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Spin waves in systems with weak exchange fields*

M. Cieplak
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

and Institute of Theoretical Physics, Warsaw University, 00-681, Warsaw, Poland

F. Ke6'er
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

(Received 7 March 1977)

Multiboson spin waves are constructed to represent the low-temperature collective states of paramagnets
and ferromagnets whose spins are located in strong single-ion anisotropy fields and are coupled by weak

exchange interactions. The different sets of bosons are particles excitable to the different eigenstates of the
single-ion part of the Hamiltonian, and boson representations of the single-ion spin operators are constructed

by a matrix-elements-matching method. The method allows the determination of magnon frequencies and of
possible effects of applied oscillatory magnetic fields, and also allows the estimation of boundaries between

different magnetic phases. However, it does not establish the form of the single-ion contribution to four-

magnon interactions. In addition, it is not applicable to transitional phases where the exchange cannot be
treated as a perturbation. The spin-1 system with positive and negative uniaxial and orthorhombic
anisotropies in various magnitudes of parallel static magnetic fields is discussed in detail. Results of Ishikawa
and Oguchi are obtained and generalized. The presence of orthorhombic anisotropy is predicted to make

possible the "parallel" pumping of various magnon pairs, and also to give rise to parallel incoherent
resonance absorption between excited states, as well as the usual "perpendicular" coherent k = 0 ground-
state resonance excitation. Magnon relaxation times are estimated in the case of a paramagnet with hard-

axis anisotropy in sufficiently small magnetic fields. Typical materials to which this theory applies are
hydrated nickel salts.

I. INTRODUCTION +=Z « —2~ Zsi 'sy.

Most of the existent low-temperature theories
of magnetic materials deal either with strongly
exchange-coupled spin systems or with paramag-
nets in which there is no interaction between spins.
In the first case the crystal field created by each
spin's surrounding atoms, which leads to an effec-
tive anisotropy field contribution to the Hamilto-
nian, is treated as a perturbation to the exchange
field. In the second case the crystal field is usu-
ally considered so extremely dominant that any
exchange coupling is completely neglected.

In real paramagnets, even those of very-large
single-ion crystal fields, some interactions be-
tween neighboring spins will always be present
and will allow for the appearance of collective
excitations, i.e. , spin waves. The aim of this
paper is to supply a method of spin-wave analysis
of single-ion-anisotropy dominated systems, both
ordered and paramagnetic. Such analysis is of
importance since, when compared with experimen-
tal resonance data, it enables one to determine the
crystal-field and exchange parameters. The main
difficulty in constructing this kind of theory is in
finding a way to transform a spin Hamiltonian into
a magnon one.

%'e shall discuss systems of N spins described by
a Hamiltonian of the form

%e assume that the spins are coupled by a weak,
ferromagneticlike, exchange interaction, of
strength J)0, between the z nearest neighbors.
The crystal is in a crystal-field dominated re-
gime if J is much smaller than one of the aniso-
tropy constants in the single-ion Hamiltonian X,.
We will restrict ourselves to systems in which
nearest-neighbor dipole-dipole forces are much
weaker than exchange and to situations in which
long-range dipole-dipole forces are either not of
importance or can be incorporated into an effective
applied field H. We are also always assuming that
k~T is small compared to the energy separation of
the single-ion ground and excited states. This will
allow analysis of most processes from study of that
part of the spin-wave Hamiltonian quadratic in bo-
son operators, and the use of perturbation theory
to estimate relaxation times arising from quartic
terms.

Two types of anisotropy fields will be considered:
uniaxial (either easy or hard axis) and orthorhom-
bic. The simplest model which is able to display
the role of the first two kinds of fields is a system
of spins each with s = 1, since the lowest spin that
can distinguish uniaxial and/or orthorhombic sym-
metry is one.

A spin-wave theory of spin-one paramagnets
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with the hard-axis anisotropy field has been al-
ready worked out by Tachiki, Yarnada, and Mae-
kama. ' These authors, however, take into account
only the lowest two single-ion states, which is not
right in a domain of anisotropy and magnetic fields
where the third state is close to the second one.

The same system has been analyzed by Ishikawa
and Qguchi' on the basis of a rigorous two-boson
spin representation, which was first introduced
by Homma, Qkada, and Matsuda' in order to in-
vestigate rotational excitations (librons) in ortho-
hydrogen molecules. Their representation is ap-
plicable only when the spins have the value of one,
the anisotropy has the hard-axis form, the applied
magnetic field is parallel to the anisotropy axis
and, moreover, when the applied field is suffi-
ciently small.

In this paper we transform a spin Hamiltonian
into a magnon Hamiltonian in a two-step proce-
dure. First we introduce sets of Bose particles
which are excitable to individual single-ion levels
and then we construct boson representations of
spin operators by matching to the spin matrix ele-
ments between the single-ion eigenstates. This
method can be applied to any kind of anisotropy,
any value of spin, and essentially any value and
direction of the magnetic field.

The method fails only in a small, of the order
of J, region of values of the magnetic field where
the exchange can no longer be treated as a pertur-
bation. This happens when the anisotropy field
becomes compensated by the applied field. Such
region mill be called the intermediate one, since
it separates two phases with two different single-
ion ground-state orderings, whenever the aniso-
tropy field allows f~r such a transition. For in-
stance, in the case of hard-axis anisotropy at suf-
ficiently small magnetic fields applied parallel to
the axis (which shall be called region 8), the spins
(s = I) m the ground state possess zero magnetic
moment, i.e., are not aligned in any direction.
But for sufficiently large fields (which shall be
called region I,) the spins point in the field direc-
tion. The intermediate region, which separates
regions S and L, has been investigated by Tsuneto
and Murao4 in the molecular-field approximation
and by Tachiki et al. ' within the framework of
their approximate spin-wave theory. Both these
calculations indicate an onset of a transverse rnag-
netization there. A more precise description of
the intermediate region remains as an open prob-
lem since neither methods in which the exchange
field is treated as a perturbation of the single-ion
field, nor the methods (like that of Holstein and
Primakoff) which take the exchange field as the
dominant one, are applicable in this region. Wheh
the anisotropy has an easy axis no transitional

phase occurs.
The second drawback of the method applied in

this article is that it does not allow determination
of the form of the important single-ion contribu-
tions to the quartic terms of the magnon Hargil-
tonian. These can be found only in situations
where Homma et al. 's' representation is applica-
ble, if the relationship between the two approaches
is established; and therefore only then are we in
position to discuss relaxation processes. In gene-
ral the method is sufficient to determine spin-
wave frequencies and to delineate possible effects
of an applied rf field.

The method of matching matrix elements has
been already employed by Grover' for the case of
systems with hexagonal and cubic anisotropy fields.
He takes into account only the lowest tmo single-
ion states, restricts his theory to the case of
vanishing applied field, and, moreover, he does
not discuss the form of higher order than quadratic
terms in the Hamiltonian. A one-boson method of
matching matrix elements has been applied by
Lindgard and Danielson and by Lindgard and Kowal-
ska for systems with dominant exchange energy. '
Their aim has been to find a modification of the
Holstein- Primakoff representation which can ac-
count for substantial anisotropy-field distortions
of the usual exchange-field results.

The plan of this article is as follows. In Sec.
II we analyze spin-one systems with uniaxial and
orthorhombic anisotropy in the presence of a mag-
netic field applied parallel to the uniaxial aniso-
tropy field. The uniaxial anisotropy constant D
and the orthorhombic anisotropy constant E can
have any sign and any relative magnitude. It turns
out that, when no field is applied, there are two
possible collective ground-state arrangements and
hence these systems can be either paramagnetic
or ferromagnetic.

If D is of the hard-axis type, if ~E~&D, and if
this is a. region of small (8) magnetic fields, the
ground state is a singlet. In this situation we just
generalize Ishikawa and Qguchi's' two-bosons re-
sults for a paramagnet with nonzero E and me com-
pare the two approaches. Subsequently me set up
a theory for systems in which the singlet is not the
ground state (region L). This happens when the
system is either @ paramagnet in the region of
large magnetic fields or if it is a ferromagnet.

In Sec. III possible effects of oscillatory mag-
netic fields are discussed. This subject does not
seem to have been explored before. It turns out
that, due to interplay between the orthorhombic
anisotropy and the exchange, "parallel" pumping of
various magnon pairs should be possible in suf-
ficiently large oscillatory magnetic fields. The
presence of orthorhombic anisotropy also breaks
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II. MAGNETIC FIELD PARALLEL TO THE UNIAXIAL
ANISOTROPY FIELD

Consider a system with uniaxial anisotropy con-
stant D and orthorhombic anisotropy constant E.
The single-ion Hamiltonian reads

&;=D(S*;)'+E [(S",)' —(Sf)'] HS;. —

=D(S;.)'+ ,' E [(S;)'+ (S,—)'] HS. f, —
(2.1)

where H denotes the applied magnetic field multi-
plied by the Bohr magneton and by the Lande g
factor.

