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Multiple magnetic flux entry into suyerconducting quantum-interference devices (SQUIDs): A
general way of exainining the costIs conductance
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A new type of experiment is proposed for obtaining information about the cosP conductance of the
Josephson effect. Based on measurement of fluxoid entry into a superconducting ring broken by a Josephson
junction, the technique is to operate in the low-damping regime for which the voltage- excursions associated
with fluxoid entry are small. For this case, the constant-voltage expression containing the cos$ conductance
should be valid. It is shown that the erraticity associated with the low-damping regime has a predictable
statistical pattern, which is rather insensitive to noise but quite sensitive to the cos$ term. A shunt resistance
can be used to vary the average voltage. Statistics can be accumulated over a large number of similar loops,
or over one or a few loops at slightly varying bath temperature between runs, or even over one loop at one
temperature provided the noise at the junction has appropriate properties. Thus, the technique would appear
to be capable of estimating the controversial coefHcient of the cosP term as a function of voltage and
temperature for any type of junction for which low damping can be achieved.

I. INTRODUCTION

The observation of multiple magnetic fluxoid
entry, or "quantum transitions, " into superconduct-
ing quantum-interference devices (SQUIDs)
perconducting rings which are broken by Joseph-
son junctions —has been reported in many articles,
usually with a qualitative or semiquantitative dis-
cussion of the underlying reasons for the multiple
fluxoid entry (see, e.g. , Ref. 1). In a typical ex-
periment, a magnetic field is applied in a direction
rioimal to the plane of the ring. When the applied
flux reaches a certain threshold value, many mag-
netic flux quanta will enter through the junction in
rapid succession. No more fluxoids enter the ring
until the external flux reaches a second threshold,
whereupon another group enters, etc.

Some recent articles' ' have reported results of
detailed simulations of this phenomenon, using
simple models for the junction. Smith a,nd Black-
burn' have shown that for rings with "high" damp-
ing P and large values of y=—LI /4 c (symbols are
defined later), the number of flux quanta, entering
the loop as the external magnetic flux reaches
threshold i.s a unique and predictable function of
the SQUID parameters. However, at small damp-
ing the number entering was shown by Wang and
Gayley' to become erratic (or more accurately,
extremely sensitive to small changes in parame-
ters). The latter authorse later inserted the cosp
conducta, nce" into their simulations and showed
that it can gr'eatly affect the number of fluxoids
entering the loop in the high-damping region. The
measurement of the number of fluxoids entering

the ring thus could give useful information about
the cosp conductance, a question which is now very
much unsettled. ' " However, Gayley and Wang'
cautioned that the high rapi. dly varying voltages
expected to develop during the flux entry might
render invalid the starting point of the calcula-
tion, namely the constant-voltage assumption"
which leads to the appearance of an explicit cosp
term. That this is probably true is shown later
in the present paper, as well as possibly by a re-
cent high-damping experiment' in which the mea-
sured Qux entry did not agree at all with simula-
tions, with or without the cosP term (see also Ref.
2 in this regard).

In this paper we consider especially the "errat-
ic" low-damping case in more detail, for several
reasons. First, erratic behavior is commonly ob-
served in loops' ' and elsewhere. "'" Second,
as we show later, the significant voltage change
occurs over a time interval much longer than the
inherent response times (picoseconds) of super-
conducting materials, thus, validating the constant-
voltage expression [Eq. (1)] in the computations.
And, finally, it is evident that the cosP term should
have a marked influence on flux entry in the low-
damping regime as well as at high damping.

In the absence of noise and for a particlular
choice of parameter values and initial conditions,
there is of course, one value for the final flux in
the loop. However, at low damping, a small change
in parameter values or a pulse of noise can result
in a- large change in the final flux. In this paper we
argue that in spite of this, meaningful measure-
ments can in fact be made with such a system. For
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a reasonable amount of noise and a reasonable
range of parameter values, the fina, l flux will'be
distributed in a predictable. way over a small sub-
set of values. Therefore, the statistical distribu-
tion of a series of trials can be predicted. Since
the cosjb term affects this distribution, the experi-
ment should yield a value for the coefficient of
this term. Further, since the maximum voltage
developed is controllable by a shunt resistance,
such an experiment offers the possibibty of de-
termining the cosP coefficient as a function of
voltage, a type of experiment'not yet attempted.
Tunnel junctions are here implied, because the
damping constant can readily be made small with
them. However, the theory and technique pre-
sented here would apply to any type of junction for
which low damping could be achieved.

