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Neutron-scattering study of the incommensurate phase transition of R12ZnBr4
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A neutron-scattering study is presented of the modulation phase transition, at T, = 82'C, of Rb,ZnBr4.
A derivation is given of the structure factor for the diffuse scattering that appears near the transition which

is described with a complex order parameter, i.e., amplitude as well as phase fluctuations of the order
parameter are treated. The displacive character of the modulation is established and the spectra of the

critical diffuse scattering in the high-temperature phase are interpreted with the help of a soft-phonon model.

The soft excitations are overdamped near T, and become underdamped only far above the transition

temperature. The frequency of these excitations remains very low, i.e., below 0.1 THz. The acoustical
branches and one optical dispersion branch along crystal axes were measured, at room temperature, and

found to be stable in the entire temperature region of interest. In the low-temperature phase a broad diffuse

scattering distribution was found around the satellite reflections. The spectra of this diffuse scattering are
overdamped and no propagating excitations, corresponding to a soft mode, were observed in the low-

temperature phase. Since phase or amplitude fluctuations of the order parameter will give rise to scattering

close to the satellite positions our data provide evidence for an overdamped phase or amplitude excitation
branch.

I. INTRODUCTION

The object of this paper is the study of dynami-
cal aspects of the modulation phase transition arid

ground state of the compound Rb, ZnBr4. In the
high-temperature phase the structure of Rb, ZnBr~
can be described like that of any crystal, on a
three-dimensional lattice. However, below 82'C
extra reflections appear in the diffraction pattern
that can only be explained by introducing a fourth
index m, besides h. , k, l. With the help of the four
Miller indices h, k, l, m, the reciprocal vector of
a satellite reflection can be written

7 = (k +m k, ,)a*+(5+m k, ~)b*+ (l+mko, )c*,
where kp kp y and kp are the components of
the modulation wave vector k, .

In real space, the cause of these reflections
must be sought in an extra coordinate that is re-
quired to describe the crystal's periodicity. The
structure remains perfectly ordered, as required
for a crystal, but it is only periodic on four co-
ordinates. de Wolff' has given an extensive treat-
ment of the consequences of this phenomenon for
the symmetry of the present crystal. Here we
will limit ourselves to a definition of the structure

r„,=r, +r„+X„sin(k, -r, +y„),
where r, is the position vector of the unit cell and
r„ that of atom of type z in the cell.

The phase of the modulation wave appears here

as the fourth coordinate, provided that k, is ir-
rational with respect to the reference lattice. This
reference lattice, given by (r„r„)remains promi-
nent at all temperatures. So we consider the
modulation as a perturbation of a three-dimension-
al periodic structure.

The motivation to study such modulated com-
pounds is mainly founded in the departure from
three-dimensional periodicity. An additional
interesting point is that the modulation phase may
be regarded as a generalization of a ferroelectric
or antiferroelectric phase. Perhaps, the modu-
'.ated structure can be explained by extending
existing models of ferroelectrics. ' On the other
hand, there will be completely new phenomena in
a modulated crystal, e.g. , the excitations cor-
responding to fluctuations of the phase of the wave.
This is possible because a phase shift corresponds
to small atom shifts; the phase of the wave is in
no way fixed to the basic structure lattice. The
phase fluctuations at the modulation wave vector
require no energy, so one expects a new vibra-
tional branch that goes to zero frequency a& the
satellite position.

The present study concerns a particular member
of the A, BX, family (A=NH„K, Rb; B
=Zn, Co, Se; X=Br, Cl, 0}. Several struc-
tures in this family are modulated whereas others
have rational superstructures (k, = —,

' or —,}.
The average structure has been determined from

a neutron-diffraction powder diagram. It fits very
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well in the P-KSO4 model. So we may say that
there are chains of Rb ions and of alternating
ZnBr4 tetrahedra and Rb ions in the c direction,
which is the pseudohexagonal axis. This average
structure shows translations of the Rb atoms and
the tetrahedra perpendicular to the mirror plane
and rotations of the tetrahedra around the c axis,
resulting in an amplitude of all atomic displace-

0
ments at room temperature of about 0.25 A. We
described the average structure in space group
Pcmn mith cell consta. nts: a = 13.343 A, b
=7.656 A, c=9.708 A, k, =0.292c* (the modulation
wavelength is about 33 A).

Since the covalent Zn-Br bonds a,re much
stronger than the other bonds, we expect only six
degrees of freedom for a tetrahedron in the lat-
tice mades. This yields, together with the degrees
of freedom of the Rb ions, 48 modes for the ex-
ternal vibrations. The resulting complexity of the
dynamics of Rb, ZnBr~ makes a full solution of the
lattice dynamics, as well as a complete measure-
ment of the dispersion branches impossible. In
this respect, our study has to be limited to a few
aspects of the dynamical problem. We shall
sometimes refer to Na, CG„ the structure of which
is also related to the family of A, BX~ 4 structures,
which we now consider.