If the spin s = 1, then the single-ion Hamiltonian
X,. has the three following eigenstates:

x,. l+), =[D+(H+E} ]l+&, ,

x,
l &, =[D (H+E& ~]l &, ,

x,. lo&,. = olo&,

(2.2a)

(2.2b)

(2.2c)

If the eigenstates of the operator S'. are denoted as
I+1&, , l, 1),. ~dlo&, , then

I+&, =(I/~~)X([(H +E ) ~ +H] ~2
~

1&,

+q[(H +E')"' H]"'I*I&,}, (2.2a)

I-&;=(»~~@(-n[(~+E')" -H]" I-»,
+[(H'+E')"'+H]' 'I+1) }, (2 2b)

down a selection rule and allows an oscillatory
field applied parallel to the uniaxis to produce in-
coherent resonant absorption between excited
levels of the system. The usual coherent "perpen-
dicular" resonance excitation of k =0 magnons
out of the ground state can also take place, within

' certain restrictions. The conditions governing
the excitation of these three possible absorption
processes, namely of pumping, incoherent reso-
nance, and coherent resonance, are listed and
classified for the regions S and L.

In Sec. IV the pumping rates and threshold os-
cillatory fields are calculated for region S. Both
direct pumping and pumping by way of virtual in-
coherent resonance excitation are discussed. In
Sec. V our expectations about pumping rates in
region L are outlined. Magnon relaxation times
in region S are estimated in Sec. VI. In Sec. VII
are listed a few typical materials with weak ex-
change couplings. That section also mentions
some available extensions of the above theory to
other sit,uations and systems.

I+&;
I-&

t.

I+&.
I o&.

„

I o&.,
I+&,

+1 for E~ 0,rl=
~-1 for E&0.

In crystals without any orthorhombic anisotropy,
the states ~+&, and

I
—), are no longer mixtures of

eigenstates of S;.. Then they are simply I+&,
= l- 1&„l-), = I+ 1&, The three possible patterns
of the single-ion levels' can be sketched as shown
in Fig. 1, where the symbol H'," is defined as
(D2 E2)ll 2

If the exchange field is thought of as a small
perturbation, the products of these single-ion
states remain the approximate eigenstates of the

.total Hamiltonian (1.1), except when lH —H,"'I
= O(J'}, i.e. , is of the order of j, as explained
below.

Consider first a hard-axis material, i.e. , one
with D &0. Let the constant E attain any real val-
ue. For a given system the relative magnitudes
of E and D can be manipulated, for instance, by
applying an electric field or by chemical sub-
stitutionalchanges. If IEI&Dandif, asweshallsee
in Sec. IIA, Z being small does not exceed (D
—IE)/4z, then such systems are paramagnetic,
since at magnetic fields H, which are smaller
than some critical field H„=H',"—O(Z), the low-
est-energy state is l0);. It means that in the
ground state the spins are not aligned in any direc-
tion. This domain of parameters H, D, E we shall
call region S (small magnetic fields}. In the region
S the configuration of the eigenstates of the total
Hamiltonian looks like in Fig. 1(a). For magnetic
fields larger than a critical field H„=H,"'+O(J)
the approximate eigenstates of the total Hamilto-
nian firm the pattern as in Fig. 1(b), and we speak
of region L. Now the ground state is formed out of
the states I-&;. If E=O, this is a state in which
spins are aligned along the z axis.

Regions L and S are separated by a small inter-
mediate region in which exchange effects become
important. For reasons explained in the Introduc-
tion we will exclude the intermediate region from
our discussion.

Consider now hard-axis materials with
I E~ & D.

For any magnetic field such systems are in region

whereas the eigenstates corresponding to vanishing
energy and to vanishing z component of the spin
coincide. In the formulas (2.3)

(a)
Region S

D & 0, I El & D,

H&H c

(b)
Region L

lEI & IDI, H + H

IEI & IDI, any H;

{c)
Region L

D & Og I E I & ID I,
H

H(o)

X=(H'+E') ' ~,
FIG. 1. Patterns of the single-ion energy levels,

&—0. Here &~ =—(D -E )
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I As we shall see in Sec. IID, if 6Jz&( E —D)
these systems are paramagnets, if 2'~ E, they
are ferromagnets (and then J cannot be treated
as a small parameter unless a sufficiently strong
magnetic field is applied}. For Jz between these
two values we expect the systems to be in the in-
termediate region.

In the case of easy-axis systems
l
-), remains the

ground state at any H. Note that the higher, l+),
and

l 0), , states switch their relative positions at
H=H,"'. This, however, does not lead to any
physical transitions. Therefore a theory for the
region L applies also to the level pattern as in
Fig. 1(c). If 2Jz &

l
E l, then, as shall be shown,

the easy-axis systems are ferromagnets. In par-
ticular, when E=O, a ferromagnetic order is im-
posed by an exchange coupling of even infinitesimal
strength. The crystals become paramagnetic if.

2Jz&lEl, withlEl&lDl, or 6Jz&(lEl+lDl), with

,S'; = a]a; —b; 5),
S;= v 2 (1 —b~b»)(a~»+ b;)(1 —a~»a, )

= &2(a~»+ b, —b~»a»»b» —b~&b»b»

«fz—a,a,a, —a, b,a, + ' ' '),
S;=(S»)',

(2.4a)

(2.4b)

(2.4c)

which is exact for s = 1. In the Eqs. (2.4) a~„b~» are
two sets of Bose operators that excite the l+ 1),. and
—1), states from the states lo), -=lo, o)„namely
+1)»=a~»lo»» andi-»»=bolo, o&, . From Eq.
(2.4) we get

(Sf)2 = a~»a»+ b~»b,.+ a»»a»»a»a»

+ b~»b~»b»b» —2Pa~5»a», (2.5a)

(S;)2= 2a~»b» —2b7a~&a~b» —2a~»5»»b»5»+ ~ ~ ~, (2.5b)

(S )2 [(S+)2]»' (2.5c)

Ishikawa and Oguchi have proved that, if E=O,
there are two branches of spin-waves excitations,
with energies

A. Paramagnets in region S: Homma-Okada-Matsuda

representation

The spin-wave analysis of the paramagnet in the
region S has been worked out by Ishikawa and
Oguchi' for the case E= 0. These authors employed
the following Homma et gl. 's' representation of
the spin operators:

neighbors. The critical field is defined by the con-
dition q, =0 (a soft-mode transition), which yields

H„=D(1 4Jz/D)" 2 (2.7)

—H g(a»»a» —b~b»)+ ~ ~ ~ . (2 8)
S

The quartic and higher-order terms have been
neglected for the moment. At first sight this
seems to be a good approximation, since all of the
dropped terms, except for those which originate
from the S';S', exchange interaction, either identi-
cally vanish on the three allowed states or corre-
spond to a multiple excitation and deexcitation of
bosons at the same site, which does not have any
direct meaning when one thinks about spin rever-
sals. They just describe interactions of the spin
excitations. However, the neglected terms pro-
duce zero-point corrections to the frequency,
which, as we shall see in a similar discussion in
Sec. III, grow when H approaches H„.The quartic
terms are a)so crucial for the discussion of the
relaxation processes in the system.

If we introduce Fourier transformed operators

~ "1/2 ~ 8-fkRJg
k

etc. , we can write Eq. (2.8) as
I

X=g [Q«a»«a«+ Q«b»«b« —2Jy(k)(a~«b~«+ a«b «)

where

+ E(a', b, + a, h' )] «~ +~ ~, (2 9)

Q«=D+H —2Jy(k) .

With the use of the equation of motion method we
get the following two frequencies:

Equation (2.7) coincides with the result of Tachiki
et al. ' as their replacement of the three-level
system by a two-level one becomes justified for
H close to H„.

