
PHYSICAL RE'VIEW B VOLUME 18, NUMBER 3

Theory of thin proximity-effect sandwiches

1 AUGUST 1978

Gerald B. Arnold
Physics Department, Indiana University, Bloomington, Indiana 47401

(Received 18 August 1977)

A theory for N-S sandwiches is developed for clean metals in perfect contact, where the thickness of N is
much less than that of S. Assuming spatially constant pair potentials in N and S, the exact double-layer
Green s function is obtained. From this, we calculate the local density of states at the interface between N
and an oxide tunneling barrier. This tunneling density of states is examined in detail and compared with
experimental results. We find that at energies far above h,„and hs, the local density of states contains a
BCS-like term depending on h,N, as well as. types of oscillatory terms. The pair potential h,N also leads to ari
energy gap, but produces no BCS behavior at 6,„.A large peak in the local density of states is found at the
energy corresponding to a one-dimensional bound state in N. Between this bound state and the pair potential
in S, no states exist. Qualitative agreement with experiment is demonstrated over wide energy regions, but
quantitative agreement is unsatisfactory below hs; sharp structure appearing. near hs in the experimental
second harmonic signal (d 'V/dI ) is also inadequately explained by the present theory. We make further
use of the double-layer Greens function in obtaining the self-consistency conditions for the two pair
potentials. Considering the possibility of extracting detailed information on the electron-phonon interaction in
N from existing experiments, we conclude that the present theory must be modified in several respects, most
notably by including normal scattering at the N-S interface.

I. INTRODUCTION

There has been much theoretical work on proxi-
mity-effect sandwiches in the Ginzburg-Landau re-
gime. It is our intention to investigate these sand-
wiches where the Ginzburg-Landau theory cannot
be applied, i.e. , where at least one of the order
parameters is large. We choose to consider a
thin clean N metal in perfect contact with a thick
clean S metal. The thickness of the S metal is ta-
ken to be greater than its bulk coherence length.
Assuming the Fermi velocities of N and S to be
identical, we therefore require the thickness of
N to be at least an order of magnitude less than
this length. For simplicity, we assume that when
both N and S are normal, the transmission coef-
ficient of the. A-S interface is unity.

This paper is based on the approach presented
by McMillan. ' We have modified his work by al-
lowing for the possibility of a. pa. ir potential in N,
and restricting the N layer to be of finite thickness
d. Reference 1 was primarily concerned with the
magnitude of interference- effect oscillations found

by Tomasch' and Howells in the tunneling density
of states of N-S sandwiches. This work is designed
to describe the tunneling density of states of N S-
sandwiches, where the tunneling barrier is placed
against N, which is backed by S, rather than vice
versa.

We consider three phenomena in N-S sandwiches:
(i) the pair potential induced by N; (ii) interference
phenomena for energies above the pair-potential
difference at the N Sinterface; and (ii-i) bound
states in N below the pa. ir potential in S.

+ Z„{x)v(x)= Eu{x),

[(-S'/2m) v' q]v(x) + Z»(x) v(x)

+ Z„(x)u(x) = Ev(x),

(1.2)

where Z(x) is the symmetric two-by-two matrix
self-energy for the quasiparticle, assumed to be
local in space. Note that when Z»(x) and Z»(x)
vanish, these equations reduce to two separate eq-
uations: one for quasielectrons and the other for
quasiholes. The crucial ingredient of superconduc-
tivity is the mixing of the quasielectrons and the
quasiholes. As pointed out in Ref. 1, this mixing
is understood to be a consequence of the possibility
of the pairing of a quasiparticle above the Fermi
sea with one below, leaving a holelike excitation.
The quasiparticle in a. superconductor is therefore
an admixture of electronlike and holelike wave
functions.

As is well known, the interaction which produces
superconductivity arises from a difference of an
attractive electron-phonon interaction at low ener-

As pointed out in Ref. 1, for a superconductor,
the excited states are mixtures of "quasielectron"
and "quasihole" states described by a two-compo-
nent wave function (we suppress the spin variable)

u(x)

v(x)

u(x) being the electron and v(x) being the hole am
plitude. The quasiparticle obeys the strong coup-
ling analog of the Bogolyubov equations'

[(-S'/2m) V' —p J u (x) +Z»(x)u(x)
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gies and a repulsive Coulomb pseudopotential in-
teraction. In a, normal metal, there is no mixing
between quasielectrons and quasiholes. Hence the
self-energy is diagonal. In a superconductor, how-
ever, a quasielectron-quasihole mixing occurs.
This in turn leads to Z»(x) and Z»(x). The theory
is thus by nature a self-consistent one.

Kith these remarks, one can explain the genesis
of a pair potential in ¹ Assume initially that
there is a pair potential in S(&,), but none in N.
By assumption, this means that Z„(x) and Z»(x)
vanish in ¹ As Andreev has pointed out, a nor-
mal quasielectron incident on an interface between
N and S will be reflected from this interface as a
quasihole. That, is to say, the incoming quasielec-
tron is paired by the pair potential at the interface
(&s) with a quasielectron beneath the Fermi sea,
leaving behind a reflected quasihole.

This local scattering potential at the N-S inter-
face thus provides a means by which quasielectrons
in N- may mix with quasiholes in N. One may pic-
ture a quasielectron emitting a phonon in N, for
example, and reflecting off &~ as a quasihole,
which then absorbs that phonon. This mechanism
provides the necessary quasielectron- quasihole
admixture even when N would otherwise by normal.
Therefore, the presence of a pair potential at the
N Sinterface-necessarily tends to induce a pair po-
tential in ¹ Full self-consistency for the pair po-
tential in the N-S double layer must be maintained,
however, so that while S influences N, we have N
also influencing S, leading to a sma. lier pair po-
tential in S at the interface. If N is thin compared
to S, however, the effect of N on S is very small.

The manner in which quasiparticles in N are re-
flected from the difference in pair potential at the
N-S interface, &~ —~N, for energies E &~~ leads
to two types of interference in the tunneling density
of states. McMillan and Anderson' showed that a
change in the pair potential of a. superconductor
leads to the interference phenomena observed by
Tomasch' and Rowell. ' A quasielectron in N is re-
flected from 6&„=&~ —&„as a quasihole, and the
two interact by means of ~„. In Ref. 1, McMillan
finds (for ns =0, i.e. , when region S in Fig. 1 is
a normal metal and region N is a. superconducting
metal) that the change in the tunneling density of
states due to a change 5&»= —&» in &» is (for E
»6 ):

5Nr(E) = Re[(&»5&»/E')I(2Z»Q»d/kv»)], (1.4)

where I(y) is an oscillatory function of y with de-
caying amplitude as Q„=(E'—b'»)'~' increases [see
Eq. (4.16)]. The renormalization function Z„(E) is
energy dependent. It depends on the electron-pho-
non interaction in N [see Eq. (4.17)]. The occur-
rence of 2d in the argument is easy to understand,