FinaQy, in the Appendix, we show by a simple
argument the source of an empirical formula, de-
duced from the simulations, ' relating the damp-
ing to y for single Quxoid admission. We also
present a more accurate simple expression valid
to within 1% down to y = l. Knowledge of this re-
lationship is important because some Josephson
devices based on flux counting could give mis-
leading results if more than one fluxoid enters at
a time.

II; BASICS

The circuit analyzed is that of the simple junc-
tion shunted by capacitance and a phase-dependent
conductance, and connected to a superconducting
loop of inductance I. (see Fig. 1). The tunnel cur-
rent I(t) into the junction, indicated in Fig. 1, was
first derived by Josephson' for a tunnel junction
to be

I(t) = I, sing+ o,V+ o, V cos Q,

in which a constant voltage V across the junction
was assumed. The coefficients I„o,—= 1/R, and

o, are voltage dependent, The ratio o,/o, has been
calculated by Poulsen" at several temperatures,
from tunneling theory, and is indicated schemati-

ng Theory

e& /cro

7/
//~Experiments

t

I

I
I

~+&gap
I

I

I

l

FIG. 2. Schematic diagram illustrating the depen-
dence of 0'g/0'0 upon voltage (solid curve), according to
tunneling theory. The shaded rectangle indicates the
locations of experimental determinations of 0 &/00 for
tunnel, microbridge, and point contact junctions. A

recent experiment (Ref. 15) carried out on tunnel junc-
tions at several temperatures near the critical tempera-
ture, showing both signs for 0 ~/0 0, but opposite to that
expected from tunneling theory, is not shown.

d'|t dP ( ~o, +P
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caQy in Fig. 2. The rectangle in Fig. 2 also in-
dicates, with one recent exception, "the results
of experiments designed to measure o,/oo, for
tunnel, microbridge, and point-contact junctions.
The vertical dimension of the rectangle is meant
to suggest the error bars associated with most of
the experiments. As is seen, the experiments tend
to agree with each other. The results have a sign
opposite to that predicted from tunneling theory,
but are in approximate agreement with Landau-
Ginsburg theory. '" A recently' published experi-
ment on tunnel junctions at temperatures very
close to the critical temperature shows, however,
a sign change as a function of temperature.

%hen an external magnetic field is applied to the
loop of Fig. 1, the differential equation describing
the circuit becomes

FIG. 1. Circuit used in the simulations of this paper.
The three elements on the right comprise the Joseph-
son junction. The tunnel current I(t), as shown after
the capacitance, is given in Eq. (1).

where t, =t/gLC, p=gLC/&C, y =II /C„ I, is the
junction critical current (here assumed unaffected
by the magnetic field which would typically be
&10 'T=10 'G), p is the superconducting phase
difference across the junction, P, is the applied
inagnetic flux in units of 4,/2w, and I,= 2.068
x10 "V s is the flux quantum. I„a„and a, are
taken to be constants in our simulations. The re-
sistance R is the quasipartiele tunneling resistance
combined with any shunt resistance that may be
present. In an experiment the resistance will be
taken from the dc current-voltage characteristic
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Z =-,'(P —P„)—2' cosp. (4)

The term on the right-hand side of Eq. (3) repre-
sents viscous drag modulated by the cosP term.

The state of the system may be visualized as a
particle moving along the potential z (see Fig. 3).
As the field is raised slowly from zero, the par-
ticle stays at the bottom of the local well near p
= 0 until P„ is large enough that the local minimum
is now an inflection point (and also the local max-
imum), whereafter the particle begins to "slide"
until stopped by the damping.

. The extrema of 'U are given by

O'U
=0=$+2nysinp —P„, (5)

and the inflection points by

8 'U

, =O=l+2nycosp.
8

The solution of Eq. (6) for P, substituted into Eq.

of the junction. ln our calculations, we suppose
that some average R is used, but it would be a
simple matter to use the measured voltage-depen-
dent resistance if this seemed desirable. The av-
erage voltage may be appreciably less than the gap
voltage, so the tunneling resistance may be much
larger than the normal state resistance of the
junction. A shunt resistor may be inserted to ob-
tain the desired value 'of P or to adjust the value
of the average voltage.