Homma gt al. 's representation is also applicable
in the case of a crystal with orthorhombic aniso-
tropy, provided the system is in the region S. With
the use of Eqs. (2.4) and (2.5}we can transform
(1.1) into a magnon Hamiltonian of the form

X= —4Jg (Pa,.+ b,a, +a~b». +.b~&b»)
&fj&

+ D P (»7»a»+ b~»b»)+ Eg (a~»b»+ b~»a;)

z', =[D' 4 JDy(k)]"2+H,

where

(2.6) z«=(E'+D'+H' —4JDy(k)+ 2(H2[D' —4DJy(k)]

+ E'(D —2Jy(k)]'j' ')' ' (2.10)

y(k) Q z»««

6

and Z, denotes the summation over the z-nearest

The expansion of these energies to order J will be
used later [see Eq. (3.2)]. In the limit of E-0
Eq. (2.10) coincides with Eq. (2.6). The value of
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the critical field is modified to

H„=[D —E' —4(D+
I
E

I
) Zz]' ' . (2.11}

The effect of the orthorhombic anisotropy is to
lower H„since the E interaction pulls the magnons
out of the ground state. Qwing to the presence of
the zero-point corrections we cannot expect the
terms proportional to J in H„to be accurate;
rather they have the qualitative meaning that H„
= H,"'- O(Z).

Note that Eq. (2.10} requires at H= 0 that the
frequency &, becomes imaginary if J )(D —I El)/
4g. This supplies a criterion for the maximal size
of the exchange constant. ' If J is smaller than

(D —
I
E

I
)/4g, the perturbational treatment of the

exchange is justified. For J slightly bigger than
ibis limiting value, or more precisely when

(D —
I
E

I
)/4z &J& (D+

I
E

I
)/4z, the Hamiltonian be-

comes two-level-like and we expect the system to
be in its intermediate region with a transverse
magnetization present, since the I+), is only slight-
ly admixed. " Systems with even bigger exchange,
i.e. , satisfying the inequality Zz (D+ IEI)/4z are
ferromagnets. Modif ied Holstein- Primakoff rep-
resentation' is applicable then.

s;. Io&,.=o; (2.12c)

s;I+),.=6I[(H'+ E')"'+H]"'Io&, , (2.Isa)

-~6I [(H'+ E')"'-H]"'I 0& (2»h)
s'Io) =x([(H'+E')"'+H]' 'I )

+rf[(H'+E'}' '-H]' 'I+&, j; (2.13c)

S, I+), = q 6I [(H'+ E')'i' - H]' i'
I
0), , (2, 14a)

s-I -&.=5I [(H'+ E')"'+H]"'Io& (2 14h)

S,. I0&, =5I j[(H2+ E')'12+ H] 12 I+

- q[(H'+ E')"'-H]'" I-& (2 14c)

In the harmonic approximation the spig, operators
should have the following form:

+ Pb, + P*b~+ya, +y*at, + ~a

+ 5*be&a, + qa, a&+ fb, b&+ pa&a, + g*a&a&

+ 8btbt+ e*b,b,.+ Eath~+ I~a,.b, + ~ ~ ~, (2.15a)

S', = g+ A.b,-+ X'b, + p.a,.+ p'a, + va, b, + v'. b,.a,

+ $a~&a&+ a'bibb&+ vatat+ v'a&a&

+ Pb~~bi&+ P'b, b, + o'a~tb, + o'a, b, + ~ ~ ~, (2 15h)

B. Operator-matching method s;. =(s;)', (2.15c)

Ishikawa and Pguchi's method is not applicable
to the region L, since

I
0),. is not the ground state,

An alternative approach to both regions L and S
is furnished by introduction of Bpse operators
which are excitable to eigenstates of the single-ion
Hamiltonian. Again two sets of bosons have to be
used. Qne set is not enough, since, unlike the
case of a crystal with anisotropy fields much
smaller than the exchange field, the energy levels
of the system are not in general equidistant. Es-
pecially when the higher two levels are close to
each other the efforts to describe the system by
one set of bosons are artificial and become more
of a patchwork. Moreover in a one-boson theory
the interactions with the highest level would. auto-
matically be transferred to the quartic terms.

Just to reproduce the single-ion part of the
Hamiltonian, two sets of fermions would be much
more adequate. This, however, would require
magnons at different sites to anticommute rather
than to commute. The price paid for use of
commuting bosons is the occurence of quartic
and higher-order terms in the single-ion Hamil-
tonian, since the bosons are not forbidden to be
excited more than once at the same site.

The Bose operators should reproduce the follow-
ing behavior of the spin operators:

C. Operator-matching method: Region S

The scheme of the single-ion energy levels is
as in Fig. 1(a). Let

Io&, =lo, o&, , I ), =a', I0, 0&, ,

I+), =b', lo, o)„
(2.16)

where a, , b, are boson operators, and a, p, . . . , 0'
are constants to be determined. In a similar way
one can find the subsequent third-order terms in
the expansion. Analogously the structure of (Sf}',
(S;)', (S,)', etc. , can be established. The commu-
tation rules are not helpful here as terms of arbi-
trary high order, when. commuted, may produce
constant, linear, and quadratic contributions.

This method, however, fails when one wants to
find quartic and higher-order terms in S;,S;,S„
(S;)', (S;}', since all such terms, which could enter
the expressions for these operators with nonzero
coefficients, either themselves or their Hermitian
conjugates identically vanish in the allowed sub-
space of states. This deficiency can be removed
only in the region S, where one can employ a rela-
tionship between our approach and that of Ishikawa
and oguchi [see Eq. (2.19)]. Consider first the re-
gian of magnetic fields smaller than H„=H&"-0(g).

sll+&'=6P(EI-&;-Hl+&;)

s*, l-&, =OP(EI+&, +Hl-&, ),
('2. 12a)

(2.12b)

where
I
0, 0), is the joint vacuum state for the two

bosons. If we could impose the constraint (at)'
= (b~)' = 0, then the single-ion Hamiltonian wouM
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be simply

X, = [D+ (H'+ E')'/']btb,

+[D —(H'+ E'}' /']a ~a, . (2.1V)

Since in the case of bosons this constraint is arti-
ficial, Eq. (2.1V) remains as an approximation and
some quartic and higher-order terms have to be
added. With the use of (2.12)-(2.15) we obtain

S;.= JP [H(a~a, —btb,.) + E(a', b,.+ b~a, )],
S;= 'X{[(H'+ E')'/'+ H]'/'(at+ b, —a~aP, —bta, b, —b, b&b, —a,a)a, )

+ q [(H'+ E')'/' —H]'/'(b~» - a, —afbta&+ b~~b, a, —bfbtb, + ata, a, )]+ ~ ~ ~,

s-=(s')'

(2.18a}

(2.18b)

(2.18c)

(rg/~g) {~[(H2 + E2)1 / 2 H]1 / 2b

+[(H'+E')' '+H]' 'a j
b = (5I/~g) {[(H2+ E2)~/2+ H]~/»b

g[(H +E2)'/' H]'/ a]

(2.19a)

(2.191)

into (2.4). As expected, the harmonic part of the
single-ion Hamiltonian (2.9) becomes diagonal if

which allows us to find the exchange part of the
Hamiltonian.

Note that in the limit E-0 Eq. (2.18) coincides
with (2.4). Note also that we would get exactly the
same equations for S', , Sf, S, as (2.18) if we sub-
stituted

written in terms of a, 's and b, 's. The above rela-
tion, together with Eq. (2.5), allows us to find the
quartic contributions to (S;.)', (S;)', and (S,)'. In
this way we obtain the following form for the total
Hamiltoniap in the region S:

+=2 ~»//»&»+di»b'»b» 2J&'y(k-}[H(~»bl„+~»b „)
k

+ 2 E(b»b-'»+ b»b-» —'s»'s'» —'s»s-»)]] +~, , (2.20)

where

(S'» = D a (H'+ E')'/' —2Jy(k)

( ~+k» k, 4», », »»»4+ i», s~ », »»»»» + (i», »»b»~b» b» b»
ky k2k3k4

+ (a~~, a~~,b„,b», + H.c.)[X'E'(D+ —', H) —JgVE'y(k, —k,)]
+ (b~», b~@b&u& —a~~,a~~,a»,b&+ H c ){5I4E[.» .E'+ 2HJy(k, —k,)]j
+(b a~» at» a» +H.c.){—»'2 E [(H +E )' -3H]+2' H[y(k, )+y(kz)]]

+ (at b~+b~» b» + H. c.) j-& Jt4E'[(H'+ E')"/'+ 3H]+ 2JJPH [y (k,Q y(k, )]]
+ (bt», bt», b~» b &+ H.c.}[——,

' 'X'E'+ 2Z'EJy (k,)]+ (a~»,at», a~&a&+ H. c.)[-&
X»E' —25PEJy (k,)]

+ (bt» b~a~» a&+ H.c.){»EX'[E'+ 2H(H'+ E')' ' —2H']+ 2X'EJy(k, ))

+(at at» b~» b» +H.c.) j-»EX [2H +2H(H +E )'/ —E ] 25PEJ'y(k-, ))
+ (b', bt bt, a» + H.c.) —,

' X' 'E[( 'H+ E')' '- H]+ (a,at», a~», b&+ H. c.) —,
' X' 'E[( H+»E')'/'+H]), (2.21)

with

y„„=2'' [D(E' H')+ E'H]-
+ 2J[y(k, )+ y(k, )+ y(k, )+ y(k, )

+K H»y(k, —k ) —'X E y(k, —k )], (2.22}
y" ' = X'{H'D+ -.' E'[(H'+ E')"'+H]]

+2J'[y(k, )+ y(k, ) —H'X4y(k, —k,)]. (2.23)

In the harmonic approximation the S',.Sz interaction

again drops out and the frequencies are given by
Eq. (2.10) which checks our method.