L

I

X= Q
i I-b -d

FIG. 1. Tunneling geometry.

since a quasielectron injected at x= -d in N must
travel the length of N, reflect as a quasihole at the
N Sinter-face (x= 0), and then return to produce
the interferenee via &„. For nonzero &~, with E
»~~ and ~~, we obtain the above result, with 54~

Another type of interference phenomenon was de-
scribed by McMillan and Rowell. ' A quasielectron
injected at x=-d travels to the N-S interfa, ce at
x= 0, reflects as a quasihole, returning to the tun-
neling interface at x= -d. It then reflects normally
from this surface as a quasihole, propagates to x
=0 again, reflects as a quasielectron, and returns
to x= -d, producing the interference. A total dis-
tance of 4d is involved, and two reflections off the
pair-potential difference at the N-S interface are
required. Note that no quasielectron-quasihole
coupling is necessary here. Thus for E» ~~, ~»
this interference changes the observed tunneling
density of states by the factor

5Ãr(E)= Re(2[(ds —O») /E ]I(4Z»Q»d/Rv»)}. (1.5)

In Ref. 6, it is assumed that 4~=0, and Z„=1.
Otherwise, this expression is identical to Eq. 8 of
that work.

Quasiparticles with energies between 6» and 4s
are in a quasi-one-dimensional "potential well" of
depth 4~ —4~. de Gennes and Saint- James' showed
that there exists at least one bound state in this po-
tential well (they chose &»=0). Since the problem
is truly three dimensional, the quasiparticle states
with wave vectors which are not norma. l to the N-S
interface are also bound, but with effectively larg-
er values of d, hen, ce lower bound- state energies,
since the length relevant for quantization of waves
traveling off the normal direction is greater. Thus
the density of boun. d states avera, ged over all an-
gles shows a large peak at each value of the one-
dimensional bound-state energies. Below each
peak the density of states decreases rapidly until
the next one-dimensional bound-state energy is
reached. Reference 7 incorrectly indicates that
between the highest-energy one-dimensional bound
state and ~~, some states exist. This is not true,
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as we will demonstrate in Sec. IV.
One can now sketch the general shape of the tun-

neling density of states Nr(E) for a thin N metal
backed by a semi-infinite S metal. Suppose that
only one bound state exists (thin N metal). If the
system were truly one dimensional, Nr(E) would
have a 6-function spike at the bound-state energy
Ep As argued above, however, the three dimen-
sionality leads to a peak of finite height at E„ from
which Nr(E) rapidly decreases with decreasing en-
ergy. Certainly no states exist below 6„, so Nr(E)
vanishes below 4„. In. fact we show in Sec. IV that
Nr(E) vanishes below (t et „)'~'. In addition, there
is no BCS singularity at ~~, because the quanti-
zation induced on the quasiparticle wave function
by the "pair potential well" does not allow a large
(so certainly not an infinite), density of states at
any energy below E,. Between E, and ~~ there are
no states. At ~~ there is no reason why the density
of states should be infinite, since the tunneling den-
sity of states is the local density of states at the
tunneling interface (in N). In fact we find that the
local density of states vanishes at 4~, rising rap-
idly (with infinite slope at Ae) to a peak at an en-
ergy slightly above ~~. For energies such that
E» ~~, ~„, the local density of states is approxi-
mated by unity plus the sum of (1.4) and (1.5). In
addition, we find that there is a BCS-like term

Re [-&„(E)'/E'],

due to the pair potential in ¹ This is exactly what
is obtained from an expansion of the bulk strong-
coupling density of states when E» b,„(E} Far.
above the "pair potential well, " near phonon en.er-
gies inN, the density of states may be entirel. y of
the bulk strong-coupling form because Z„(E) may
have a substantial positive imaginary part there
due to increased phonon scattering. This causes
the oscillatory terms to become very small, leav-
ing only the N metal dependence. This fact is pro-
pitious for the determination of the energy depen-
dence of O,„(E) near phonon energies in N Given.
the correct self-consistent equation for 4„(E),
o.'E for N might be obtained by "inverting" this eq-
uation, using a technique developed by McMillan
and Rowell and applied by them to tunneling into a
single S layer. '

We have calculated the exact Green's function for
the N-S double layer. Assuming that N has thick-
ness d, and S is semi-infinite, we have solved the
Bogolyubov equations (1.2) and (1.3). The pair po-
tentials 4„and &~, in N and S, respectively, are
taken to be spatially independent. The technique
by which the double layer Green's function is ob-
tained is outlined in Sec. II and Appendix A. In
Sec. III the Green's function is obtained and the
one-dimensional bound- state energies are deter-

mined for various values of d. In Sec. IV the nor-
malized differential conductance (NDC) for the N-S
sandwich is calculated for all energies, and some
analytic approximations are employed to sketch the
NDC near ~~. The next section consists of the re-
sults of a computer calculation of the NDC and its
derivative for "specular" and "random" tunneling. '
Some comparison is made with experiments. In
Sec. VI the first corrections to the local self-en-
ergy are obtained, and agreement with Ref. I is
demonstrated for d- . Approximations for 4„,
which are appropriate for thin weak-coupling N
metals, are made in Sec. VII, allowing analytic
expressions to be obtained for ~„at low energies
and near phonon energies in ¹ Consistency of
certain approximations made for 4„(E}in this pa-
per is also verified in Sec. VII. In Sec. VIII an ap-
proximate result for ~~ is obtained, and it is
shoen that, for thin N metals, the spatially depen-
dent correction to the ansatz 4~ value is negligible.
Finally, Sec. IX discusses refinements of the mo-
del and the possibility of using tunneling in N-S
sandwiches to extract detailed information on the
electron-phonon interaction in N (e.g. , o.'F in N).

II. PROGRAM FOR THE CALCULATION
OF GREEN'S FUNCTION

The Bogolyubov equations for a system which is
invariant with respect to translation in the y and z
directions may be Fourier transformed to

„(. ))(.(,E))

(v(x, E)j
(2.1)

where

H(x, E) = 2- p,„73+Z(xE),
I

P

Z(x, x', E)= ~ dy
' de dte'""'+ ""'e' "

4

(2.2)

k„= (O, k„k,),
p„= p —@'k,', /2m.

x Z(x, x,y, e; t), (2.3)

(2.4)

(2.5)

The two-by-two matrix self-energy for a quasi-
particle Z(r, r, t) is generally a nonlocal function.
However, in a bulk system, it is found that the mo-
mentum dependence of the self-energy arising from
the electron-phonon interaction is negligible near
the Fermi momentum P~.' Since the self-energy
always is combined with functions which decrease
rapidly as the energy deviates from the Fermi en-
ergy, only momenta near p~ are important. There-
fore, in a translationally invariant system, it is
an excellent approximation to treat the self-energy
as momentum independent. One therefore has an
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Z (x) = [1 —Z(x) ]E+X(x)7,+ P(x) r, (2.6)

In Appendix A, using an approach based on that
developed by:Feuchtwang, " it is shown that the
two-by-two matrix Green's function satisfying

[E e(x)]G(x, x)=6(x x) (2.7)

for two systems (N and S) in perfect planar contact,
can be obtained from the Green's functions for the
two separate systems G„(x,x') and Gs(x, x').