Most of the remaining discussion in this section
repeats material published earlier. "We feel it
desirable to include it, however, because of the
important insights provided by the potenti'al-well
picture. Note that the present P and P„are equal
to the earlier" C and 4„multiplied by 2g.

When P, is changing adiabatically, Eq. (2) can be
cast into the intuitively appealing form

(t+u) =-p(1+~ 1:os/)( )
where the "kinetic energy" K is —,'(dQ/dt, )', and the
"potential energy" Q is

(5), specifies what P„must be at the beginning of
the motion of the particle. One finds for the
"break-in" value of the externally applied nor-
malized flux

y„=cos- !
— !+ 4p y —1 ~

2myj

1=2'+ —+ -+O(y '),
&~ry

and for the starting inflection point P, ,

P, = cos (-1/2my) = ~@+1/2ny+ O(y ) .
The next inflection point at positive slope is of
course at 2n+Q, . Its adjacent miminum and max-
imum are at —,'n+ (2/y)'~'+ O(y '). The intermedi-
ate inflection point is at 2& —P, = —,

' ——,'my+ O(y ').
The latter quantities will be used in the Appendix,
where we consider threshold damping for single
fluxoid admission.

Figure 3 shows a plot of the potential u, Eq. (4),
for y = 5, and P„equal to its "break-in" value of
2p x 5.253. Note that there are about y local wells
between the starting inflection point and the bottom
of the "bowl, " or overall potential. Thus, if the
particle stops at the bottom, y fluxoids have been
admitted into the loop. We shall use the termi-
nology "high damping" and "low damping" to mean,
respectively, the cases in which the particle stops
before reaching the bottom, or sweeps past it.

III. BEHAVIOR AT LOW DAMPING, WITHOUT NOISE

As mentioned earlier, when Gayley and Wang'
introduced the cosy term into their simulations at
high damping and found a large effect, they cau-
tioned that large voltage excursions might be ex-
pected which would possibly invalidate their
starting point, Eq. (1). That this is true is shown
in Fig. 4 for y = 100 and P = 12, a typical high-damp-
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FIG. 3. "Potential"'U of Eq. (4) plotted for p=5 and

Q„= 5.253 x2~.

FIG. 4. Typical high-damping case: P= 12, p= 100.
Circuit parameters which give these values of P and y
are, for example, I =2000 pH, C=14 pF, I~=0.1 mA,

&, 0 &=0. The time and voltage scales are based
on these values. The gap voltage is not determined by
the RI~ product, since R is not necessarily the junction
normal-state resistance.
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ing case. The voltage excursions approach 100/0

of the maximum voltage developed. Note that there
is an infinitude of ways of choosing I, C, R, and

1, for given y and P. For the values indicated in
the caption, each voltage excursion takes place in
about 30 ps. After fluxoid entry begins, some 43
fluxoids enter the loop in about 1 ns. Figure 4
can also be thought of as particle velocity as a
function of time. The particle is trapped 0.43 of
the way to the bottom of the bowl, whereupon it
undergoes damped oscillations (the plasma oscil-
latiens) about the bottom of the local well.

The low-damping regime, however, is quite
different. Here the voltage excursions are typi-
cally very small, and only the voltage envelope is
important. Figure 5 illustrates a moderate damp-
ing case, with y = 484 and p= 1.77. Even on a
greatly expanded scale (not shown) the voltage
excursions are scarcely discernible until the par-
ticle is nearly trapped, and even then the ampli-
tudes are very small. For the typical circuit
parameters used in Fig. 5, the voltage envelope,
corresponding to the entry of about 480 fluxoids, ,

develops over a time of about 3 ns, much longer
than the picosecond response times of typical
superconducting materials. The junction will thus
readily follow this adiabatically varying voltage, '

and Eq. (1) should be a valid basis for simulations.
An accurate calculation would incorporate the
voltage dependence of o,/v„but since this is "un-
known" —this is what the experiment is all about-
we treat it as a constant; the experiment then
would determine u, /o, as a function of the average
voltage developed during flux entry. By means of
a shunt resistance, the latter can be varied from
values comparable to the gap voltage to much
smaller values. In Fig. 5, for example, suppose
that the gap voltage is 2 mV. Then the resistance
of 2 0 implies use of a shunt resistance only slight-
ly greater than 2 0, since with I,=0.4 mA the
normal junction resistance would be about 8 Q.

p.57

The resistance on the low-voltage portion of the
I- V curve actually being sampled would be con-
siderably greater. As is seen, the average voltage
developed during the flux entry is about 0.2 mV, or
10/& of the assumed gap voltage.