The Na, CO, structure has been determined, ' and
we know that the ~odulation is of the type de.—
scribed in (1). In other cases the situation is not
quite clear yet, mainly because higher-order
satellites are lacking. Consequently, a disorder
modulation is possible, which means that going
from cell to cell (along the direction of the modu-
lation wave vector) the atoms are shifted from a
basic lattice, but can only be found in two posi-
tions. The probability for the occupation of these
positions may again be modulated sinusoidally,
with the period of the modulation.

The present study describes measurements in
the tempera. ture range of 20 to 200'C, in which
k, is constant. However, after completing these
measurements it was found that at lower tem-
peratures ko increases continuously and jumps at
-80'C from 0.308c* to the commensurate value
of 3, thus undergoing a so-called lock-in transi-
tion.

II. EXPERIMENTAL

The neutron- scattering experiments we& e done
with a triple axis spectrometer at ECN-Petten. 4

A schematic diagram of such a setup, together
with the scattering diagram in reciprocal space,
has been given in Fig. 1.

The neutron path was defined by 20' horizontal
collimation slits before the monochromator and

sample
tor

monochromator analyser

o main reflection
ce/l

o satellite

FIG. 1, Configuration of triple-axis spectrometer and
corresponding scattering diagram in reciprocal space.
The figure shows the definition of wave vectors.

before the analyzer. Vertical collimation before
the monochromator was 1 and in the other parts
of the spectrometer a few degrees. Bent pyroly-
tic graphite crystals, with a mosaic spread of
about 35' were used as monochromator and
analyzer. Incoming energy could easily be chosen
by setting the monochromator angle, mhich was
kept constant during the energy scans. A 10-cm-
thick pyrolytic graphite block, placed after the
monochromator, removed second-order con-
tamination. We used the filter for incoming en-
ergy of 12.3 meV as well as 5.5 meV because the
available beryllium filter was too thick for opti-
mum performance. However, the remainder of
the second-order contamination in the beam does
not interfere mith our measurements. Neutrans
ofhalf the chosen wavelength could only give a
spurious intensity at first-order satellite posi-
tions (near heal), if there were strong second-
order satellites at 2lg2k2l. As these do not exist,
we can disregard the second-order neutrons.

We used an incoming energy of 12.3 meV to get
a rough picture of the scattering; 5.5-mgV neu-
trons mere selected when high-energy resolution
mas required. The higher resolution has to be
paid for with a fall in intensity by a factor of 10
compared with 12.3-me V neutrons. Consequently,
rather long measuring times mere needed: a
typical energy scan took about 20 h. The spectrum
of scattered neutrons is determined by varying
the analyzer crystal setting. Thereby its re-
flectivity enters into the final intensity. This ef-
fect can be neglected, however, because of the
limited energy ranges involved and the small en-
ergy dependence of the ref lectivity. The sample
was mounted in a furnace that kept the selected
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temperature constant within 0.2'C. Absolute tem-
perature is determined with a commercial chro-
mel-alumel thermocouple, having an error of
1'C. Spectrometer angles are set by programming
a computer that is online attached to the spectro-
meter. The furnace controller is also set by this
computer.

Sample preparation

Crystals were grown at the Chemistry Depart-
ment of the Technical University in Delft by slow
evaporation of an aqueous solution of RbBr and
ZnBr, at 40'C, which yielded single crystals with
a volume of 3-7 cm'. Unfortunately, the crystals
contain small amounts of the solution. This is
probably due to the large temperature dependence
of the solubility, which causes irregular growth
via slight temperature fluctuations. Consequently,
we must heat the crystals very carefully to avoid
rupture. Since the incoherent scattering is much
higher than expected, we conclude that inclusions
from the solution (i.e. , the hydrogen) are re-
sponsible for the main part of the incoherent inten-
sity.

III. THEORY

Neutron scattering can be used as a spectro-
scopic method which is especially powerful in the
case of atomic vibrations at short wavelengths,

0
i.e., wavelengths in the order of 10 A and fre-
quencies of about 10"Hz. The fluctuations as-
sociated with a modulation phase transition are
expected to be in this region both in the high- as
well as in the low-temperature phase. Particularly
in the high-temperature phase the fluctuations will
have a frequency accessible for neutron spectro-
scopy, on condition that they correspond to small
oscillations of the atoms. %e assume such a criti-
cal mode in the high-temperature phase, and a
distortion of the structure in the low-temperature
phase which has the same polarization vector sym-
metry. Consequently, our model is that of a
purely displacive modulation and the transition is
of the order-order type. In contrast to this model,
we have the possibility of disorder modulation as
suggested for certain A, BO4 structures. ' In the
low-temperature phase the disorder type should be
an occupation modulation, i.e., the probability of
finding an atom in one out of a set of positions is
modulated. Here, the critical mode corresponds
to large jumps of the atoms. In general, the
frequency of such a mode will be much lower than
normal phonon frequencie8.

On approaching the critical temperature from
below, the displacive model predicts continuously
decreasing amplitudes A„. The most important

prediction of the model is the occurrence of dif-
fraction harmonics, arising from a modulation of
the phase of the atomic diffraction amplitudes. Neith-
er of these features of the displacive model belong to
disorder modulation. Inpractice, -however, the dis-
tinction can be severely blurred. For instance, if
the wave is anharmonic, second-order satellites
will also occur in the disorder model. More-
over, a disorder mode could couple in a modula-
tion wave to a displacive one.