We find that for x, x'& 0 (in N, see Fig. 1),

G(x, x') = G„(x,x') —.G„(x,0)

x [G„(0,0)+ G (0, 0) ] 'G„(0,x'). (2.8)

The plane of contact is chosen to be at x=0. For
x, x'&0 (in S) we have

G(x, x')=G (x, x') G (x, o)

&& [G„(O,O)+ G, (O, O)] 'G, (O, x ) (2.9)

These equations are strictly correct only when
the value of the self-energy chosen for N and S is
close to the value of the actual (self consistently-
determined) self-energy at the N-S interface (see
Appendix A). We shall rely on making an accurate
initial guess for the self-energy in N and S, leav-
ing the deviation from the true self-consistent val-
ue (which depends on G(x, x'), and therefore on
Z„and Zs) as a small correction. The accuracy
of this procedure will be judged by obtaining the
first correction to Z(x) in terms of Z„and Zs, and
comparing with the initial guess.

The Green's functions G„s(x,x') satisfy

[Z a„s(x)]G, ,(x, x') = 6(x x'). (2.10)

The Hamiltonian in Eq. (2.7) has been separated in-
to two parts

H„(x), x&0,Hx =

FIs(x), x & 0. (2.11)

effective Self e-nergy which is local in space.
Even' in a system whi:ch lacks translational in-

vari3nee in one direction, the effective locality of
the self-energy should persist, since the momenta
of interest are still near the Fermi momentum.
We therefore assert that the approximation

Z(x, x,Z) = Z(x, E)6(x-x )

is a reasonable one."
In 311 cases the dependence of functions on k and

E will not be indicated unless the possibility of
confusion exists. The chemical potential will be
denoted by p-, and the Pauli matrices are repre-
sented by T„' 72, and 7; in Nambu's notation. "

By choosing a particular phase in two-dimen-
sional Nambu space, "we can write the matrix
self-energy

The Green's functions G~ and G~ are then obtained
for the isolated layers N and S, respectively. The
boundary conditions on these functions at the N-S
interface are chosen to be

dG „s(x,x')
QX

dG„s(x, x')
dx' 'x'= 0

(2.12)

III. DOUBLE-LAYER GREEN'S FUNCTION
AND BOUND STATES

In Fig. 1 the tunneling geometry is sketched. The
metal electrode L is in the normal state through-
out the experiment. The metal oxide barrier B
separates L from the double layer R. In this geom-
etry one observes the local density of states in the
metal N at the interface between B and N (Ref. 8).
The metal electrode S is in the superconducting
state throughout the experiment. The metal N has
a bulk critical temperature less than that of S.
All contacts are perfectly planar.

In this section, we will obtain Green's function
for the double layer (R). According to Feuch-
twang's prescription, we must obtain Green's func-
tions for the separate layers, with appropriate
boundary conditions, and then use expressions
like Eqs. (2.8) and (2.9) to obtain the Green's func-
tion for R.

The most general form for Green's matrix func-
tion is'

G(x, x') =P d, 4 (x&)C~(x&) .

Here x& (x&) is the larger (smaller) of the two vari-
ables x and x'. The two-dimensional vector wave
functions 4' (x&) and 4 (x&) satisfy the Bogolyubov
equations with the boundary conditions appropriate
for, respectively, the right boundary and left
boundary of the domain of the equation. The index

Feuchtwang has shown" that the interface boundary
conditions may be chosen in. whatever way is con-
venient. We find that (2.12) is a convenient choice
for our problem. At free surfaces, the Green's
functions must vanish.

As usual, the temporal boundary conditions on
the Green's function G(x, t, x', t') may take two
forms. If we require the function to vanish for t
&t', we obtain the retarded function. In order to
define the Fourier transform G(x, x', E), we assume
that E possesses a positive infinitesimal imaginary
part, making the transform regular only in the up-
per-half complex E plane. Likewise, the Fourier
transform of the advanced Green's function (non-
vanishing only for t &t') is regular only inthe lower-
half E plane, since E has a negative infinitesimal
imaginary part.
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g allows for degeneracy in the solutions. The con-
stants d are uniquely determined by requiring the
satisfaction of the "jump condition" on the first
derivative of G(x, x'):

constructed (using the "jump condition")

G„(x,x') =
0 'K,"s in(K "d)

dG(x, x') "="'~ 2m dG(x, x') "'="'
T3 2

—T3
dX ««'-6 @ dX ' '=«6

(3.2) -(E+ n„)/n ~„/n„
~,/n„(E+ n„)/n„

Here, as throughout this paper, 5 is a positive in-

finitesimalal.

The initial guess for the self-energy is
x cos(K,"x&) cos [KN(x&+ d)], (3 9)

& (x)=
(1 Z„)E+p„T„-d&x&0,

(1 —Z, )E+ Qs T„0&x&a.
(3.3)

Since we are interested in the retarded Green's
function, E contains a positive infinitesimal imag-
inary part. With this guess for the self-energy,
the Bogolyubov equations in N or S take the form

~,/n,
(E + QS)/QS

x cos(Ksx&) sin[Ks(x&- a)]. (3.10)

k2 82
ZN SE+ + l" TS 4N, S 1 N, S(

(3.4)

There are two solutions for each energy. The gen-
eral solutions are

where

[(E+n„,)/n, ,]"'-
[(E+n„S)/n, ,]"'

&& [A cos(K," sx) + J3 sin(KN' sx) ], (3.5)

K,"'= (ks~+ 2m/O'ZN sQN s)"',
O'N„= 2m p„/h'.

(3.6)

(3.7)

(3.8)

The boundary conditions on G„(x,x') are that it
have a vanishing derivative with respect to x (or
x') at —d and 0. The conditions on Gs(x, x') require
a vanishing derivative with respect to x (or x') at
0, but at the. free surface (x or x'=a)Gs(x, x') van-
ishes. The two Green's functions are now readily

The calculation of these Green's functions and the
calculation of the double-layer Green's function
[using Eqs. (2.8) and (2.9)] are sketched in Appen-
dix A.

Throughout this paper we will assume that what
occurs at -e and a (see Fig. 1), the free surfaces,
has no effect on the observed current, so that the
finite-sized sample may be regarded as effectively
infinite in extent Thus the limits -c- -~ and a
-+~are to be taken. In these limits, the temporal
boundary condition on the Green's functions (re-
tarded) automatically leads to the outgoing-wave
behavior which is essential for a current-carrying
state. For example, the positive in.finitesimal im-
aginary part in E allows one to obtain the limit'

lim sin[Ks(x& —a)]/cos(K~sa) = vie" sf "&. (3.11)

If these limits were not taken. , the Dirichlet bound-
ary conditions which were chosen for the Green's
functions at the free surfaces would lead to no net
current. Also, the case in which the S layer is
much thicker than the N layer, corresponds to the
experiments with which we will make comparisons
in Sec. P."