A complicating effect occurs in the low-damping
regime, however. W@ng and Gayley' showed that
the final state of the system seems to be erratic.
Actually, the final state is a very sensitive but
predictable function of the system parameters. An
example is shown in Fig. 6 for P=1.20, o, =u„and
y in the neighborhood of 1000. Here, there are two
preferred final states, one near a final flux num-
ber of 1100 (the particle sweeps past the bottom of
the bowl and is trapped about 10% up on the oppo-
site wall), and the other near 1000 (the particle
does not get trapped on the opposite wall, but falls
back to near the bottom). These fluxoid numbers
are consistent with the "approximate theoretical
maximum and minimum" computed from Eq. (1)
of Wang and Gayley. ' Gubret" has also found two
final states in a related calculation. For yet lower
values of damping, there can be more than two
possible final states.

For a damping constant near 1.2 and y near 1000,
the final fluxoid number for o, =+ crp in, for exam-
ple, the upper state differs by only a few from the
upper state number for 0'y 0'p Thus, counting of
Quxoids would have to be accurate within about
1/~ in this example, in order to determine a value
for u, /u, with error bars less than +1. Although
this may be possible, there is a much more im-
portant reason why fluxoid counting from a single
measurement would be inadequate for examining
the cosP term in low-damping loops. As we see
from Fig. 6, it is not likely that we could know the
y of a given loop to sufficient precision to predict
whether the final fluxoid number would be, for ex-
ample, 1000 or 1100. Even if we knew y accurate-
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FIG. 5. Moderately low-damping case: p= 1.77, p

=484. Circuit parameters, which determine the time
and voltage scales, are: L=2500 pH, C=200 pF, I,
=0.4 mA, R=2 0, 0 &=0. The dashed lines indicate
the voltage extrema.

FIG. 6. Final flux values in a superconducting loop
with damping constant of 1.20, 0.~= 0 0, and p near 1000.
Two states are selected by the system in an almost
periodic fashion.
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ly on one run, its value on a subsequent run would
be slightly different if the bath temperature
changed slightly. Thus, what would be obtained on
a series of runs would be a statistical distribution
over the possible final states.

We have observed that the "occupation numbers"
of the final states are quite sensitive to the cosp
term, yet insensitive to noise. That is, the frac-'
tion of the cases in which the system will end in a
given pr'eferred final state is sensitive to the value
o. o,/o „and this fraction is readily determined
from the simulations by varying y in small incre-
ments. Thus, instead of having to count fluxoids
with great precisian, one has the attractive al-
ternative of accumulating statistics, using rela-
tively crude fluxoid counting. In such a proce-
dure, one could fabricate a series of supercon-.
ducting rings with closely similar values of y.
The individual values would presumably be dis-
tributed somewhat randomly within a small range,
and the results of the flux measurements would be
a statistical distribution of values among the pre-
ferred final states.

Rather than making measurements on a large
number of similar loops, one would probably pre-
fer to. make repeated measurements on one or a
few loops, deliberately varying the bath tempera-
ture sbghtly between measurements, for example,
a few millidegrees. Since y is proportional to I„-
which in turn is proportional to the temperature-
dependent energy gap, this procedure would seem
to be a convenient method for varying y in small
steps. Still another procedure (here anticipating
the results of Sec. IV) might be to make repeated
measurements on one or a few junctions at a "fixed"
temperature, allowing the noise at the junction to
be the statistical generator. As we shall see in
Sec. IV, the noise parameters would have to fa,ll
in a certain range.