Now we are ready to apply our two-boson theory
to the case of magnetic fields larger than H„=H,"'
+ o(J).

D. Operator-matching method: Region I
The single-ion level pattern is now as in Fig.

1(b) or 1(c}. Since the ground state is
( -)„let
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[ &, =[0, 0&„[0&,=a', [O, 0&„

I+ &1

With the use of Eqs. (2.12)-(2.15}we now obtain

Sf = 512{H+E(b~(+ bi) —Haiaq —2Hb~(bi

—E(bfatia, + a~ia, b, + b~ib~ib, + btb, b, )j + ~ ~ ~,

(2.24a)
S& ='Xf[(H'+ E'}' '+H]'/'(a, + a~ib, —b~a, b, —at&a, a, )

+/[(H'+E')' ' —H]'/'

x ( a~+ b21a, + a~ib~ib, + a~ia~a, }j+ ~ ~ ~, (2.24b}

S-, =(S;)', (2.24c)

Subsequent terms in the expansion of S;,S'„S,can-
not be found by means of our method.

In order to find the degree to which one can rely
on the representation (2.24), when truncated to the
quadratic terms, let us check the commutation re-
lations for the spin operators. For instance
[S;., S,] reproduces 2$; except for the coefficient
in front of b~b„which turns out to be twice too
small. For the domain of parameters which corre-
sponds to the Fig. 1(b) the error thus introduced
is insignificant. However, since (unlike the region

X = D —(8'+ E')' '+ 2(H'+ E')'

'blab

+ [(H'+ E')'/' —D]aIa~ ~ ~ ~ (2.25)

because the energy difference between the states
~
-), and t+), is equal to 2(IP+ E')'/', whereas be-

tween the states (-), and ~0), it is [(H'+E2}'/2-D].
Analysis of the structure of the operators (S;)',
(S;}', and (S,)' indicates that, the third-order
terms of -HS'. are canceled by the cubic terms
of the anisotropy-field Hamiltonian. W'hat the ex-
pression (2.25) does not include are some unde-
termined quartic contributions.

The total Hamiltonian for the region I. reads

S sitiiation) the harmonic contribution to S; does
enter the harmonic exchange Hamiltonian, the 5
particles are, at low temperatures, only slightly
excited. The error increases in the region corre-
sponding to Fig. 1(c). Then b particles are more
excited than e particles. On the other hand

[Si,S;] reproduces the linear terms of S; correctly,
whereas the coefficients in front of a~b, and 5~a,
are exact in the limit ~E~«H only. These te~ms
don't enter the harmonic part of the Hamiltonian
anyway.

The single-ion Hamiltonian becomes

3e=& [D (H'+ E'}'/' Jz 9l' H2] 2—2' X~EHN'/2(b2t+ b2)+ P [8(k)a~~a2+ JEX'y(k)(at2a~2+ a2a 2}]

+ Q [e(k)b'2b„JE'X'y (k){-b',b', + b2b, )]+2JH5f'X "'Q (--y (k,)(b'...„a„a„+a'„,a',,b„„,)
kgA2

+ 5I'E[~+ y(k )1(b',at, a2..;+a'„&b.,a2.)+5I'E[~+ 2y(k»](b2, b',b2„..+ bt: b „b~}j+"' (2.26)

with

8(k) = (H'+ E')' ' —D+ 2JX'H z —22J'y (k) (2.2V)

$(k) = 2(H'+ E')' '+ 2J%4[ 2H2z —E'y (k}] . (2.28)

In order to eliminate the linear term (b, + bt),
let us perform the follow'ing unitary transforma-
tion of the H8,miltonian:

p + 5 ~1/2JEHg [(H2+ E2)3/2+ 2'(H2 E2)]-1

= p + 5 Pr'/2JEH25I2+ O(J') . (2.29)

If we limited ourselves to the linear and harmonic
terms of Eq. (2.26), then under the influence of
(2.29) the linear term would vanish. However. this
very transfoi. mation, when applied to higher-order
terms, produces new linear and quadratic expres-
sions. Now, the quartic and higher-order single-
ion terms either contain less than two b operators
or at least two such operators. In the first case
no new linear or harmonic term is produced. In
the second ease we obtain negligible corrections
which are proportional to J' and higher powers of

J. On the other hand no triple- or higher-order
exchange process generates lower-order terms
which are proportional to J.

We conclude that

X=b/[D-(H'+E')'/' J~X'H ]

+ Q [8(k)a',a, + 2JZZ'y(k)(at2a~, + a,a,)]

+2[/S(»e'2'. JE'&'y(k)(-e'2''- 1322+82)l

+Q(J' )+ ~ ~ ~ (2.30)

The transformation (2.29} can also lead to new
cubic terms which are proportional to J. So the
form of the triple terms in (2.30) becomes undeter-
mined. In the first approximation with respect toJ the a particles do not interact with the p parti-
cles. Further approximations bring in such inter-
actions.

The energy associated with the a magnons is
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~a(k) [82(k) MJ2E2cg4y2(k)]1/2

= (H'+ E')"' -D+ 2J [X'H'z —y (k)]+ O(J ) .

(2.31)
The dispersion relation for the p magnons is D in-
dependent and reads

& (k) =(4(H'+ E')+8JX'[2H'z E'y(k)]

+16PzX'H'[H'z —E'y(k)]]' '
= 2(H'+ E')'i'+ 2J2' [2H'z —E'y(k)]+ O(J') .

(2.32}
Now the case D &0,

I EI &D is interesting, since
the energy of the less energetic (then) a particles
vanishes in the vicinity of H,"'. In the J term of
the equation q'(0) =0 we can substitute H,"' instead
of H. That way we obtain the following expression
for H„:

H = [O' —E'+ 4JzE'D '+ O(J )]' (2 33)

(2.34)
&+Is;I-&I=I&-Is;I+&

The situation is then t4at of two nonmagnetic lev-
els, separated by &=2IEI, and possesing off- '

diagonal matrix elements of the magnetic moment
(Van &leek paramagnetism). When such a system

This allows us to conclude that the width of the in-
. ter'mediate region is of the order of J. For E=O,
H„=D+O(J') is in agreement with the calculation
of Tachiki et al. ,

' but as already mentioned, Eq.
(2.33}has rather a qualitative meaning.

I.et us discuss now the stability conditions for
the region J' at H=O. The @=0 a magnons become
soft if 6Jz &(IEI —D), whereas the frequency q~(0)
gives an instability when 2J'z &

I
E I. It means that

if
I
E

I

~ D. the system should be in an intermediate
ph»«o'(IEI-D)~3&2«&IEI Sma. lier J's give
a paramagnetic case. If 2Jz&IEI, the three states
are heavily mixed and the system is a ferromag-
net. On the other hand if D is negative and

I EI
th«rystai is ferromagnetic for 2Jz

Depending on the size of J, the IO&,. state may or
may not be strongly coupled by exchange, but when
this state is only slightly admixed we do not ex-
pect to find an intermediate phase with a transver-
sal magnetic moment since it does not influence
the spin direction. Note, in pa, rticular, that a
system with E= 0 (D &0) is an easy axis ferromag-
net for arbitrary small J. Then the single-ion
ground state is degenerate at H=O, and our. theory
leads to unstable excitations.