The results for the double-layer Green's function
in this limit are, for (x, x') &0 and (x, x') ) d,

Gs(x, x') = g (E*n„)/a„
~„/n„ (E+ QN)/QN BN, (x)) A„,(x))

where

x cos[KN(x(+d)]/[iF(E) sin(~Nd) cos{~Nd)],

KN KN. F(E) s N G(E} s NE —& 6 E(h —6)
Q~Q~ Q~QN

(3.12)

(3.13)

AN, (xg = iF(E) cos(K,"x&+K,"d)+ sin(K,"x&+K",d), (3.14)



18 THEORY OF. THIN PROXIMITY-EFFECT SANDWICHES 1081

B«,(x&) =i G(E) cos[K,"(x&+d));

for (x, x') &0,

im (E + Q«)/Q«n«IQ«Ag~(x&)
G„(x,x' =

nq/Q«(E+ Q«)/Q«B«~(x&)

(3.15)

(x ) eke«~ 6r&-x&)

iE(E) sin(AK«d) —cos(4K«d)
s pkx&g

(3.16)

where

AK =K, -K, (3.17)

A«, (x&) = cos(bK«d)+ expia[2iK«x&+i(K«+K")d])

—iF (E) sin(AK«d),

B«,(x&) =i G(E) sin(AE «d) exp(i'«x&).

(3.18)

(3.19)

t n(nK"d) = E'- ~s~)

N N (3.20)

where

The off-diagonal terms (mixing electronlike and
holelike wave functions) in the second matrices of
Eqs. (3.12) and (3.i6) arise from scattering off the
pair-potential difference at the N-S interface.

As a quick check on the result for (x, x') &0, one
cari take the limit d- 0. It is a straightforward
matter to verify that this indeed reduces to
G«(x, x') in the limit a- ~ [see Eqs. (3.10) and
(3.11)].

For (x, x') &0 the denominator of the double layer
Green's function exhibits zeros for real energies
in the interval (n~b«)'~'&E &n«. If we consider
only particles moving in the x direction, so that
in Eq. (3.7) we can replace 'k» by k«, then this
pole of the Green's function occurs when

Sec. IV the effect of these states on the tunneling
density of states (which is a local density of states)
will be investigated.

Setting 4„=0, it is easy to show by graphical
arguments that the number of bound states is given
by

M =1+ [Rn, /iI].

Here, we have defined

(3.22)

2Z «dE/hv «= RE.

The symbol [A] represents the greatest integer
less than A. Thus the relevant parameter for de-
termining the number of bound states is the ratio

(3.23)

s 2d ~s 2d
m vhv«/Z«(w'$«)(Z«/Z«) '

where g« is the zero-temperature BCS coherence
length in S (based on the value of the pair potential
at the N- S boundary), and Z«/Z« is approximately
(for Iow energies) equal to (1+ X«)/(I+ X«), X« „
being the McMillan parameter for S or ¹

A graph of the bound-state energy versus R is
given in Fig. 2 with h~ = 1.4 mV (roughly the value
for bulk Pb) and R ranging from 0.1 to 4.0 mV ".
There is only one bound state for this case, as
long as R is less than about 2.24 mV '. When 1/R
is more than an order of magnitude greater than

Q (n2 E2)1/2 (3.21)
14

This pole indicates a bound state. For (x, x') &0

(in S), the denominator also vanishes but the bound

states decay exponentially as x or x' increases,
whereas the states do not decay in N. This can be
seen by noting that for E & 4s we can write Ks = a
+ib where a and b are real, and b is positive. Us-
ing (3.16), (3.10) one finds that G«(x, x') decays ex-
ponentially for E& 4s. No such decay is found for
G„(x,x') iii N at these energies, as long as E & 4«.

Because of the gap in the density of states on the
S side, particles from the N side with energies
less than 4s cannot travel very far into the S side.
Thus particles in N see an effective one-dimen-
sional potential well of depth ~s —4„. At least one
bound state will always be found in N. de Gen. nes
and Saint James' have studied these bound states
and their contribution to the total density of states
of an N-S double layer for 4„=0 and E..& 4s. In

l.2

I.O

E„{l)
{mV)

0.8

0.6

0,4

I.O Xo 4.0
R{l/NV)

2.0

Q,= l.4 mV

FIG. 2. Dependence of bound-state energies E„{1)on
R = 2Z~d/IP p'
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4~, the bound state is located so close to ~~ that
it cannot be distinguished from 4~ on the graph.

IV. NORMALIZED DIFFERENTIAL CONDUCTANCE

which is the local density of states of the double
layer at x= -d. Only the 11 component of the
Green's function in 8 is needed. The wave func-
tion is the exact normalized wave function for the
double layer evaluated at x= -d', and the formal
Sum over E' includes bound states as well as
states in the continuum above hs. We will demon-
strate in the following that the local density of
stateS exhibits structure arising from bound states
below b, ~ as well as from the interference of
waves scattering off the pair potential difference
at @=0, for energies above A~.

Following McMillan in Ref. 1, Eqs. 33 and 37,
we assert that the tunneling density of states is
given in. terms of the imaginary part of the 11
component of G~ at the tunneling interface by

Nr(E} =
ap

d(cos8) ImG„(—d -d)»
-1

x D(cos 8)(2 wkv~„) . (4.2)

McMillan defines D (cos8) as "the normalized pro-
bability distribution of the tunneling electrons. "
Since

For normal metals, it is known"" that the tun-
neling current is proportional to the local density
of states at the tunneling interface (in our case,
at x= -d). In Ref. 1, McMillan finds that the
NDC is proportional to

——rm[G„(—d -d)„]1

-s 8= (1 —I;(/u 2, V ~', (4.3)

one may interpret 8 as the angle made by the elec-
tron k vector in 9 relative to the normal to the
tunneling interface.

It is difficult to give an explicit form of the
function D(l/x) (1/x =-cos 8) since it involves de-
tails of the tunneling interface which are not
known. Phenomenologically, McMillan has de-
fined this function in two limits: (i) Random
tunneling: . In this case, all electrons of the same
energy have the same probability of penetrating
the tunneling barrier, regardless of the angle at
which they approach the barrier. McMillan,
therefore, chose D(l/x) = 1 for this case. (ii)
Specular tunneling: Because the tunneling inter-
face is assumed to be perfect for this case and
the barrier is taken to be a simple rectangular
potential barrier, the transmission of electrons
with k-vectors normal to the barrier is strongly
favored In .this case, McMillan chose D(1/x)
=P exp[(8(1 —x)], where P is a large number (-40).