The situation is even more complicated when
considering the dynamics of the fluctuations in the
high-temperature phase. Ideally, the displacive
type corresponds to a soft-phonon model and a
pseudospin model applies to the disorder type.
This distinction is only relevant if the soft mode
is underdamped or the tunneling frequency in the
disorder case is low compared with normal oscil-
lation frequencies. Between these extrema, we
cannot distinguish the dynamical properties of the
two models.

We will proceed now with a derivation of the
structure factor for our model of a modulated
structure, in the high- as well as in the low-tem-
perature phase. Second, we will give a formula
for the dynamic part of the structure factor, which
will be applied in the high-temperature phase.
These expressions do not represent a rigorous
theory of a modulated crystal, but we use them to
analyze our data in a phenomenological way. One
should be aware that we give just those formulas
that fit best to the experimental results.

Scattering cross section

The partial differential scattering cross section
is given by:

d'o 4'q

dnd

k
dte '~' d'rG(r, t)e'o'

2mb]

(k~ and k, are final and initial wave vectors).
The scattering properties of a crystal are con-

tained in the scattering law, g (Q, &u), through the
density correlation function G(r, t)

G(r, t)= f 0 r'(p(r, o)p(r'+r, t))

with the scattering density

p(r, t) = Q b, b(r —r, (t))

(b; is the scattering length of the ith particle).
Defining E(Q, t) =P,b, e'o '~t'~, the scattering

Law becomes
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S(g, w)= f dte ' '(E(-Q, O)E(g, t)).

These formulas are quite general and now we sub-
stitute our particular model of a lattice structure
with displacive modulation

eio rK im5„~ (Q. A

r„,(t) = r, + r„+A„(t)sin[ko ~ r, + P„,(t)]
—r, + r„+A„sin(ko r, + p„)

+ aA„, (t) sin(k, ~ r, + P„) .

+ A„gg„,(t) cos(k, ~ r, + Q„)

(in the last part A„and p„stand for the average
amplitude and phase, respectively).

Here the shifts of the atom positions, due to the
amplitude and phase fluctuations, are written

U~p&(t) = AA„, (t) sin(k, ~ r, + P„),

Uph(t) = A„b Q„,(t) cos(ko ~ r, + P „).

We introduce two different fluctuation modes, be-
cause the incommensurability of the lattice de-
formation (i.e. , the irrationality of k, ) demands a
description with a two-component order para-
meter: an amplitude a,nd a phase.

Now we use the Jacobi-Anger transformation

is~&~4 fm4J Z

~A„,(t) = gu, (t)$„e*"i

($„ is the polarization vector), .

t iI „(t)= g y,(t)e"'i,
a

we obtain the following expression for the scat-
tering law

S(Q, (d) = Q IFB(Q) I'x(Q+mko)

+ dte + p) + +Pkp —Q'

e

x (u, (0) u, (t))

Where

+ I&,.(0)I'&(Q+Pk. —~)&4.(0)4-.(t)).

to expand the scattering amplitude exp[ j Q ~ r«(t)]
in a product of sums of Bessel functions. In this
product we retain the zeroth and first-order
Bessel functions, which have the fluctuation ampli-
tudes as argument. These can be approximated
to first order in the argument and using a Fourier
expansion of the fluctuation amplitudes

6(Q) = g 5(Q-Ii a* —kb* —tc").
h, A, t

In this expression we have neglected the fourth-
order terms in amplitude and phase fluctuations
because they represent two-phorion processes.
We also neglect the term of the form (u,P,) be-
cause it will be small at small q (note that this
cross term is not necessarily zero, since in
general amplitude and phase modes cannot be
a,ssociated with normal coordinates of the Hamil-
tonian). We see that the long-wavelength fluctua-
tions of the order parameter are observable
around first-order satellites. Furthermore, it is
important for experimental reasons that both the
phase and amplitude fluctuations are strong at
positions where the satellite intensity is strong.
This follows directly from the structure factors,
which contain similar atomic scattering ampli-
tudes in the case of Bragg reflections and ampli-
tude and phase fluctuations. In particular, there
is no way to distinguish between scattering from
amplitude and phase modes by selecting different
positions in reciprocal space. Although these
modes are "out of phase, " since one is represented
by a sine and the other by a cosine function, the
square of their structure factors is identical. In
the high-temperature phase the static deformation
wave vanishes and the amplitude fluctuations are
identical with the soft mode fluctuations.

