 2Ph. =10 ' and 2& 10' terms for 2Pkg=10 '.
We wish to compare the results of Fig. 1 and

Table I with an approximate expression for the
magnetization at p =p, obtained by Essam et al. '
and by Young' and given by

2 p.z
(m& =

[( 1)( 2)]„,v' ph,

(m) = Q Q „(—1)""~( 1~(1 —g"P'„),
n=& r=& (r)

which should be compared with the simpler form
(23). Qn the other hand, recalling that for h = 0
one has I„=R=1for p=p„we may obtain the
low-order moments (such that 2rgh«1) at non-
zero field, for p =p„by iterating Eq. (21) to
lowest order in 2rPh thus approximating X" by
1 —2xph. This gives

(26}

2l rPh
+r 1

.[( —1)( —2)y/2 [1+O(2rph)] . (2'f)

If one now arbitrarily uses Eq. (2'7) for al/ mo-
ments occurring in Eq. (26) one readily recovers
Eq. (25) with p, defined by a numerical series iden-
tical to that given by Young. ' However, since Eq.
(27) is incorrect for the high-order moments in
Eq. (26)—the iteration of E„raoudnunity and the
replacement of the infinite series for V by its
first two terms are wrong for r & (2Ph} ' —the
expression (25) for (m) is at best only approxi-

TABLE I. Exact values for the magnetization per occupied site (m) -=qI, the critical ex-
ponent 6z =&;, and the ratio q3//'q4 at the percolation threshold {p=P~), for Bethe lattices of
coordination number &=i, at very low magnetic fields. Each critical exponent value 6& is
associated with two different values of the field parameter 2Ph as explained in the text.

0.0014 0.001 0.0006 0.0003 0.0001

0.081 912 0.069 668
0.063 775 0.054 146

0.054 387
0.042 180

0.038 760
0.029 994

0.022 558
0.017418

0.0014

0.00$

0.0006

0.0003

0.0001

1.284

1.287

1.289

1.295

63 =2.0782
54 =2.0558

63 = 2.0630
54 = 2.0454

6, =2.0464
64 =2.0329

53 =2.0296
64 =2.0214
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mate. In particular, the above discussion and .

some further remarks below indicate that the ac-
tual exponent 5p differs from 2. We note, inciden-
tally, that for p =p, the high-order moments (2rph
» 1) differ quite drastically from the low-order
ones, Eq. (27), since they tend asymptotically to
the value 1-p„[Eq. (21)j.

For comparison with our exact results the ap-
proximate expression (25) is also plotted in Fig.
l. It is seen that Eq. (25) agrees quite well with
the exact results for very small fields (2Ph-10 '),
while large deviations both in the magnitude and in
the field dependence of (m) appear already in the
range 2pk-0. 1. In connection with Eq. (25) we may
remark that, due to the fact that it has not been
justified mathematically, its range of validity with-
in the domain 2PA «1 could only be found from a
comparison with our exact numerical results and,
furthermore, the existence of such a range is by
itself partly fortuitous. After- having located ap-
proximately the range of validity of Eq. (25), we

may perform a more detailed comparison with
the exact results by going to lower fields such as
those considered in Table I. We focus attention
on the values of the critical exponent 5& ———6„., z = i,
and on the ratio q, /q, of the magnetizations for
the two lattices, z =3 and z =4. According to Eq.
(25) the latter ratio should take the field-indepen-
dent value q, /q, =-,'&3 —1.299. Values of 6,. may
be extracted from our exact results by assuming
Eq. (1) to be valid at low fields and adjusting the
latter equation to the numerical results for (m)
=-q,. at two neighboring values of 2ph. Values ob-
tained in this way for 5, and 6, are listed in 'Table

I, along with. the ration q, /q, . It is seen that 6,
and 54 gradually decrease with decreasing fields
to reach the values 5, -2.03 and 5, -2.02 at our
lowest-field values, h -10 '(2p) '. This lends furth-
er support to the approximate validity of Eq. (25)
for very low fields. However, in view of the fact
that the value 6~= 2 given by Eq. (25) cannot be
exact, the results of Table I suggest that the actual
exponent 6~ for h-0 will depend, albeit quite
weakly, on the lattice coordination number z. From
From (27) it follows that for h-0 the Eq. (26) [or
(23)j may be written approximately as the sum of
a term proportional to v k and a remainder involv-
ing the high-order moments E„which ~ust be
treated exactly as discussed above. 'This shows
that (m) is a nonanalytic function of v h for finite
h [see, e.g. , Eqs. (24a) and (24b)j and so the value
5„=2 cannot be regarded as the exact critical ex-
ponent, in spite of the fact that the term propor-
tional to V h in (m) does give the dominant con-
tribution for h-0 (see Table I). Finally, we note
that the ratio q, /q, increases gradually towards
a value of 1.295 for 2Ph=10', which is again con-

sistent with Eq. (25). The weak field dependence
of the ratio q, /q, in Table I is, of course, nothing
but another manifestation of the z dependence of
6~ in Eq. (1).

III. CONCLUDING REMARKS

From an exact moment expansion for- the mag-
netization of a Bethe lattice with a concentration
p of Ising spins we have obtained detailed numeri-
cal results both for the 'magnetization and the cri-
tical exponent 5„for p =p„ in the range of low
fields (2ph«1) down to values 2ph-10 '. For the
lowest-field values these exact results compare
favorably with the approximate analytic expression
for the magnetization of Essam et al. ,

' although
some deviations with respect to the value 6p = 2

of the latter equation are found. Finally the pres-
sent exact study of the magnetization near p =p,
in the percolation limit should be useful in view
of the increasing interest in analyzing the more
difficult problem of the critical behavior of dilute
ferromagnets at finite temperature (see Ref. 3
and references quoted therein) and its relation to
the above limit.

The deviation of the exponent &„from the value of
2 suggested by the discussion of Sec. II has some
interesting general consequences. First, it im-
plies a weak violation of the general scaling rela-
tion for percolation processes, namely, '

(28)

in the case of the Bethe lattice, where y~= 1 and
the gap exponent &~ takes the value 4„=2.'

A second consequence has to do with the known
relation between percolation processes, such as
the one considered here, and the ferromagnetic
transition in a pure system described by the Potts
model. ' In a previous discussion" it has been
implied that this relation is supported by the com-
parison of the critical exponents for the mean
field treatment of the s-state Potts model for
s &2 and the percolation exponents for the dilute

- Ising model on a Bethe lattice. Indeed the mean-
field treatment for the Potts model yields P = 1
and y = 1 in agreement with the percolation expon-
ents discussed in Sec. II. However, Harris et al."
did not consider the exponent 5, whose analysis
reveals that the mean-field treatment of the Potts
model confirms, in fact, only partially the re-
lationship between this model and the percolation
processes. The exponent 5 may be obtained from
the mean-field free energy per site E for the Potts
model, as given by Eq. (6) of Harris et al. ,"by
solving the equation h = (SF/Bm)r giving the mag-
netic field h in terms of the magnetization per
site m for T=T,. This yields the value 5=2 for
s &2, which disagrees slightly with the exact value
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of 5~ suggested by the analysis of Sec. II. Note
that'this disagreement is not in contradiction with
the general relationship between the Potts model
and percolation processes; it orily shows that the
mean-field treatment of the Potts model is not
exact from the point of view of the comparison of
5 with the exact value of the percolation exponent
5~ for a Bethe lattice. In fact, this is not surpris-
ing since the mean-field treatment of the Potts

model is expected to provide an accurate descrip-
tion of phase transitions in two or higher dimen-
sions only when the numbers of states s is large. "
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