The differential conductance devided by its value
when all layers of the sandwich are normal is
given by"

=
Jt

dENr(E) [f(E) —f(E+eV)]

df(E+e)
))

dE

(4.4)

at finite temperature. " The magnitude of the
electronic charge is e, and V is the applied vol-
tage.

Using Eq. (3.12}we find that

(-1/w) ImG„(-d —d)„
= (-2/w0 vw, ) Im( ((E/0„)[iE(E)cos(dK "d) + sin(~ "d)]+i (i(t,„/A„)G (E))/[iF(E) sin(~ "d) —cos(ddC "d)]) .

(4.5)

Note that if b.
w =A„, then G(E) vanishes, E(E) is

unity, and the above result reduces to

(2/w hv~x) Re(E/0„) . (4.5)

This must occur because the entire region 8 is a
homogeneous superconductor with order para-
meter 5~.

There are five regions of interest.
(i) E&4„Here 0))(—and ~"d are purely imag-

inary, E(E) &0 and real, and G(E) &0 and real, so

that the denominator has no zeros for real F..
Thus the right-hand side of (4.5) vanishes.

(ii) a„&E&(6„a,)'~' —Here A„and ~"d are
real, E(E) and G(E) are positive and negative
imaginary, respectively, and the denominator in
(4.5) has no zeros because bK "d is positive. Thus
the right-hand side of (4.5) vanishes in this case
also.

It is interesting to note that there is no BCS-like
singularity at E = ~„because of the quantization of
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quasiparticle energy levels induced by the presence
of a larger pair potential ~~ at the N-S interface.
As will be shown below, the density of states shows
its first sharp peak at the value of the first bound
state in, the pair-potential well of depth 4~ —4N,
an.d decreases ra,pidly below this. Thus even though
there is a finite pair potential in N, there is no
BCS behavior at ~N.

(iii) (&~&„)'~ 2- E(nz —In this regime, Q„and
nK"d are real, and E(E) and G(E) are imaginary.
The denominator of (4.5) diverges when

IO-

NDC

R intmv)

R=0.2

tan(nZ"d)=tan ~ " =, ' " . (4.7)
5~6, 045 E(mv) I.O 1.4

Expanding the denominator about the energies
which satisfy this relation [E =E (cos8)], we ob-
tain (see Appendix C for details of the calculation):

2 ~ ~EN d E2+

x Im(E —E +i5) ' (4.8)

RA
cos6) = N

mw+ ratcan[Q~Q„ (/E'„—n~b, „)]
RQ

ms+ &(E )

[the mr in this equation arises from the possibility
of multiple solutions for bK d in (4.7)], and

(4.9)

The integer M is the index of the bound state of
maximum energy. In the above expression the en-
ergy variations of ZN, h~, and AN have been neg-
lected. The imaginary parts of these quantities
have also been assumed to vanish. These assump-
tions are correct as long as the metal N is as-
sumed to be clean, because the energies of inter-
est here are far below typical phonon energies in
N and S, at which the neglected features should be
prominent.

The imaginary part of the denominator in (4.8) is
))8(E —E (cos8)). The cos8 dependence of the

bound-state energies can be used to convert the
integration over cos8 in (4.2) to an integral over
E (cos8) using

FIG. 3. NDC as a function of energy for 8&6&=1.4mV
in the random tunneling model for three values of R.

The energies E (1) are the solutions to equation
(2.20), which is just equation (3.'l) with v»
=v~cos8=v~. The unit step function 8(E„(1) E)
vanishes for E)E (1).

This result differs from that of de Gennes and
Saint- James' who have (for n„=0) an extra factor
1+ Q~/[mr+ (t)(E)j and implicitly take D(cos8) =1
for all 8. The difference can be traced to the fact
that we calculate a local density of states at the
tunneling interface, whereas Ref. 7 calculates a
total density of states.

In. Fig. 3 we show the local density of bound
states for 4N=0, R=0.6 and 1.2. We have set the
function D(cos8) equal to unity. This corresponds
to McMillan's "random tunneling" approximation.
In the "specular tunneling" case, where D(cos8)
is sharply peaked at cos0= 1, one expects to see
a steeper rise in NPE) as the bound state energy
is approached from below; below E,(1),D(RQ~/[)22v
+ (t)(E) j}becomes exponentially small. In the ran-
dom funneling case, the only thickness-dependent
quantities are R and E,(1). Thus graphs for other
values of R may easily be constructed from those
shown once the bound state energy is determined.

Equation (4.10}may be used to determine the val-
ue of E,(l) as R -0 since E,(1) satisfies

[m~+ 4(E.)]
f5 N

(z*.+ a, z~)) mv+ y(E.)]', (4.10)

E,(l)'
arc

~

t~

a
~

n
~

2
s ~ 2

0

0
1~ 2

2

~
0

s

~

~

~

~
~

~
~

~

2~

~

~

I
I~

2

R [E (1)2 g2 ]1/2

Since we know that as R -O, E,(1)- ~2, we write
where Q~ and QN are evaluated a,t E=E . We thus
obtain, using the 5 function

N (E)=w g( RN
)

xD (:") e(4„(1)—Z). (4.11)
RAN

E,(1) = &~(l —&), e « l.

(2q)'~2 = R(n2 —&„),

which yields

E()(1)= n2[1 —2 R'(ng —ng)') (4.12)
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N, (E,(1))= ~D(1)/R(~, n„). (4.13)

As d approaches zero, therefore, N r(E) shows an
increasingly sharp maximum at E (1), which is

Near E,(1), the variation of Nr(E) can be obtained
by letting E=E,(l)(1 —y), where y «1. Then

[R'(~, ~,)'+ 2y]'i'(~; ~' }'i'
S N

so that, near E,(1),

N, (E) =mD(1)[R(n, a„)]/[R'(s, n„)'+2y].

Thus the value of Nr(Eo(l)) for R(hs —n„) «1 (i.e. ,
for thin N metals) is

very near 4s. Experimentallly, as the X metal is
made thinner, one should rapidly attain the point
at which the density of states due to the bound state
in N (where 5„=0) cannot be distinguished from
the onset of the density of states, due to a BCS su-
perconductor of energy gap -4s in the presence of
thermal smearing. To show this, we must also
calculate the density of states for energies at and
above 4s

(iv) 4s ~E Above 4s, a continuum of energies
contributes to the tunneling density of states. Far
below typical phonon energies in N and S, the im-
aginary parts of Z~, ~~, and 4s are negligible, so
that Eq. (4.5) reduces to

-1
( )

(2EQ, /nhv») [E' —a, &„+n.„(r s —n„) cos(AK"d)]
(4.14)

The most striking fact about this result is that
it vanishes for E= 4s (Os=0). However, for small
~"d, one observes a sharp peak just above 4S.