Relation to thermodynamics

In order to explain the relation between neutron
scattering and thermodynamics, we shall employ
a model of dipoles formed by shifted rigid ions
with charges z„ that represents a crystal with dis-
placive fluctuations. ' The polarization is

~(r, t) = g z„U, „(t) V(r —r, „),
l, K

with the Fourier transform

&(4, t) = +,(0)U(4, t),
which we hive written as a product of the normal
coordinate of the displacement mode

U, „(t)=m '" („,C(q, t),
and the dipolar structure factor:
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As, a result, the correlation function of the polar-
ization fluctuations can be expressed as a, product
of the dipolar structure factor and the correlation
function of the normal coordinate. The neutron
scattering cross section is proportional to this
correlation function and thus the neutron scat-
tering technique allows us to determine the gen-
eralized susceptibility of our system. From this
point of view neutron scattering is a unique tool
to study modulated crystals since the polarization
fluctuations are inaccessible to dielectric tech-
niques. Although neutron scattering is propor-
tiona. l to the response at a given wavelength and
frequency of our crystal, it may be difficult to
obtain the susceptibility because we must know
the dipolar structure factor that relates a fluctua-
tion in the atom positions to a, polarization fluctua-
tion.

The relation between the scattering law and the
susceptibility is obtained as'

storing force, a rather exotic damping term. ;
through the integral the damping depends on the
previous velocities of the normal coordinates. An

interpretation of this phenomenon is that the
fluctuations in the critical mode perturb the ther-
mal occupation numbers of the other modes. In
turn„ these modes influence the relaxation of the
fluctuations. The function M (f) describes the
relaxation towards equilibrium: M(t) =(I'/t)
x exp(-t/r). If the relaxation is fast, the integral
in Eq. (4) can be reduced to a term I'(S/St)U(t)
and a simple damped oscillator results. However,
if v ' becomes lower than the harmonic frequency
of the mode, there i,s an increasing response at
low frequencies and a central peak appears in the
spectrum. The response is

X (&) leff

a,nd

(o'rT
(Ol COO+ 2 81+mT )

Again, the damped oscillator results if I",g and

(d, are frequency independent. The sum rule gives:

d~ S(&u)-r k~T
(d o

(u is the unit-cell volume).
F(Q) is the structure factor of the soft mode. In

the high-temperature phase, this is the structure
factor of amplitude fluctuations and in the fow-
temperature phase it stands for the structure factor
of both amplitude and phase modes.

Time dependence of fluctuations

It is possible to picture the critical fluctua-
tions in the high-temperature phase as a soft
phonon. In that case, our starting point for a
treatment of the dynamics of the fluctuations is a
harmonic oscillator. A damping mechanism has
to be added in order to describe the situation near
the phase transition. Hence, the equation of mo-
tion of the normal coordinate of the critical mode
has the form7 '

The wave-vector dependence can be incorporated
in this model via +'p. Writing

Q)a=a(T T~}+QX(q( q

results in a scattering intensity of the form:

k T
d Pd FOp

where a', = &uo/X, . This form of the critical scat-
tering in the high-temperature phase can also be
derived from a Landau free energy'0 (as a func-
tion of a complex order parameter) that we write
in terms of the Fourier components of the polar-
ization:

x U(t )+Fe' '.et' (4)

On the right-hand side there is, besides the re-

This yields for T & T,
1

a(T —T,)+P, X,q', '
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and for 7'&7', :
1

2(ol(&-&.) I+&;&~a';)
'

IV. ANALYSIS OF SCATTERING PROFII.ES

For the measurement of phonon frequencies by
means of a triple-axis spectrometer use is made
of the scattering relations

6t —Cg =5 4l(g), k( —kp =Q =Qk t .
A peak in the scattered intensity is observed when
these laws of conservation of energy and (quasi)
momentum are fulfilled. The width of the peak is
'partly determined by the window in Q-ar space,
related to the spectrometer configuration and set-
ting. Cooper and Nathans" have calculated this
window, or resolution function, assuming an ideal
Gaussian dependence of the final intensity on the
angle of incidence of the neutrons on crystals and
Soller slits.

For a setting (Qo, &u,) of the instrument, the de-
tected intensity is

I (Q, & ) = J d Q d+B (g —Q, td —ra )I g, e),

1a(a, -) =~a) =-p(--
2k, 'l =1 )

F(Q, &u) is an intrinsic cross section. Only the off-
diagonal elements of m in the vertical direction
are zero. For most functions F(Q, &u) the convolu-
tion of Eq. (7) cannot be solved analytically.
Therefore, we ca,lculated the integral numerically,
using a program~ based on the formulas given by
Cooper and Nathans. The intrinsic cross section
normally contains adjustaMe parameters that
must be obtained from a fit to )he measured pro-
files. In general, however, refinement of the
parameters in F(Q, ~) is thwarted, because of the
length of the calculation of the folding integral.

Two solutions have been chosen to avoid this
problem; approximating the integral by assuming
that F(Q, co) is independent of Q or calculating the
convolution for @ set of parameters and inter-
polating to find the best set. In order to check
the results of the convolution program we made
energy scans of the incoherent scattering of vana-
dium at incoming energy of 12.3 and 5.5 meV. The
measured resolution widths at these energies
amount to 0.9 meV(0. 22 THz) and 0.24 meV
(0.058 THz), respectively, and agree within 10%
with the calculated values. This latter-value will

be taken as the accuracy with which the resolution
of the spectrometer is known.