Table I shows the results of a ratio analysis at
P=1.18, 1.20, and k.22, which is a reasonable
range of uncertainty for this parameter. The
Table entries show the percentage of the total num-
ber of possible times that the flux entry mill be
found in the upper of the two final states; they are
determined by incrementing y in very small steps,
and are accurate to +0.1 (for the noise-free en-
tries). The difference of more than a factor of 2

between the results at v, /o, =+ 1 and -1 should
make the distinction between these values readily
discernible. The ultimate accuracy of the deter-
mination of o,/o, will depend principally upon the
amount of statistics accumulated. The effects of
noise are discussed in Sec. IV.

There are of course other values of P and y which

may be appropriate. We selected the range dis-
played in Table I because just two well-separated

TABLE I. The entries in the fr& columns are the per-
centage of occurrences for which the final flux entry into
the superconducting loop is in the high-flux state (about
1100 in this case). Values of p near 1000 are used, with
damping values P as shown. The last row indicates the
results of noise simulations at a noise frequency of 1000/
VI.C and a noise amplitude of 0.1$„. Some 228 simula-
tions using different sets of (pseudo) ramdom numbers
are used for each value of cr& in the noise simulations.
The uncertainties indicated correspond to one standard
deviation (Ref. 25).

0'g =+0'0 Of —0 0f — 00 . Noise amplitude

1,18
1.20
1.22
1.20

37.8 27.7 16.5
40.6 30.0 18.1
43.6 32.4 19.8
43 +3.3 ' 29+3.0 17 +2.5

0
0
0
0.1$„

final states occur. Lower damping might result
in, for example, three final states, two of which
would likely be fairly close to each other, and pos-
sibly confuse the results. However, this is not
necessarily so, because one relight simply examine
the well-separated state, unless its percentage
occupancy is so low that adequate accumulation of
statistics becomes difficult.

IV. EFFECTS OF NOISE

It is important to understand the effects of noise
on the results of Sec. III. Noise may be pictured
as a rocking of the "bowl, " representing the po-
tential energy p, about its bottom. That is, from
Eq. (4), the variation of the potential due to a
variation 5$„ in p, is

(9)

Thus, one might anticipate that noise would tend
to make the Qux entry more regular —the particle
tends to get shaken toward the bottom of the bowl.
For a particle trapped high on the mall of the bowl,
mhich can occur only for very low damping, noise
can fairly easily displace the particle from its
relatively shallow' local well. But for moderately
low damping, in which the particle is trapped, for
example, 10% above the bottom of the bowl, noise
of "ordinary" amplitude will not displace the par-
ticle once the particle has settled down, which
occurs after several plasma oscillation periods.
One should a&so nate that in addition to tending to
prevent trapping in a certain well, noise can also
promote trapping in a weQ in which the particle
would not remain in the noise-free case. There is
a strong symmetry in these two cases, which our
simulations bear out.

Noise enters primarily through P„—even Johnson
noise in the junction or shunt resistance" can be
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lumped into p„. A "second-order" effect would lie
in the variations of y because of variations in I„
e.g. , because p„ is noisy, but this can surely be ig-
nored. Thermal fluctuations could also affect I,
through the energy gap, but both the amplitude and
frequency would be too low to be of significance
for temperatures not too close to T,.

We have examined the effects of noise by adding
to P„a suitably distributed (pseudo)random num-
ber at each new time increment in the computation
(or at some multiple thereof, thereby varying the
noise frequency, or spectrum). Noise levels (stan-
dard deviations) up to 10/~ of P„have been used.

It is evident that the "erraticity" at low damping
will be dependent upon noise frequency. If the
particle has not had time to settle to the bottom of
a local well, a pulse of noise has a fair probability
of kicking the particle out. Thus, the natural fre-
quency against which to compare noise frequency
is the plasma frequency, which is the frequency of
the motion of the particle in a local well. This is
readily obtained from Eq. (2) by setting P =2vn
+ P' where lP' I «1 and n is an integer. The ho-
mogeneous solution to the equation thus linearized
(and here dropping the "cosP term") is exp(pt, )
where

Since P' is less than about 9y for multiple flux
entry (see the Appendix), this is an underdamped
case. Further, if P'«Smy, which is the ordinary
case for low damping, the angular plasma frequen-
cy id~ is just (Svy)'~' in t, space, or (Ssy/I. C)'~' in
real time. The damping time is 2/Pa —,

' y'i', the
inequality being the condition for multiple transi-
tions, as above. Thus, the damping time is great-
er than the plasma period 2/(Sy/s)'~', and the par-
ticle will always make several swings through the
bottom of a local well before coming to rest.