' The vanishing at ~s is due to our assumption that
the N and S metals are perfectly coupled, meaning
that, in the normal state of S, the transmission
coefficient at the interface is unity. For strongly
coupled N and S layers, at finite temperature, we
expect [on the basis of (4.14)] that the NDC will ex-
hibit a "dip" near 4s, and a maximum at the bound
state in N, as well as at an energy just above ~s.

Consider the value of (4.14) near E = As for &K"d
=R(42s —6'„)' '/cos8 «1. Letting

E= As(1+&),

where e «1, we find, upon substitution of (4.14) in-
to (4.2), that

d(cos8)D(cos8)(2e)'i'
2e(l+ C/cos'8) + I '(1+ C)/cos28 '

e= I'/2«1,
where it has the value

D(l)/2R(b s —&s).

The ratio of the tunneling density of states at
E,(1) [Eq. (4.13)] to this value at the maximum just
above 4s is equal to 2m. For specular tunneling,
therefore, when R(bPs —4'„)'~' «1 (thin N metals),
the maximum at the first bound state is more than
six times the maximum located just above ~s.
Clearly, for random tunneling, the ratio would be
even larger.

For thinK metals we conclude that, slightly
above &s, there is a peak in Nr(E) of width I'
=R(hs —4„)«1. The shape of Nr(E) for a thin
N metal near E = &s is illustrated in Fig. 4 (note
the scale of the abscissas) for R =0.02, As= 1.40,
b,„=0, and random tunneling. The slope of Nr(E)
at 4s is infinite [this may be shown using (4.14)].

where

C = [(2~', —&')/(~', —&'„)]R'(~,—~„)'« I,
assuming that 4„ is much less than ~s. Also, we
define

I'(I+ C) =R'(n —4„)'.
In expandi'ng the trigonometric functions, we have
assumed that the dominant contributions to the
coso integral occur near cos61=1. This amounts
to taking D(cos8) to be a very rapidly-decreasing
function as cos8 varies from 1 to 0 (specular tun-
neling). The integral may be evaluated approxi-
mately by replacing cos8 by unity. %e find

N (a. (1+e)}=D(1)(2g)'~'/(2m+ I').

This is a maximum at

100

NDC—

50

1.397 L398 1.399 L4 1.401 1.402 1.403
E(mv)

FIG. 4. NDC near ds=1.4mV fora=0. 02 mV 1

(Note horizontal scale.)
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(v) 4~ «E A—t energies far above 4z, Eq. (4.5)
may be evaluated very generally by retaining only
the lowest-order nontrivial dependence on ~~ and

Insertion of this approximation into Eq. (4.2)
yields the following form for N r(E):

Nr(E) = 1+ 2 Re(4„/E2)

+ —,
' Re{[(&~—&„)'/E') I(2RA„) I

+ Re/[&~(&q —&~)/E ]I(RQ~)). (4.15)

(4.16)

For either form of the angular distribution prob- .

ability, D(1/x), I(&) is an oscillatory function of its
argument. Even for real y, the amplitude of these
oscillations decays. If y has an imaginary com-
ponent, the decay becomes quite rapid.

Recalling that R =2Z„d/hv~, one observes that
the third term in (4.15) arises from the "4d oscil-
lations" of McMillan and Rowell. ' As discussed in
Sec. I, these require two reflections off the pair-
potential difference ~~ —4„at the N-S interface
[hence (&z —&„)'] and arise from the interference
of an. incoming particlelike wave with its thrice-
reflected outgoing particlelike wave. The fourth
term in (4.15) arises from the "2d oscillations" of
Tomasch' and Howell, ' which require only one re-

The second factor in this equation is exactly what
one would obtain for tunneling into a bulk supercon-
ductor with pair potential A~(E), i.e. , the first
term in the expansion of the bulk strong-coupling
den. si.ty of states for E» 4„. This is remarkable
because, as observed above, there is no BCS-like
singularity at ~„. The explanation for this is that,
far above the step- like pair-potential difference,
the N metal behaves more like a bulk superconduc-
tor since, at these energies, the step potential.
can be treated as a perturbation.

When performing calculations in the preceding,
we have chosen to set ~~= 0 in all cases, for sim-
plicity. Our motivation for this arises from the
implicit assumption that N is a relatively weak
coupling material. As we will show below, for
such a material, &„(E) is negligible at energies
far below the typical phonon energies of ¹ Near
phonon energies in N, however, b„(E) exhibits
structure due to the rapid onset of virtual phonon
emission. " Thus the appearance of the second
term in (4.15) is encouraging to one who might
wish to extract information on the phonon density
of states and the electron-phonon interaction in N
from proximity effect tunneling. We shall discuss
this possibility in Sec. IX.

The integral I(y), which occurs in the third and
fourth terms of (4.15), was considered by McMil-
lan in Ref. 1:

flection from ~8 —4„. The incoming particle-like
wave may interfere with the outgoing holelike
wave in this case, because ~„couples the two and
allows them to interfere.

The renormalization parameter Z~ also shows
structure at the phonon energies of ¹ This para, —

meter has the form

Z„(E)= 1 —(1/E) [M„(E)—iI'„(E)], (4.17)

where M„(E) is the modification of the quasipar-
ticle energy due to electron-phonon interaction,
and I „(E) is the damping of the quasiparticle ex-
citation due to this in.teraction. Thus from the per-
iod and decay of the 2d and 4d oscillations, one
may be able to extract further information on the
electron-phonon in.teraction in ¹

There are inherent difficulties in such an. extrac-
tion, however, because of the presence of the an-
gular distribution probability D(I/x) in the oscil-
latory terms. As we stated above, this function
is not known. If the tunneling barrier is regarded
as structureless, i.e. , a simple potential barrier
of height V~, then the "specular tun. neling" case
defin. itely holds, and electrons with k vectors nor-
mal to the tunneling interface (cos8=1/x= 1) will
be the dominant ones selected by the tunneling pro-
cess.

However, as Dowman, MacVicar, andWaldram'
point out, the real ca,se may be more complicated.
The k vectors selected by D(1/x) depend on selec-
tion rules which, even for perfect insulator-metal
interfaces, may select groups of electrons with k
vectors having significant components parallel to
the interface. Since

= (2ypg p /Pg')'~ ' = [2m(p @2/2/2m)/g']) ~'

the observed period and damping of the oscil-
lations, which are inversely proportional to k~~,
may be considerably increased by selection rules
at the tunneling interface which favor electrons
with n.onzero k„values over electron. s with kil 0.
The extraction of information from the oscillations
is affected by these occurrences. ' It is encour-
aging to note that no such difficulties appear in the
extraction of information from the second term in
(4.15).

Finally, in this section we wish to make contact
with McMillan's results in Ref. 1, specifically, Eq.
(40). Since he chose to treat two semi-infinite re-
gions with 4~=0,"we must evaluate Eq. (4.5) in
the limit d- . Since E contains a positive infin-
itesimal imaginary part, 4K" contains such a part,
so that, as d-~, we keep only the exp( ihK"d) in
each sine or cosine. One rea,dily finds
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-1
ImGs( d d)((

2 E g+&dK+g-
Be .-(....})

Since L„/(E+0„)= (E —QN)/4„, we have obtained
Eq. (40) of Ref. 1, as required.