Since the incoherent scattering is independent of
Q we can set an upper limit to the width of a peak
around ~ =Q due to elastic scattering. Close to
the transitign temper'ature the situation is compli-
cated because of the Q dependence of the scat-
terjng. %'e notice that this can only result in a
narrowing of the spectrum. Narrowing is due to
the elongation of the resolution ellipsoid, .defined
by

gm, , x,x, =ln2

in Q-~ space. 1n this way one can tell whether
the observed scattering has to be attributed to
static Quctuations, or that dynamic effects are
needed to explain the spectra.

V. RESULTS AND DISCUSSION

Static behavior

The most direct evidence for the transition is
the vanishing of the satellite reflections on ap-
proaching the critical temperature. In our model
the loss of )ong-range order is caused by di-
verging fluctuations in the phases and ampli-
tudes of the atom shifts. However, the decrease
of the satellite intensity is mainly due to a de-
creasing amplitude of the modulation wave. This
amplitude is just the static part; of the critical
mode

The amplitude may be taken as the modulus of
the order parameter and is obtained from the
square root of the intensity of a satellite. As-
suming that the mean phases, contained in the
polar ization vectors g„are temperature indepen-
dent then we have

I.&(&)I'~- IW-, (T)) I.

Figure 2 shows the intensity of the (0211) re-
Qection as a function of temperature. It can be
seen that, in agrt.'ement with the above, apart
from diffuse scattering, the scattered intensity
and hence the order parameter goes to zero con-
tinuously. Followirig the argument in Sec. I it is
of crucial importance whether the diffraction pat-
tei.n contains second-order satellites, or not. Al-
though observing higher-order satellites was as
yet unsuccessful with x-rays, they have been found
with neutron scattering.

Close to the strong (0211) satellite, we located
the (0222) satellite. This suggests that we deal
here with the purely displacive-type modulation,
because a crystal with disorder modulation has
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FIG. 2. Satellite intensity as a function of tempera-
ture. Measurement without analyzer.

no second-order satellites .in the diffraction
pattern. However, we cannot rule out the possi-
bility of an anharmonic wave. That would also
give rise to second-order satellites even in the
ease of disorder modulation. Of course, a deci-
sion can only be made after a full structure
analysis, which is in progress, has been corn-
pleted.

*

Anyhow, ari important test of the model of the
modulation is the temperature dependence of the
(0222) reflection. Figure 3 shows that Ia~;~ fol-
lows the temperature dependence of I2~,-„ in a,c-
cordance with the structure factors (2):

ol 0221

~ I 0222

~ ~ a ~ I I ~

30 50
a ~ ~

70 ~ (oC)
FIG. 3. Temperature dependence of first- and second-

order satellites. Note the logarithmic scale. An arbi-
trary scale factor has been applied for comparing the
results.

In the same figure, we plotted the temperature
dependence of two first-order satellites. The
similarity of their temperature dependence sup-
ports our model of a decreasing amplitude for all
atoms and constant phases. The quotient of the
satellite intensities is:

I~»/I~;, /I~2-, =3000/12/11 (in counts/sec)

at room temperature,
The diffuse scattering, centered around the

satellite position, peaks at the critical tempera-
ture since it is directly proportional to the suscep-
tibility.

In Fig. 4(a) the intensity around the satellite
position is shown at several temperatures. The
diffuse scattering is sharper in the direction per-
pendicular to %„ than parallel to Ro. This means
that the correlations are strongest in planes
parallel to the wave front.

In Fig. 4(b} the inverse intensity, at q =0, is
plotted as a function of temperature, showing a
linear relationship in agreement with the Curie-
%cise law. In the low-temperature phase we

must separate Bragg scattering from the total in-
tensity. For this procedure we describe the
satellite intensity as

We obtained p=0.30 from a fit to the data in Fig.
2. 7', was determined independently as the tem-
perature where the diffuse intensity at q=0.063c*
peaks. Using Eq. (8} in the vicinity of T„we can
subtract the Bragg scattering, yielding the diffuse
intensity. In Fig. 5, we plotted the diffuse intensity
at q = 0.063c* from the satellite position. The
Bragg part is drawn following the before men-
tioned procedure. The inverse intensity at q
=0.063c~ is shown in Fig. 6 as a function of tem-
perature and the relation of Eq. (6) is fulfilled,
although only in a small region around the transi-
tion. The quotient of the Curie constants in the
high- and low-temperature phase (C„and C, ) is
C„/C, =0.52. Far above T, the intensity decreases
much steeper than predicted by the Curie-Weiss
law.

At q =0, the statistical error in the diffuse
scattering below T, is rather large due to the
enormous contribution of Bragg scattering to the
total intensity. Therefore, we can measure dif-
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FIG. 4. (a) Diffuse intensity distribution along the c* and

;&* axes. The correlation lengths at T =120 eC are: g
=0.194 A and v~=0.112 A '. (b} Inverse intensity of
diffuse scattering at q= 0, as a function of temperature.

0
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~2 0 3j (b')
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fuse scattering in a small temperature interval
below T„loyn. Here we get C» jC, =0.45.