I.et us consider pattern (c) of Fig. 1 with very
large negative D, so that the

I 0&,. I'evel lies too
high to be important. W'ith H= 0 the matrix ele-
ments of S',. are

&+ Is;I+&=&-Is;I-&=0,

of ions is coupled by exchange, Bleaney has
shown that —in the molecular-field approxima-

, tion —ferromagnetism results when

(2.35)

On inspecting Eq. (2.32) we see that the k = 0 p
magnons become soft when J exceeds

I EI /2z, m
agreement with Bleaney's criterion. More pre-
cise calculations by Wang and Cooper" yield a
(-10%) larger value of critical Z. It 18 Ilecessal'y
to take into account the complicated ground state,
i.e. , the zero-point corrections to our assumed
ground state which arise from the interplay be-
tween J and E. As we have pointed out below Eq.
(2.11), we cannot expect large terms in J to have
more than a general qualitative meaning.

We have established that for either sign of D
the system, which at H= 0 is in region L and for
which the inequality 2Jz & IE I

is satisfied, is a
ferromagnet. Now, in the presence of a magnetic
field our theory, in some instances, is applicable
also to these ferromagnets. This is because stabil-
ity conditions, which include H, allow increase of
2J'z beyond

I et us discuss first the situation D&0, IE I

& ID I. Since in our calculations J was thought of
as a small parameter, the results of the theory
are meaningful if 7« ID I, and if J«H. Therefore
the theory applies to the ferromagnetic region
when also IE I

is much smaller than ID I
and H.

In particular consider a system which does not
have any orthorhombic anisotropy field, or in
other words let, say, 2H' ~ E' (in order to guaran-
tee nonimaginary z~ for any J) and imagine that E
is continuously switched off. In this situation none
of the frequencies become soft for any, even van-
ishing, H. Except for the smallness requirements,
J is not restricted then.

Now, if IE I
& ID I

with D either positive or nega-
tive, the theory still applies for the ferromagnetic
2J'z & IE I

provided the magnetic field is sufficiently
strong, namely if J~ «H. In general the theory
works whenever the single-ion ground state is, in
comparison with J, significantly separated from
the excited states.

III. EFFECTS OF OSCILLATORY MAGNETIC FIELDS

In ferromagnetic materials a uniform rf mag-
netic field h cosset can trigger two effects' '":
(a) resonant production of k = 0 magnons, and (b)
(beyond a threshold) excitation of pairs of magnons
with opposite wave vectors. Since usually the latter
effect occurs with the oscillatory field applied
parallel to a steady magnetic field, it is known as
"parallel pumping. "

In magnetic mater ials with uniaxial and orthorhom-
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TASLE I. Possible effects of an oscillatory field.

1261

Region
rf field

along

Form of
the rf

perturbation Process Qualifications

(static fi;eld
along z)

/ca
AC k
t

c/c', ~ dftd',

Incoherent resonance

Parallel pumping of
unlike magnons

Parallel pumping of
like magnons

Coherent perpendicular
resonance

Coherent perpendicular
resonance

E&0

JAP, E &0

J&0,E &O,H &0

H&0 if E&0;
none if E& 0

None if E&0 ~

H&0 if E& p

(static field
along z) cue z, djd a

@ca

CAd A
t

Coherent parallel
resonance

Parallel pumping of
like magnons

Coherent perpendicular
resonance

Incoherent resonance

"Parallel" pumping of
unlike magnons

J&P,E&O,H& 0

H&0

None if E~ 0;
H& 0 if E&0

J~P, E~ P

A. Region S

Consider first the paramagnet in the region S.
For small J the transformation

yJ( )kEPQ[D —(H +E ) I2] - ct

+ Jy(k)HOPD 'dtq+O(J ').
b =d~+ Jy(k)EX'[D+ (H2+E2)]~lm] ~dt~

+ Jy(k)ENPD ~ctq+O(J )

(3.1a)

(3.1b)

brings the quadratic part of Hamiltonian (2.20) to
the diagonal form

bic anisotropies and with weak exchange inter-
actions, we will show that three oscillatory ef-
fects can take place: (a) resonant production of
A = 0 magnons, which will be called "coherent reso-
nance"; (b) resonant production of a spectrum of
magnons of different k, which will be called "in-
coherent resonance"; and (c) pumping of pairs of
magnons beyond a threshold magnitude of rf per-
turbation. The presence of dipole-dipole forces
is not required for these effects to occur, so
we will continue to discuss systems in which di-
polar fields are either ignored or incorporated into
the uniform field H.

Various possible oscillatory effects under vari-
ous possible conditions are listed and classified in
Table I. They will now be discussed in detail.

Xix= Q gt,' ~+Q&f4da+o(P) (3.2)

wher, e

a~ =D —(H2+E')'l' —2Jy(k) + O(J ),
c„"=D+(H +E ) l —2Jy(k)+O(J ),

(3.3)

(3.4)

These energies agree with (2.10) when that equa-
tion is expanded to order J. The operators c~,
d, satisfy boson commutation relations when terms
quadratic in J are discarded.

Now we translate the quartic contributions (2.21)
to the Hamiltonian into the language of c~ 's and
d, 's. Again we reject expressions proportional to
J", n~ 2. When, however, the normal ordering
is introduced, some new quadratic terms appear,
which are of the order of J. These are the zero-
point corrections. If the theory based on the trans-
formation (3.1) is to work, that is, if we assume
that the original harmonic Hamiltonian gives a suf-
ficient account of thedynamics of the system, these
new terms have tobe thrown out. Since the new terms
involve coefficients from the transformation (3.1),
which become large when H approaches H„,such
theory fails to be reliable in the vicinity ofH„.For the

, sake of consistency, the quartic terms with these
very coefficients are also considered negligible.
As g result the fourth-order terms are approxi-
mately given by (2.21), where a~' s and b, 's are
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replaced by c~'s and d~'s, respectively.
Let us look now at the operator of the s component of magnetization. From Eqs. (2.18a) and (3.1) it has

the form

g S;=g (X'H(c',c,—d~~d~)+X'E(d~~c~+c~td~) —Jy(K)X'E$2E[D' —(H'+E')] '(dt~c, +c„d,)

+HD '[D (H-'+E')'/'j '(c, c,+c,c,)+HD '[D+(H'+E')' '] '(d',d', +d„d,)))+O(J )+ '. (3.6)

Thus magnons of a given wave vector k make the
magnetization to oscillate with the following fre-
quencies: (i) ef e,'-, (ii) e'„+a,', (iii) e'~+et,
(iv) &~ + &~q. Effects (i)-(iv) are, in the light of the
preceding discussion, small outside the critical-
field region; but they can be amplified by coupling
to the rf field. All of the four motions disappear
for a purely uniaxial paramagnet, i.e. , when E =0,
since then the magnetization is conserved. If H
vanishes, (i) and (ii) still take place.

If an oscillatory magnetic field is applied in the
g direction, a perturbation of the form

QC= AC'cosset —= -cos(&ot)h g S;. (3.6)

has to be added to the Hamiltonian (2.20). The per-
turbation will trigger one of the four following
processes:

(i) If the condition

~ —gd gc —2(H2+E2)1/2+O(J 2)

is met, c, magnons are annihilated and d, -magnons
are created. Since e„"-&', is independent of k to
firstorder in J, when &v=2(H' +'E)' ',/magnons
of all wave vectors participate in these processes.
Larger J will provide broadening. This is induced
absorption which in effect transfers a portion of
the system from the c level to the d level. The
reverse processes, induced emissions, also take
place. The net power absorbed will be given by
subtracting emissions from absorptions and will be
proportional to the difference in population between
the c and d levels. Since neither c nor d is the
ground state, the net absorption wi1.1 be small.
Furthermore, it is unlike the absorption out of the
ground state. The latter is produced by a compon-
ent of rf field which is normal to a component of
ground- state magnetic moment (spontaneous, or
induced by H); the component of the rf field causes
that magnetic moment to precess coherently, i.e. ,
excites k =0 magnons. Instead, the absorption be-
tween excited states c and d is produced by a com-
ponent of rf which ordinarily cannot connect the two
states, but which here is allowed because of a per-
turbation mixing the two states, in this case due to
E. Furthermore, the absorption takes place across
a spread of 0 vectors and therefore cannot be de-
scribed as a coherent motion. We call. itincoher-

ent resonance.
(ii) If the condition

(u=@ ~+@ ~~=2D —4Jy(k)+O(J') is satisified, two
particles c„andd, are produced. This is nothing
else but a "parallel" pumping, which is allowed by
an interplay between the exchange and orthorhombic
anisotropy fields. Only one wave vector is involved
now, provided the incident radiation is sufficiently
monochromatic, i.e. , provided the spectral width
of the rf field is much smaller than J. This pro-
cess requires a threshold size rf, which we calcul-
ate in'Sec. IV. In this process it might seem that
two different atomic levels are being simultan-
eously excited. However, the excitation is of mag-
nons belonging tothewhole crystal, i.e. , of levels
shared by all of the atoms. We make the usual
small-magnon-numbers approximation that these
modes do not interfere kinematically with each
other.