V. COMPUTER RESULTS FOR NDC WITH THP4
WEAK-COUPLING N METALS

A compact expression" for the quantity in Eq.
(4.5) is obtained by defining

tan(iL) = ia, O„/(E' —&,~}},) = (i+-) ',
and hence also

sin(ig) = -(iG) '
~

Then we have

(5.1)

+ "csc(&A~d+ I1)
Q~

(5.3)

ImG (—d —d)» = Im — -- c to(&K"d i+/)
VFX AN

"csc(&K"d+(('})
Aar

(5.2)
and Nr(E) is

Nz(E)= ', ,d(cos8)D(cos8) -IP cot(&K d+g)fE
4 p

evaluate (5.4) numerically.
In the case of specular tunneling, we have simply

evaluated the integral in (5.3) at cos8 = 1. This
corresponds to allowing only those electrons with
0 vectors normal to the tunneling interface to be
transmitted.

At zero temperature, the NDC is equal to
Nr(E = e(}t'). Experimentally, one also measures
the second derivative (d'I/dV')z, and divides by
the value in the normal state (d'I/dV')N. This is
proportional to the first derivative of Nr(E); Be-
low, we examine results for Nr{E) and its deriva-
tive ¹r(E)in the specular and random tunneling
models for various values of R = 2Z„d/Agre.

A. Specular tunnehng

In Fig. 5 is displayed a comparison of the extra
structure produced by the energy variation of
&8(E) in Nr(E) for a proximity effect sandwich
with R =0.02 (solid lines) and for the bulk strong-
coupling, density of states (dashed lines). The
featureless curves are the results for &z(E) =1.4
mV at all energies.

As d-0, Eq. (4.5) reduces to (2/&Ivrx) Re(E/Q~).
This gives the bulk result for Nr{E). Thus the
dashed curves maybe regarded as the 8 =0 limits
of the solid curves.

Note that the featureless curves are rather in-
sensitive to the value of R, compared to the curves

For simplicity, we will assume that &„(E)
«&z(E) at the energies of interest in this section.
These energj. es are from 1.4 to about 20 mV,
where &~(E) shows significant structure (we take
Pb as the S metal). In Sec. VII we will show that
for thin weak-coupling N metals, the assumption
that r}~{E)«bz(E) for the chosen energy range is
reasonable. In the following, therefore, we shall
set &}},(E) equal to zero. In addition, we will al-
ways use the approximation for &X"4 indicated
in Eq. (4.7).

For the random tunneling model, after making
the above-described approximations, we transform
the integral in Eq. (5.3) by changing integration
variable to y = (RE/2v)(1 —cos8)/cos8:

RE (1) RE
Nr(E) = dy g"' +y [-Im t(c2oy vRE++if)].

2g 2m

(5.4)

I.IO—

I.05—

NOC

I.OO—

l
'I

,
l
l
l
l
l
l

l
,
l
I
l
l
I
I

,

I

R in(mV)
'

The trigamma function g"}(x) is defined by"

g"'(x) =Q(n+x) ' (5.5)

Using the tabulated values of this function, we

0.75—
I

E(mV)

FIG. 5. Comparison of NDC curves- with and without-
structure due to energy dependence of ~z(E) (8= Pb)
for two values of R in the specular tunneling model.
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g o see what happens to.15 . It is interestin t

is kink as B continues to increase. In Fi s 1
and 12, therefore

n igs.

first deri
efore, we have displayed N (E)

ivative for larger values f 8
and its

from R =0.15 to R =0.25. At B =0.2 the
o, ranging

i e irst minimum. Note in Fig. 12 that
osz zve. At

minimum m
e ink has progressed beyond th f'n e irst

aklllg Nr(E) even more o tposi ve. Also
ig. that the highest-energy peak

tinues to deererease as k increases whil th

p ak varies little in height, but shifts sli h

to lower energies.
In the experimental case the

would be
e, e curves in Fig. 10

wou be smeared out somewhat due toa ue to finite tem-
qe an modulation-voltage effects. The

modulation voltage used i R
A r

e in ef. 15 is -1 mV rms.
reasonably good a rox'r pproximation of the smearing

e ects is obtained by averaging the curves ov
an interval of abo

e curves over
o about 2 mV. An interval of this size

roughly a,ccounts for both thermal- and m
voltage eff t (

erma - and modulation-

mod f' t'
ec s see Ref. 15 . Inn addition to these

o i ications, one mus
the ex crim

ust account for the fact th t
p ents actually measure d'V/df'.

a
As
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FIG. 12. First derivative of the NDC (DNDC) for
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shown in Ref. 15, to a good approximation this is
given by

d'V ¹r(eV)
[X,(ev)]' '

In Fig. 13, we have plotted the right-hand side of
the above expression averaged over a 2 mV anter-
val centered at eV. The two higher-energy peaks
show the expected behavior as R increases, but
the lowest-energy peak gradually disappears.

10.0

NDC

R=0.IO (mV)

A comparison of these results with Figs. 2, 3,
and 4 of Ref. 15 indicates that, while the theory
can probably fit the central- and high-energy be-
havior, the lowest-energy peak cannot be fit.
Necessary refinements of the model examined
here will be discussed in Sec. IX.

To conclude this section, we compare our re-
sults for the NDC near &z (=1.4 mV) with the ex-

24perimental observations of Freake on Cu- Pb
proximity effect sandwiches at temperatures be-
tween 0.06 and 0.11 K, Freake found that the NDC
exhibited a dip between 1.1 and 1.4 mV before
rising to a broad peak at lower energies. For a
Cu sample of about 250 A thickness, the dip did
not appear, but at 540 A thickness and more, the
dip was pronounced (see Fig. 2 of Ref. 24).

%e find that the qualitative features of the data
can be explained by our results. In. Figs. 14 and 15
we display the NDC, calculated from Eqs. (4.4)
and (3.11) for random tunneling. We have averaged

DNDC 5.0

I L Ij I I I 1 I I I I I 1 1 I I I I 1 I

5 l0 15 20 F(~y)

FIG. 13. First derivative of the NDC (DNDC) divided
b the NDC cubed, and averaged over a 2-mV interval
to give the experimentally measured d V/dI for vario

y e
2 2 us

values of R.