The exponent that we use to fit the decreasing
intensity of the satellite, on approaching 7.'„ to a

power law, can be identified with the exponent of
the order parameter. Since measurements with
a much smaller crystal resulted in a higher value
of P( P =0.38}, we think that the present results
puffer from secondary. extinction. Extinction
attenuates strong reflections relatively more than
the weaker ones, and thus influences the expo-
nent P. Therefore, we will neglect at present the
discrepancy between the experimental value and
the mean-field value of P =-,'.

0 I I I I I I L I I I I I I

20 40 60 80 100 120 140
T ('c}

FIG. 5. Diffuse intensity at q=0.063 c* from the
satellite position 0211. The procedure for the subtrac-
tion of Bragg scattering is explained in the text.

0
ao 60 80 100, 120

FIG. 6. In'verse intensity at q=0.063 c* as a function
of temperature.
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v (THz)

~ Tb

0

might depend on the amplitude. Thus, we have to
be reluctant in drawing conclusions from our mea-
surements about the modulation ground state.
Figure 7 shows the acoustical branches and one
optical branch in the c direction. The slope of
the acoustical branches, for small q, ij in good
agreement with the elastic constants from ultra-
sound measurements. " Note that the frequencies
are quite low, which reflects the softness of the
material. %e estimate the Debye temperature
from the elastic constants (in Table 0, yielding

OD=(h/k~)[(9/4wV„)(C) p~= 100 K.

As explained, we derived T, from the peaking
of diffuse scattering as a function of temperature.
A problem arose here, because we found con-
siderable deviations of T, in different crystals.
Values of T, ranged from 78.0 to 82.5'C; a pos-
sible cause of these differences is the static dis-
order, which might be present in the crystals. If
the concentration of defects differs for our cry-
sta1s, it could have an influence on the values of
T,. In the analysis we scaled all results to a T,
of 82.5 C.

Dynamics of modulated phase

The dynamical aspects of modulated Rb,ZnBr4
were studied between room temperature and T,.
This choice was made for experimental con-
venience although at 20'C the modulation has not
reached its ground state. From Fig. 2, it is
clear that the amplitude of the wave would be
larger at lower temperatures. Also, a neutron-
diffraction powder diagram obtained at helium
temperature showed much stronger satellites
compared to room-temperature data. The effect
of the modulation on the dynamics of the crystal
and the observability of possible new excitations

TABLE I. Elastic constants of Rb2ZnBr4 on orthorom-
bic pseudohexagonal axes. Data from ultrasonic mea.-
surements (B,ef. 13). Units of 10~~ dyn/cm (accuracy
+1').

Cgg = 1.80
C22= 1.64
C33 = 2.22

C44= 0.554
C55 = 0.500
Cgt; = 0.332

.2 .3 .4 .5
q (c')

FIG. 7. Acoustical phonon branches and one optical
branch in the c direction. Dashed lines represent ultra-
sonic velocities. T&. transverse 5 polarized, T~:
transverse a polarized, I.: longitudinal. Here, the
wave vector q is measured from a main reflection.

Here, h/ks is the thermal energy per atom, and
V„ is the volume per atom, and (C) is the mean
velocity of sound. The value is in good agreement
with the low melting temperature of 470'C. Ac-
cording to the Lindeman melting formula the Debye
temperature follows from the melting tempera-
ture as

0 =&20A, 'Pp'+X'

g is the mean atomic weight, p, is the density)

eD= 105K with A =79.9 and p, =3.72 g/cm~.

The pseudohexagonality of the structure is re-
flected in the approximate equality of Cyy C22,
and C4„C». This follows from the isotropy of
the ultrasonic velocity perpendicular to a hex-
agonal rotation axis.

From a preliminary crystallographic study it
was concluded that the atom shifts are in the 5
direction. So, we expect the soft mode to have
this polarization. As explained before, one is un-
able to measure the complete set of dispersion
branches.

On the other hand, w'e found a rather low-lying
branch with the required polarization. This is
the optical branch (see Fig. 7) that is degenerate
with the acousti, cal b-polarized branch at'th@ g
point. No abnormal temperature dependence of
this branch was detected, which is in contrast to
the results of a neutron-diffraction study of the
isostructural compound K Seo~. For this 'com-
pound, Iizumi et aL'4 report a softening of the
branch at a modulation phase transition that is
characterized by 4, =0.3le*. Thus, one has to
conclude that although both compounds have the
same symmetry and belong to the same class of
modulated crystals, the exact mechanism of their
incommensurate structural transitions is dif-
ferent. Qf course, there are other branches, be-
sides the one shown in Fig. 7, that may soften in
Rb,Znar, . The temperature dependence of the
velocity of sound, obtained by neutron scattering
and ultrasonic measurements is shown in Fig. 8.
The frequency of the branch as a function of tem-
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FIG. 8. Relative change of the transverse b polarized
velocity of sound in the c direction vs temperature, as
determined, respectively, by the ultrasonic and the
neutron scattering technique.
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FIG. g. Quasie1astic energy scan (raw data) at room
temperature at q=0.245c*; the vector q is measured from
the satellite position 0211. The bar indicates the resolu-
tion width.

perature was also measured at other points in the
Brillouin zone, where it showed the same tem-
perature dependence. The linewidth of the pho-
nons is rather large (i.e. , a full width at half
maximum of .08 THz at a frequency of 0,2 THz).
but temperature independent (i.e, from 20 to
200'C).