(iii) For

cu = e '„+c', = 2D —2(H'+E ')'/' —4Jy(k) + 0(J'),
pumping of c magnons occurs; and (iv) for

& —ed+ &d —2D+ 2(H 2+E 2)l/2 4Jy(k) + O(J2)

we have pumping of d magnons. Processes (iii) and
(iv) disappear in the limit of H-0.

Unlike the usual ferromagnetic case,"" the
pumping phenomena here are not, at least in the
first approximation, due to a simple elliptical mo-
tion of the transverse components of the spins. - To
see this, let us write down the expressions for
S"; and S'; for 8 = 0 and, E&0:

S";=N '/' g e '~~[d~~+d ~+Jy(k)(D+E) '(dt+d „)]
k

+ o(J')+ ~ ~ ~

S;'=N '/' Q e ' /[c „ct~+Jy(k—)(D —E) '(c', +c~~)]

+ o(J')+ ~ ~

where the dots represent triple and higher-order
interactions. Thus for a given wave-vector, S",
participates in a motion with frequency a~, where-
as S",—with &~; thus Lisajous curves are followed.

Before we discuss the pumping rates for (ii)—(iv),
let us review what happens in other configurations
of the static and of the oscillatory magnetic fields.
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If, in the region S, the rf field is applied along the x axis, it Will couple to

g s*=-'N' '(V {I- JzE3I'[D- (H'+E')'"j ')+ V,J &'HD '}(co+c.)

+ «N' «(V,{l+jzE'JI»[D+(H'+E')' 'j 'j+V JzÃ 'HD ')(dot+do), (3.7)

where

V = (1+H3I')'~' +q(l —HX')'~'

Now two coherent resonarices can take place, i.e. ,
k = 0 magnons are excited only. The c process disap-

pearss

for H = 0 (if E & 0). On the other hand if ~ = do, at
any H, the do particles are produced (E &0).
Similar effects are to be observed when the rf
field points in the y direction. The only difference
is that in the limit of H-0 the c, particles would

be produced only.

B. Region L

Consider now systems in the region L. The Ham-
iltonian (2.30) becomes diagonal under the trans-
formation

a«=c« —Jy(k)E3I'[(H'+E')' ' —D] 'ct„+O(J'),
(3.8)

p«=d«+2 Jy'(k)E 3I'dt +O(J') .

This yields

Q .8;=NH3I (1+%E'zJ)+N'~ W;(dot+do)

,
—&'H P(c',c,+2d',d, yJ(k—)K' E

k

x {[(H'+E')' '-D] '(c c t„+c«c«) —3I (d dt„+d„d«)]}+O(J')+ ' ' '
~ (3.9)

P S";=N' 'W (c +c )+ «V g {d c +c d ——,Jy(k)X'E'[(H'+E')' '+D][(H'+E')'~' —D] '

x (c',d', + c«d «)j+0(J')+ (3.10)

where

W =3I E(1+ 'JzE'X —2JzX—'H )

W, =~«(V {1—JzX E[(H +E )
'~ -D] 'jf+V,JzEHX }. '

In the region L a coherent resonance occurs for the
rf field applied in either z or x direction. In the
former case it vanishes for E =0, whereas in the
latter it vanishes for H =0. For the rf field applied
along the g axis, pumping of particles of the same
kind takes place, provided H is nonzero. There is
no trace of the incoherent resonance in such config-
uration of the fieMs. If the rf field points in the g
direction, the pumping of particles of different
kinds is possible, provided E does not vanish. An

onset of the incoherent resonance is also to be ob-
served then.

IV. PUMPING RATES IN THE REGION S

there are two mechanisms which contribute to the
pumping rate: (a) direct pumping due to the d, c,
term in the perturbation (3.6); and (b) indirect
pumping via creation of a virtual "particle" d„c„
and subsequent anihilation of that "particle" and
creation of the pair c, d „,via a quartic term in
c«dt»c«d«. . The perturbation (3.6) can supply such
"particles" since they appear as nonvirtual when
conditions for the incoherent resonance are met.

- In contradistinction to the pumping rate in the anti-
ferromagnet, the virtual "particle" is a two-body
object now, which moreover carries a nonzero
momentum.

(a) Let us evaluate first the rate of the direct
pumping. According to the standard time-depen-.
dent first-order perturbation theory, "the transi-
tion probability per unit time that the number of
particles c„,n,', and the number of particles d

„

n" » both increase by one is

Consider at the beginning the pumping of two par-
ticles c«t, dt«, which happens when a =2D-4J'y(k).
This is process (ii) of Sec. IIIA. As in the case of
an antiferromagnet in the spin-flop phase, "'"

2 z 4J2y 2(k)k«cg4E 4[D 2 (H 2 +E2)j-2

x (n«+1)(n»«+ I)5(~—2D+4 Jy(k)) . (4.1}

a4 'zl(st+ I~ s-«+ I (636' In«, s «)('6(co- 2D+4 Jy(k)}
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The transition probability of the inverse process,
in which +& and n'„decrease by one, is now sub-
tracted from the above; and the net rate of growth
ls

(n k )growth, o (h-k ) growth, a

turbation. In particular the term

r tor(4N)-13I4E[2H2 + 2H(H2 + E2)1/2 E 2]

X 2~(d»ckckrrdkrr +d»toe»NC»d «) (4.3)

-2~ J'y'(k)h'3t' E'

x [D' —(H'+E')] '(n»+n „+1)
x 5(&u-2D+4 Jy(k)). (4.2)

The larger A',, 8, H, J the more effective the direct
pumping is, and it vanishes when y(k) =0.

(b) Let us proceed now to the calculation of the
indirect pumping rate. Note first that the quartic
Hamiltonian 3'~z can also be considered as a per-

can destroy the virtual "particle" d~ c~ and produce
magnons which appear as a result of the direct
process. The factor of 2 in (4.3) counts the number
of ways interactions (c» c» d, d» +H.c.) are in the
desired configuration of wave-vectors. Coefficient
proportional to J has been neglected in (4.3). The
second-order perturbation theory gives the follow-
ing expression for the transition rate in such pro-
cess:

»2 tg g(e» —e» ) '(n „+1,n,'+1, n„,n» ~Xg(n» n», nkr +1, n» —1)

x (n», n», n, + 1, n'„.—1 j5X'
~
n "», n», n"„,n» ), 25( ur —2D+ 4 Jy (k) ) .

Only the term

(4.4)

3I hE~(d» c»„+c»„d„„)

contributes to the matrix elements of ~Z' in (4.4). If the transition rate for the inverse process is sub-
tracted from (4.4), for the net rate we get

C d
(hk )growth, b ( -k)growthb,

= ~ v(H2 +E 2) t(+ghE)2{N t )I4E[2H2 +2H(H2 +E2)tr 2 E 2] ]2

2 2
x p (n» +1)n» (n", +1)' '(n»+1)t~' — g n,"(n,'. +1)(n»)' '(n'»)' ' 5(&d-2D+4 Jy(k)). (4 5)

O'' W

The k'wave vector which is equal to k gives a nonzero
contributionto (4.5) when k = 0 only. The case k =0
is excluded from our discussion from now on.

Assume that the occupation numbers of magnons
with wave vectors k' are almost at their equilibri-
um values, corresponding to temperatures T
»J/kgt. This allows us to take n» and n„asBose
factors, in which J dependence, and therefore k'
dependence, is disregarded:

nor -n' =—(exp{[D-(H'+E')'~ ] /kgr T f—1)"', (4.8)

n' =n' = (exp{[D+(H'+E')' '] /kaT) —1) '.
At temperatures ksT «D+(H2+E')'~' the term
n n' is much smaller than n', so

g (n g + 1)n' = (N- 1)n' =Nn'.
0've 0

Equation (4.5) becomes

(nk)g o th, b (h-»)g o th b

~ —'» "E'h'[2H'+2H(H2+E')'i'- E']'

x{[(n')'—(n )'] n» ng»+(n')'(ng»+nk+1)]

x &(t0- 2D+4 J'y(k)) (4.8)

(n') „,=-I (n' —n'),

(n "k)goo,g
=- „(n»-n „),

(4.9)

(4.10)

Up to the moment when an instability develops in
the system, the nonlinear term n„'n",is not so de-
cisive as n",.+n~+1 and will be dropped.