The plasma period has a signihcance beyond
that of a trapped particle: a particle traveling
slowly, but not quite slowly enough to be trapped,
clearly will require about one-half the plasma
period in traveling from one local maximum to the
next. Thus, we can easily estimate the time re-
quired, or the number of noise pulses occuring,
when the particle moves from a fluxoid number
of, for example, 1100 to 1000, to use the example
of Sec. IO.

There are two effects of noise which must be
considered. (i) By how much does noise produce
scatter about the preferred final states, and are
the mean values shifted from the noise-free case'P
(ii) By how much does noise affect the ratios of
the "occupation numbers" in the (now spread-out)
final states'P We anticipate that the preferred ex-
perimental procedure would be that of.determining

Final
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Noise Frequency =
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the ratios. Thus, question (i) is not important un-
less the scatter is so great that the clusters over-
lap.

That the mean values of the final states should
not be materially affected by noise, as seen in
Fig. 7, is intuitive: The preferred states are de-
termined by the values of P and y. If, for example,
a small change of y changes the trapping point
from the upper to the lower of two preferred
states, by the same reasoning a noise kirk on the
trapped particle near the extreme of its plasma
oscillation svring can eject the particle and cause
it to seek the lower preferred state.

Scattering obviously increases with increasing
noise amplitude. The example of Fig. 7 shows no
overlap between closters even at the relatively
large noise amplitude of 0.05$,. The influence of
noise frequency upon' the scatter is, however, not
so easy to understand, and certainly not easy to ex-
p1ain in a few words. Since the question is not impor-
tant in the present context, we shall offer only the fol-
lowing: When the noise frequency is low, the last
noise pulse before trapping (or nontrapping) is im-
portant and may cause trapping in. an "abnormal"
state, thus, causing scatter .. When the noise fre-
quency is high, however, there-is a great amount of
self-cancellation of the noise, and the scatter is
smaller. Our s imulations do show that for noise fre-
quencies &„less than +~, there is a good bit of
scatter about the final states, whereas for e„
»&~, the clustering is quite narrow. Figure 7 il-
lustrates this for three values of noise frequency:
10/v'L. C, 10 0v/'I, Cand 1 000'/'I C'. These are to
be compared to the plasma frequency /2y/'p/v'I C
=25&L,C for y—- 1000.

The important question is number (ii) above.
One expects that the occupation number ratios
will not be greatly affected by "reasonable" noise

FIG. 7. Histograms showing how different noise
frequencies affect the final flux values in a superconduct-
ing loop. Noise amplitude=0. 05 $„;P=1.20; 0 &=0;
nine values of y in the range from 999.0 to 1001.7.
About 80 runs were made at each noise frequency.
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amplitudes since the trapping and nontrapping sit-
uations should be affected rather symmetrically
by the noise. All the simulations we have made
bear this out. Table I illustrates this for y near
1000 and P near 1.2, at the very large noise am-
plitude of 0.1 P„and a noise frequency of
1000/+LC. The 228 calculations made for each
value of 0, result in an uncertainty in the listed
percentages as shown by the indicated standard
deviations. " Calculations at smaller noise am-
plitudes have also been made, and also show the
insensitivity of the percentages 'to noise.

Finally, our simulations with noise show that the
percentages are not biased by choice of y, for a
given P. For example, if we consider only those
values of y, within the range 999-1001,for which
the final state would be the lower of the two pos-
sible states in the noise-free case, we find the same
percentages as given in Table I to within our sta-
tistical significance. Thus, an experiment making
repeated runs on a single junction, allowing the
noise at the junction to generate the statistics,
may be an acceptable technique. Of course, the
noise amplitude has to be large enough tp be ef-
fective, but not so large as to produce chaotic re-
sults. Our simulations have shown that quite a
broad range of noise amplitude is acceptable. A

noise frequency comparable to or larger than the
plasma frequency would also be desirable.

Finally, provided low damping can be achieved,
the experiment can be performed with any type of
Josephson junction. This could be very interesting
because to date each type of junction —tunnel, mi-
crobridge, or point contact —has used an entirely
different experimental method for examining the
cosP conductance.