In view of the irrationality of the modulation
wave vector, the phase of the modulation wave in
the structure is arbitrary. Consequently there is
a mode with vanishing frequency at the modula-
tion wave vector, "corresponding to phase fluctua-
tions at long wavelengths. Thus, the phase fluctua-
.tions should behave approximately as an "acoustic"
branch. In this branch the phase fluctuations have
a long wavelength, but the atom shifts are at shor t
wavelengths. In the modulated phase, we analyzed
the diffuse scattering that is shown-in Fig. 5. The
spectrum at q =0.245c* from the satellite, shown
in Fig. 9, can be seen to exist of a sharp peak and
broad wings. Subtracting the incoherent scat-

I I

-.2 -1 0 3 .2
V (THz)

FIG. 10. Spectra of diffuse scattering around the
satell, ite position 0211 at temperatures below T, .

tering results in a weak two-peak structure (Fig.
N). We emphasize that this form of the spectrum
is due to a broadening of the uncorrected peak
with respect to the spectrometer resolution.
Clearly, the exact form of the resulting spectrum
is critically dependent on the amount of subtracted
incoherent intensity. Therefore, the accuracy of
the profiles in Fig. 10 is low, and one can say at
most that an overdamped excitation is present
around the satellite position.

In Sec. DI it was shown thy. t amp)itude or phase

fluctuations of the order parameter cause in-
elastic scattering around the satellites, so we

draw the con~on that these excitations are
overdamped in 65,ZnBr, . Consequently, it is
impossible to say that the weak peaks in Fig. 10
are dye to a phason branch. At higher-energy
transfers, we have not observed any other
branches, corresponding to a propagating soft
mode in the low-temperature phase.

Qynggnjgs af high-temperature pggse

Close to the critical temperature, the energy
scans near the satellite position showed no peaks
pointing to a soft excitation. That leaves the
width of the bell-shaped curves as their only
relevant feature. Adopting a purely static picture
of the fluctuations, i.e., relative to neutron
Scattering resolution, we notice that the incoherent
width is the upyer limit for a peak in reciprocal
space. %6 found a width in excess of the incoher-
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FIG. 11. Spectra of diffuse scattering at several
ttmperatures above T~, and at q=o. The curves are
fits of a damped-harmonic-oscillator model.

ent width, even close to the critical temperature.
Thus, we conclude that the fluctuations have an
observable energy width, and that the critical
mode is overdamped. Formula (5) should give an
approximate description of the scattering, with
a large damping constant. %e analyzed. our
spectra with the help of this formula. Comparison
of the observed aid calculated spectra %as made
by calculating the convolution integral [see Eq.
(V)]. At higher temperatures we could neglect
the Q dependence of the scattering which greatly
simplified the numerical calculation procedure
which is needed for the evaluation of the convolu-
tion.

. Above 140'C a two-peak structure is observed
(Fig. 11) after subtraction of incoherent scat-
tering. Clearly, the frequency of the soft ex-
citation is only slightly tempeihture dependent,
in coritrast to most structural phase transitions.
We still think, it useful to analyze the scattering
on the basis of expression (5) because it is gen-
erally valid, irrespective of the. microscopic
forces driving the phase transition.

For the scans with a two-peak structure we
tried a fit with the harmonic. frequency, a damping
constant;, and a proportionality factor as para-
meters. It turned out that in this way the best
description was given by a temperature-depen-
dent damping and a constant co,. This result.
shows the limited validity of a description with
one -damping mechanism, - because a decreasing
ago should account for the increase of the inten-
8 ity.

As a second try, we determined the proportion-
ality factor to obtain a good description at, T
= 210 'C, vrhere the Quctuations become under-
damped. A fit of scans at several temperatures
with ~, and I" as parameters yielded a constant
F. The increase of the integrated intensity was

described by a faB of v, over a temperature in-
terval of 80 to 810 'C, with an accuracy of 15%.
However, significant discrepancies occurred at
.the wings of the peaks. In our model this means
that the relaxation is more complicated. Figure
II shows the results of the fits at temperatures
I4O, I60, and 216'C.

So far, we have only discussed here the in-
accuracy in coo, due to discrepancies of the cor-
rected data with our model. However, an impor-
tant source of error in coo may come from the sub-
traction of the incoherent scattering, which cannot
be measured at the. satellite position. In our case
the incoherent scattering was determined after
rotating the sample plus and minus 30' away from
the satellite position around the axis perpendi-
cular to the scattering plane. Although the in-
coherent scattering is principally independent of
the simple orientation, geometrical effects may
give rise to inaccuracies. These have a severe
effect on coo because subtracting too much in-
coherent intensity enhances the bvo-peak struc-
ture, thus makes the spectrum more under-
4amped. In that case a large error results in the
deduced value of co, since it is strongly cor-
related with the damping. hforeover, from an
overdamped spectrum that shows only one peak
(around ~ =0), it is even impossible to determine
~, and F independently. Therefore, the uncer-
tainty in our value of (do is large; but on the other
hand we think that in view of the observed tem-
yerature dependence of the width of the spectra,
the deduced value of co, at 210 'C should be about
equal to the half-width of the spectrum which is
about O. I '7Hz.