Now, Eqs. (4.2) and (4.8) have been derived under
the assumption that the initial and final states were
stationary ones. Actually this is not the case. Ow-
ing to various relaxation mechanisms, caused, for
instance by the quartic terms in the Hamiltonian,
occupation numbers of the produced particles de-
cay with some finite lifetimes 1/I"» and 1/I' „,re-
spectively,
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where n~ and n I, denote the equilibrium occupation
numbers. Hence the two-body wave function of the
two produced particles is damped with the damping
consta11't 2 (Pa+2 1, ). As a reslll't tra11sltiolls occur
also in the immediate vicinity of the "resonant"
frequency. Following fallen, "we replace the &

function in (4.2) and (4.8) by the Lorentzian line-
shape function

1 ~a + I -a
2v [&u-2 D+4 Jy(k)]2+(4)(la+7 a)'

' (4.11)

We arrive at two coupled linear differential equa-
tions for n~ and n "&..

na =(hk)g&p&&&h 4 +(na)am&&&h a +(na}d y &

n'a =(n-'a)2- &h,.+(h'a)„.,h, a+(h-'a}d-.~.
(4.12)

r', J 'X2[D(E'-H')+E'H]'n'-.
(4.15a)

(4.15b)

So in the low-temperature regime

h.;.--'[2 J'(y(k) lE'(H"E')'"j-'
x fH2D+ 'E'[(H'+E')' ' H]]-
x[D(E'- H') +E'H][D' (H'+E')] &-

(4.16a)

For small enough h, the solutions of (4.12) die out
exponentially: the system drives back to equilibri-
um. However at the critical field, A„given by

= (I al' )' '(I + F '2) '

X ([~ 2D+4-Jy(k)] + 2(r4a +dr-"a)2'/'/2(EX) 2-
x(jay2(k)[D - (H2+E')]-'++X "(n )'

x [2H2 + 2H(H2 +E 2)1/2 E2]2].-1/2 (4 18)

an onset of instability takes place and an abrupt
increase in the power absorption is to be observed.
Beyond this field our linear spin-wave theory fails.
The critical field is never reached when & =0 as
the pumping does not appear then. The minimal
value of h«occurs at the center of the line, i.e.,
when 221D - 4 Jy(k}. Then

hmm g(FpZ 2 )1/2(Eg)-2

x(J2y2(k)[D2-(H2+E2)] '+
~24Ã

"(n')'

x[2H +2H(H'+E')' -E'j'j ' '.
(4.14)

At temperatures ksT&= D- (H'+E')'/' the temper-
ature-independent term in (4.14) is the dominant
one. On the other hand, at temperatures compar-
able to D- (H'+E')'/' this term is negligible, pro-
vided II is not too close to H„.

Now, in Sec. VI we will show that, when 4'~T «D
+(H'+E')'/', and if (H'+E')'/' & ,D+O(J), then-

a:J 'g (2H2D+-'2E'[( H2+E')' '/-H] }'n'&

and the puinping is most effective for small (k
close to 0} and large (k from vicinities of the Bril-
louin-zone corners) wave vectors. It becomes im-
possible when y(k) = 0. [ The k-dependent coeffi-
cients of proportionality, which were not written
down in (4.15}, don't seem to vanish anywhere. ]

To simplify our discussion, consider the case
H=0(E &&0}. Then (4.16a) simplifies to

h„'"d&:D(D2-E')[2J2(y(k) I] 'n (4.16b)

If the temperature ts so low that n' =Jaz/(D2 —E '),
then the amplitude of the rf field has to be roughly
equal to D in order to trigger the rise in the power
absorption. At larger temperatures hc~'" increases
and becomes

D J 'y'(k)- 1 1
4J D- IEI ( ')' (D+E)' '(8E)'.

(4.17)

In particular when

kent

is comparable to D —(E(,
and if J/(D —(E () & 2, the first term, as already
mentioned, is negligible and

h ~ 2D(E(J-' (4.18)
%'e conclude that an experimental observation of

the parallel pumping of c and d magnons would re-
quire large amplitudes of the rf field, unless the
experiment is done at very low temperatures.

Let us discuss now the pumping of magnons of
the same kind [processes (iii) and (iv) of Sec.
III A]. In the case of c magnons the 1luartic inter-
action involved in pumping via virtual particles is

(~) 1cg4E2[(H2 +E2)1/2 ~H]

2 ( a -aca"da" +da"ca"cac a)-t t t (4.19a)

h =(I" 1""„)'(EX') '

x (Jaya(k}H2D 2[D y (H2 +E2)1/2]

2 5112(np)2E2[(H2 +E2)1/2 d. H]aj 1/2

(4.20)
At low temperatures the second term can be dis-
cal ded~ and

h, .~n'[J'ly(k)l IEIH(H'+E')"] 'D[D- (H'+E') ']

x(H2D + &E2[(H2 +E2)1/2 H] j 2

and, in the case of d magnons,

+dd (~)-1&JI4E2[(H2 +E2)1/2 H]

x8+ (datd~acat»da»+d~ ca-dad „).(4.19b)
yll

The factor of 3 appears because of the counting
reasons. In place of (4.14) we obtain this time
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~ m~„—e[J )y(g)( )E)H(H +Em) g]-gD[D+(H ~E )g]

x (D(E'- H') +E'H]' (4.22)

For vanishing H or E, A becomes infinite. At
temperatures comparable to [D —(H'+E')'~'] /ks
the first term is negligible and

~ 8(3JE'[(H'+E')" +H] ( H'+ E')~') '
t

y, (H2D + ~E2[(H2 +E2)1/2 H]].2

2@2+-1
3 9

H=p

a ~ ~8(3''[(H +E2)~ —H] (H +E )' ]
& (D(E2-H2)+E2H)'

882J- j.
3

H=p

(4.23)

(4.24)

Note that in the limit II =0 the virtual processes,
unlike the direct ones, still pump magnons into the
system. Finally, it is easier to pump the less
energetic c magnons than the d magnons.

VI. RELAXATION TIMES IN THE REGION S

In typical systems which we have been discuss-
ing, in the region S, the principal source of re-
laxation will be the four-magnon processes which
are caused by anisotropy and exchange fields.

Three-magnon processes, which originate from

V. PUMPING IN THE REGION L

In the region L a parallel rf field can both pump
particles of the same kind, and supply a coherent
resonance with do magnons [see Eq. (3.9)]. The
critical field for parallel pumping of d magnons is
smaller than an analysis of the direct process
would indicate. This is caused by triple interac-
tions in which a virtual dp magnon is annihilated.
This decrease, however, should be a small effect,
since the cubic terms in the Hamiltonian are pro-
portional to J. We are not able to find the exact
rate of pumping due to the virtual processes, as
we do not know the actual form of the cubic terms.
The perpendicular-rf-field pumping [Eq. (3.10)] of
unlike magnons should be much easier to perform
than the parallel pumping in region S, since two
kinds of virtual processes increase the pumping
rate there: annihilation of a virtual magnon ep

and annihilation of a virtual "particle"4kck, both
followed by creation of the pair d kc, .

In the region I the form of the single-ion quartic
terms is not known. Therefore we are not able
either to find the rates for the virtual processes
or to find the relaxation times. The subsequent
analysis for the region S indicates that the known
exchange quartic interactions have little influence
on the damping.

the bulk dipolar field, will be important only when
this field is large compaqed to both anisotropy and
exchange fields, which we have assumed not to be
the case. Two-magnon processes, which are due
to demagnetizing fields of surface and bulk imper-
fections, are diminished as samples are made
more nearly perfect, and in any event are invoked
only to account for those transitions not conserving
crystalline momentum and hence possible only at
imperfections. Finally we assume weak magnon-
phonon interactions, as should usually be the case
in systems with weak exchange coupling, unless
that coupling has very large spatial derivatives.
Thus we concentrate on the four-magnon process-
es, since they will usually be the processes of
greatest intrinsic importance in systems with large
single-ion anisotropy and weak exchange.

In the quartic Hamiltonian (2.21) in which a's and
b's are replaced by c's and d's, respectively, not
all processes are allowed energetically for small
J. For instance the interactions d~c~ctc, c d d~d,
d dtdtd, c~ctc~c, and d d~d c are not allowed for
any value of H and E. For (H' +E')' ' = O(Z),
ctc~dd, ct.c~cd, and d~d dc would be allowed, but
this requires E to be small and then the pumping
process is inefficient. Finally the interaction
c c d d is possible in the vicinity of H„,but our
theory does not claim to be accurate in this region.