Measurement of fluxoid entry at high damping
can also be made, but as Gayley and Wang' pointed
put, a thepry allpwing fpr a dynamic vpltage
should then be used to calculate the expected flux-
oid number. Since the theory for large rapidly
varying voltage would not have an explicit cosP
term, one could not then speak of determining the
value of o,/o„but only of confirming or denying
the validity of the complete theory.
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V. CONCLUSIONS

We conclude that it should be possible to derive
useful information about the cosP conductance by
measurement of fluxoid entry into a supercon-
ducting loop at low damping. Low damping ensures
that the basic equation containing the cosQ term is
a valid basis for this type of experiment.

The procedure described in this paper should
greatly improve our knowledge of v, at low vol-
tage. Moreover, by use of a shunt resistance, the
average voltage developed during flux entry can
be controlled, and thus o,/o, can be estimated as
a function of voltage, a dependence which has not
been measured to date. Since tunneling theory
predicts a large discontinuity in o, /o, at the gap
voltage, with a sign reversal, measurements near
such voltage would be particularly exciting.

The temperature dependence of o, /o, could also
be obtained, obviously, by varying the bath tem-
perature. It would be interesting to. compare such
results with those recently obtained. "

Noise is not likely to be an obscuring factor,
according to our calculations and may be desirable
in accumulating statistics.

APPENDIX

In this Appendix we consider the threshold
damping for single fluxoid entry, in order to show
the source of a relation deduced empirically from
earlier simulations. "' We also develop a more
accurate expression valid over a larger range of
y.

To examine the threshold damping in question,
we ask: What must be the value Py pf the damping
constant P in order that the particle not slide be-
yond the first maximum of the potential 9 at
—,'v+(2/y)'/'? (The positions of the first few ex-
trema and inflection points of '0 were obtained in
Sec. II.) The relation deduced empirically" for
y in the region above 100 is p, = 3.0y' '. To show
the source of this relation we use the following
simple argument. First, we observe that for y
» 1, as illustrated in Fig. 8 for y =200, the poten-
tial energy curve is quite steplike initially, rather
than having pronounced minima and maxima. This
suggests approximating the potential by the piece-
wise linear portions shown in Fig. 8. We draw a
horizontal line through P,„, and a straight line
w'ith the correct negative slope of -47t y through the
inflection point near P = 2n. One can easily sh—ow,
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Setting the asymptote p„,p equal to 2'n—, and p„„t
equal to 2x [the intersection of the two straight
lines is at 2x + O(y ')], requires Pt = (2/v)
x(dP/dt t) I„, . „, which with Eq. (A1) gives

p (8 )1/2 (A3)

which has the observed square-root behavior.
Note that 8'~'=2. 83. Note also that if in Eq. (A2)
the asymptote is refined to 2'm+ (—2(y)t~2 then Eq.
(A3) becomes

Pt = (8y)" —4(ti; (A4)

that is, an offset is predicted. We have made a
computer study of Pt vs y down to values for which

p, vanishes. The expression

Pt = 2.99 y'~2 —2.53,

FIG. 8. First portion of the potential & for y= 200 and
P„=2~ x200.250, together with the piecewise linear portions
used to approximate'U in this region. The vertical scale
is arbitrary.

once P, is estimated, that the particle sliding down
the linear slope will nearly have its terminal ve-
locity

dy I 4tpy
terminal

p
(Al)

when the horizontal portion is reached. On a hor-
izontal line, the particle travels a distance equal to
its initial velocity divided by the damping constant;
that is,

1 d@
4 stop 4 start +

p dt terminal '
1

is accurate to within 1% for all values of y above
unity. For y&1, P, dips slightly below this line
and falls to zero at y . =0.733. At this value, the
second maximum of g has risen to the level of the
starting point, so that even at zero damping, not
more than one fluxoid can enter the loop. y;, is
the solution of

2tt y c os(4tt'y' —1)'~' = -1,
which results from requiring that P+2tty sing
have the same value at p,. as at 4tt —pt.

Knowledge of threshold damping is important be-
cause any Josephson device acting as a flux coun-
ter in some measurement process could give quite
misleading results if more than one fluxoid would
enter at a time. For example, in the analog-to-
digital conversion of a continuous signal which
causes fluxoid entry or expulsion from a super-
conducting loop, the reconstructed signal could
be quite distorted if this occurred. "
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