At a temperature of 90'Q, we made energy scans
at various distances (q values) from the satellite
position. A q-dependent wid& is observed that
can be interpreted either as a q-dependent re-
laxation time of the fluctuations or as a disper-
sion of the soft branch. From Fig. 12, it can be
seen that there is weak evidence for a splitting of
the peak at q =0.1c*, so the soft-mode description
seems to be most adequate for these profiles.
Figure 42 shows a fit to the data at 90'Cof the
simple damped oscillator cross section. A signif-
icant discrepancy shows up at larger-energy
transfers, possibly due to a complicated damping.
Writing the damping as: I'(a&) =1"+F"/(1+i&or),
a better fit may be obtained. In this model, there
is a central peak which gives together with the
phonon part a good description of the q =0 spec-
trum, but deviates from the measured profile at
q =O. klc*. Thus, the damped harmonic oscillator
model with a frequency-dependent damping cari ex-
plain the changes from a more or less underdamped
to an overdamped soft phonon. This change is
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FlG. 12. (a) Spectra of diffuse scattering at T=90'C
at two values of q. The bar indicates the resolution
width. Simple damped oscillator model fits are repre-
sented by the drawn curves. (b) Same data fitted to the
model that contains a central peak feature.
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FIG. 13. Square of the harmonic frequency of the soft
mode as a function of temperature. The squares repre-
sent data from a fit to a damped harmonic oscillator
model and the dots are obtained from numerical integra-
tion of the spectra using the sum rule. The two sets of
data were scaled at a temperature of 210'C.

brought about by a decreasing harmonic frequency
and an increasing relaxation time of the critical
mode to all other modes. In Fig. 13, the mean
square of the harmonic frequency is plotted as a
function of temperature.

The two sets of points are obtained by numerical
integration, using the sum rule, and a fit to the
damped harmonic oscillator model. Sealing is
done at a temperature of 210 C, where the split-
ting is best observed. Near T, we observe a linear
relationship, but large deviations occur far above
the transition temperature.

In Sec. I, we mentioned the possibility of an or-
der-disorder transition. Our reluctance to de-
scribe the fluctuations in the high-temperature

phase as a soft phonon stems from the overdamped
inelastic profiles. Although a disorder model
could fit the observations, we choose the soft-
mode description in view of the splitting up of the
spectra at high temperature. We admit, however,
that in a large temperature region (about —,T,) above
T„ it is impossible to distinguish between the two
descriptions. The frequency of the critical fluctua-
tions is very low in this temperature interval but
the amplitude is still too small, compared with
the thermal vibration amplitude, to form a static
deformation wave. The transition temperature will
be determined by the decrease of the thermal vi-
bration amplitude as a function of temperature.
In this sense we may speak of an order-disorder
transition because the thermal fluctuations deter-
mine the transition, whereas the mode has softened
at a much higher temperature.

VI. CONCLUSIONS

From our findings we developed a picture of the
modulation phase transition that fits in the soft-
mode model. Even at hightemperature (T= 200'C),
the Rb, ZnBr4 lattice is unstable for displacements
%'ith a wave vector of k =0.29'*. This critical
mode has a low frequency, but on lowering the
temperature the amplitude becomes only slowly
large enough to form a static deformation wave.
In other words: the mode becomes static when
the thermal vibration amplitude of the atoms is
comparable in size to the amplitude of the critical
mode. When the crystal is in the normal phase,
we see that the wave is rather uncorrelated, in
space as mell as in time, which follows from the
broad scattering distributions in reciprocal space
and frequency. In the low-temperature phase a
Bragg peak appears and the displacement wave
becomes static. Small fluctuations are still pos-
sible and according to the Goldstone theorem" one
branch has a vanishing frequency at the satellite.

Below T, we have found some evidence of diffuse
scattering around the satellite which is broadened
in frequency, but we were not able to find a well-
defined soft branch in the low-temperature phase.
Further experiments at low temperature will be
needed to clarify this point. The experimental re-
sults are in reasonable agreement with the Landau
theory of second-order phase transitions. Con-
cerning the exponent of the order parameter, we
will have to do an experiment with a very small
crystal, in order to exclude any influence from
secondary extinction on the value of P.

As a general remark, we must add that the crys-
tals that we studied are far from perfect: from
the anomalously high Debye-Wailer factor we in-
fer the presence of static imperfections. In our
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analysis the imperfections are neglected, although
it is well known that the dynamics of the transition
is modified with respect to a perfect crystal. In
view of our study, we think that our approach of-
fers a first-order approximation which can be re-
fined, by including imperfections, to give a better
description of the real crystal without changing
the fundamental concepts of the model that we em-
ployed,
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