If.all these forbidden terms are eliminated we
arrive at the effective quartic Hamiltonian of the
form

X~ =Ã- 6 k, +k, -k, -k, ,

kgk2k3k4

x($,2 ~d, c,ad„c,+g» „c~c„c~c

When (H'+E')~' = ,D+ 0(&) one-more channel of
interactions turns out to be energetically allowed
and has to be added to (6.1}, namely

=(4N) 'X E'[(H'+E }' +H]

x Q &(Q~ +02+4~ —k4)
kgk2k3k4

Consider first the case (H'+E')~'4 ,D+0(&). -
There are two processes then which can "dissolve"
a magnon c„previously pumped into the system:
(i) annihilation of c, due to scattering with d-mag-
nons; and (ii) scattering with c magnons only.

Similarly there are two channels in which the
d, magnon can perish: (i') scattering with c mag-
nons; and (ii') scattering with d magnons only.

I et us discuss the damping due to (i) first. The
transition r,ate due to this process is



SPIN %A VES IN SYSTEMS WITH VfEAK EXCHANGE FIEI 9'S 1267

(&»)«) =-2' p ~p„,J 5(k, +k, —k, —k)5(et +e» —e» - e»)[s»n~~ (n» +1)(n» +1)—n» n» (n»+1)(n» +I)].
k1k2kg

(6.3)

The first term in (6.3) describes the contribution from the process in which magnon c„is annihilated. The
second term is the contribution from the inverse process. Assume now that the occupation numbers

nk, , n„',are almost at their equilibrium values: nk„,„k„iespectively, as given by the appropriate Bose
factors. This allows us to bring (6.3) to the form

(n»)(, )
-- (n» n»)(F») (6.4)

where the summations over the wave-vectors are replaced by integrations over the Brillouin zone, and

2

(+ )ol =&(2&) '& '(—J
&'&, j &'&, I(', ;,~,—,I 5(y(k, )+y(lr ) —y(k, +0, —0).—y(k))

x[~, „»(~„,+I)+))»,(&,, +», » -+g,,)].

It seems difficult to calculate the integrals in (6.5)
exactly, without employing any numerical methods,
since the small-k' expansion of y's is not valid if
k~»». %'e can however estimate the leading
term in the J expansion. If the limit ~-0 is ap-
plied to the integrand, the 4'-dependence of the
occupation numbers disappears, whereas
~ Q(2, », +». »,J' becomes just a constant. Hence

(I';) „=2(2)()'(V/N)'J 'X'[D(E' —H')+E'H]'

I'» = (I'»)(() + (I'»}(2)

2(2(() (i(V/-N)&J )XB~J-(k)

x ([D(E' —H') +E'H j'H'

+2 fH2D+-,'E2[(H2+E')~'- H] j'g'). (6.8)

In an analogous way we calculate relaxation via
processes (i') and (ii') and get

I u» 2 (2v)-5 (V/N)'J-(XBP (k)

with

xn (n ~+1)5'(k), (6.6) x([D(E' -H') +E'H]'s'

~2(H2D -'E2[(H&+E&)(»+H]]2+ ) (6.10)

x 'n'(n' ~1)5:(k). (6.8)

Again (n')' is to be neglected. Combining (6.6)
with (6.8) we obtain

~(a)= f ~'a, J s'a, ~(y(a, )+~(a, )

—y(k, +k —k) —y(k)),

(6.V)

and n is defined by Eq. (4.'I).
The function 5'(k) is an integral over that sub-

space of wave vectors &, and &, for which a colli-
sion is allowed. This would be some finite fraction
of the Brillouin-zone volume, squared. So in the
case of a cubic lattice with lattice constant a, 5'(k)
is proportional to I/a'. Thus V5: ' is proportional
to number of primitive cells. Equation (6.6) can
be further simplified by neglecting the square of
n
—d

In. a similar way we cari analyze the process of
damping due to (2) in which the c» magnons are
destroyed. Applying the methods and approxima-
tions leading to (6.6) we arrive at the following
contribution to the damping constant:

(I")( )
—(2v) '4(V/N)'Z 'X8

x(H'D+-.'E2[(H'+E2)~' —H]j'

x g 5(k, yk +k, —k)5(e» ~e»' +e» —e»)
kkk 1 2 3123

x[(n» +1)(s» +1)(n» +1)n~~

—(n»+1)N» n»' n» ]. (6.11)

The factor 1/3! is due to the fact that the change
of labels of the three "output" particles does not
lead to a different final state. From (6.11)we
infer that

(I',)»((~ = —,', (2)() '(V/N)'8 'X'E'

x [(H'+E')~'+H]'!(f'(k)(1 +3Ã'+3n'N')

where

At temperatures &z «ks& «D+(H'+E') ' the 8'
terms are dominant in the above equations. .When
n" is neglected we obtain results referred to in
Sec. IV [Eq. (4.15)].

The 4amping of the d magnons significantly in-
creases when (H'+E')~' =D/2+0(&). Now the d
particles can also be relaxed in a splitting process
in which three c particles emerge. The transition
rate due to splitting is

(n~) =-'2wN '(3l) '~aX'E [(H +E')~ +H]~
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cy'(k) = d'k, d'k, 6(y(k, ) +y(k, )
BZ BZ

+y(k, +k, —k) —y(k)) .
In the formula (6.12) there is the large, tempera-
ture independent, first term, which drastically
increases the value of h, ".

The confluence process, in which the c-magnons
are relaxed, does not contribute to I', significantly
since it contains terms quadratic in occupation
numbers on1y.

VII. SPECIFIC EXAMPLES AND SOME OTHER SITUATIONS

AND SYSTEMS

Materials to which the theory of this paper ap-
plies are especially Ni compounds. These have
effective s = I, usually have crystal field D& 0, and
frequently have E & 0.

Paramagnetic resonance studies on five nickel
Tutton salts were carried out many years ago by
Griffiths and Owen. " Typical among these was
Ni(NH, ),(SeO, ), 6H, O which has, at 90 K, D/k
=-2.49 K, E/k =-1.18 K, J/k =+0.018 K. The
va1ue of J was estimated by Stevens" from a study
of the resonance linewidth as a function of direc-
tion of applied field (the direction is necessary to
determine the sign of J). Stevens concluded that
several of the nickel Tutton salts have ferromag-
netic coupling of the same magnitude 4, which is
comparable to the dipole-dipole coupling; there
may also be anisotropic exchange. The nickel
Tutton salts all have negative D (which is however
quite temperature dependent) and therefore they
lie in region L.

Other salts in region L are n-¹iSO, 6H, O,
studied by Stout and Hadley"; and ¹iZrF, 6H, O,
studied by Karnezos, Meier, and Friedberg. "
Both of these materials appear to have E =0.

The salt NiSnCl, 6H, O, studied by How and
Svare" and by Friedberg end co-workers, "has,
at 4.2 K, D/k =+0.65 K, jEj/k & 0.07 K, and hence
would be in region S, Fig. 1(a), except that its
exchange coupling is negative (J/k--0. 02 K), i.e.,

antiferromagnetic. A spin-wave theory appropriate
to antiferromagnetic exchange would require divi-
sion of the spins into two sublattices.

In the last named salt the sign of D changes to
negative above 338 K. Walsh" has demonstrated,
with measurements on NiSiF, 6H, O, that hydro-
static pressure of -6000 kg/cm' can change D from
negative to positive and also (in two dilute Cr
salts'4) can increase the value of E. The nickel
fluosilicate has ferromagnetic exchange. "'"

The salt NiCl, '6H, 0 has D/k =-1.73 K, E/k
-+0.22 K, and sufficiently strong antiferromag-
netic J (2zJ/k =-12.4 K) to satisfy Moriya's cri-
terion for long-range order' and to become anti-
ferromagnetic below &~ =5.34 K. The measure-
ments are by Date and Motokawa" using antiferro-
magnetic resonance. They note that J/D is so large
that the three paramagnetic resonance lines at 70 K
are mixed and merge into a single unresolved line
of 7 kOe in breadth. But of course our theory has
broken down long before this value of J/D is
reached.

The theoretical methods of the preceding sec-
tions of this paper have also been applied to the
following situations: (i) spin-one systems with
uniaxial D and orthorhombic E anisotropies plus
weak ferromagnetic exchange, and with the static
magnetic field applied perpendicular to the uni-
axis; and to (ii) spin-two systems with single-ion
cubic anisotropy plus weak ferromagnetic ex-
change. In this case, to match the five eigen-
states of the single-ion Hamiltonian, it is neces-
sary to use four sets of Bose operators. Details
of these calculations have been given elsewhere. "
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