0 i i I i i t i I

1.4 E(mv)

FIG. 15. NDC for R=0.10 mV ~ averaged over an in-
terval of 0.02 mV.
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our results over an interval of 0.02 mV, which
corresponds to the stated resolution of the experi-
ments of Ref. 24. For R = 0.02, which corresponds
to a Cu thickness of slightly less than 100 A, we
observe a fairly sharp peak near &~, and no dip.
For R =0.10, a Cu thickness of about 500 A, we
observe the appearance of the dip just below &~,
Clearly, this dip arises from the absence of states
between the bound state inN and &~. For very thin
N metals, the gap in the NDC cannot be resolved
because the bound state is too close to &~. As the
X metal thickness increases, the bound-state
energy decreases, and the gap widens until it
surpasses the resolution. The peak of the NDC
occurs slightly below the bound-state energy (al-
lowing for resolution), and decreases in magni-
tude as R increases, in accordance with the re-

suits showy in Fig. 3.
Though we have obtained qualitative agreement

with the results of Ref. 24, we are far from quant-
itative agreement. The structures we have de-
rived in Figs. 14 and 15 are much sharper than
the corresponding ones of the experiments, and
the size of the peak at the bound- state energy is
too great. However, we suspect that these fea-
tures are sensitive to the degree of normal scat-
tering at the N-S interface, which should decrease
the amplitude of the bound-state peak, and smear
out sharp structure. %e have neglected such scat-
tering in this work, although it is definitely pres-
sent, even with perfect contact between' and S.
In Sec. IX, we will speculate further on those fac-
tors which may bring our theory closer to quan-
titative agreement with experiment.

VI. FIRST CORRECTIONS TO THE LOCAL SELF-ENERGY

The local self-energy is determined via the equation

[I ( )] ( )
1

d QI Im G( x~ pxE ), 2(wk) Ky(EyE ix)
(6.1)

The kernels K, (E, E', x) are given by

K, (E,E', x)= dv o'(
v, x) F( v, x)f[ N(v)+f(- E'))[( E'+E +v) '+(E' E+v) ']-

0

+[N(v)+f(E')][-E'+ v+E) '+( E'+ v —E-) ']}
—u *(x)e(E&(x) E')[f—(+E') -f(E')]. (6.2)

The plus sign applies to the off-diagonal, and the minus sign to the diagonal part of Z(x). This expression
is semiphenomenological in nature, being based on the corresponding expression for bulk materials. "
The local average electron-phonon interaction (squared) times. the local phonon density of states is

2( )F( )
&g(v)Fg(v), xcN,
ae(v)F,,(v), x cS.

The local Coulomb pseudopotential is

~( )
fly, ENx,

s~~ x (=

(6.3)

(6.4)

The energy Es(x) is a local value of the cutoff energy for the local Coulomb pseudopotential equal to E» in
N and E» in S. Both of these energies are presumed to be an order of magnitude greater than the Debye
energies inN or S."

The symmetry of the matrix quantity in large parentheses in Eq. (6.1) [cf. Eq. (3.12)] yields

1 ", dg„-ImG( x, xE')„2(vh)'K (E,E', x)

-ImG(x, x, E')» 2(vk)~K, (E,E', x)

(s.s)

(6.6)

In both equations, the Green's function contains terms which oscillate like exp(+2ikzx). These will intro-
duce rapidly varying contributions to &(x) = P(x)/Z(x). Presumably, however, full self-consistency for &(x)
with respect to its spatial dependence will suppress such rapid variations. If one considers the effect of
these terms on the values of Z(x) and Q(x) averaged over x in region N, the terms which rapidly oscillate
are smaller than the other terms by a factor of E/Ev. These terms will accordingly be neglected. This
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being .done, one obtains from Eq. (3.12) (See Appendix B for details of the derivation)

1 Ql
Zjx)=1 — dE' d(cos8) -Im cot(4K"d+if) —Im " cos[4K"(x+d)]

QN . QN

~4

x csc(4K"d+ ik) K (E, E&)„, (6.7)

1 gl
(t)„(x)= dE' t d(cos8) -I " cot(4K"d+ iL) —Im cos[4K"(x+2)]

40 AN'

x csc(4K"d+ ik) K,(E,E')„
J

(6.8)

(t,(x)= ~l
dE' R:

0 - S "0

for the self-energy in N. The self-energy in S is obtained from Eq. (3.16) (see Appendix B)

4z sin(4K "d) e'~+"
Z~(x) =1 —— dE' Re — d(cos8) Re, ~ . „., K.(E,E')»,

0 - S ~p [Az sin 4K"d+iL ]
(E'/g~) sin(4K"d) e'~»

s'n(4K"d+ g)

(6.9)

(6.10)

(6.11)

where

The quantity L is defined by Eq. (5.1).
Now we will examine the limit as d-~. This limit exists in virtue of the positive imaginary infinite-

simal part of E (and therefore of 4K", 4K») as mentioned previousl. y. One obtains

1 r"
l . El l i hK x-f

Z„(x)=l-— dE' Re — d(cos8)Re — "
&

K (E,E')„,E ~p . - ~N ~o N

(E )'-4,4„+O,fl„E'«,—4„)
(E')'- 4»4» —f4f)j» - (E')'-4»4N+f~sfi» '

oO g ]. E]~-&h K x-0

(t)„(x)=
)t

dE' Re "+
t d(cos8) Re

& K,(E,E')„,
0 N 0 N

( 'o gl h, KS g-g

Z»(x) =1-— dE' Re — d(cos8)Re~ &
K (E, E')~,

E) +J p L QS Jp QS

{1 ElefhK g fS

Qs{s) = dS' Rs s — d(sose) ))s ) ){,(F, Z')s.
AS S

(6.i2)

(6.18)

(6.14)

In McMillan's (zero-temperature) theory (Ref. 1), 4„ is chosen to be zero at all energies as an initial
ansatz, and d is -taken to be infinite. Since the theory was not concerned with describing phonon structure
arising from the energy dependence of the kernel near typical phonon energies, McMillan used the fact
that the dominant contributions to all the energy integral. s occur at low energy. For this reason, he set E
a,nd E' equal to zero in the kernels, and introduced a cutoff E„on the E' integrals (assuming the cutoff to
be the same in N as in S). In this way he obtained the equations (the energy dependence of the self-energy
functions is explicitly indicated, for clarity)

(6.15)

E' —A» ( 2iE'x 1
4„(x,E = 0) = XP(x) dE' d(cos8) Be» exp)

0 0 +s %@vy cosa

Here

Xg„(x)=
K( , 0)0)({»/Z~ „(x,0).

(6.16)

is a dimensionless coupling parameter. The above equations correspond respectively to Eqs. (51) and (53)
in Ref. 1. Taking x -x in Eqs. (6.12) and (6.14) (our geometry is the reverse of McMillan's) with 4„=0,
and employing McMillan's approximations for the kernels, one finds agreement with (6.15) and (6.16) since,
under these operations
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(E'/Q„)e '~» " ~ - [&s/(E'+ Qs)] exp(+2iE'x/Sv» cos8),

with & s/(E' +Qs) = (E' —Qs)/&s in (6.12), yielding (6.16), while in (6.14):

(E'/Qs)e' " ~ - [E'&s/Qs(E'+ Qs)] exp(-2iQsx/hv» cos8),

yielding (6.15). Note that the E=0 limit of Zs „'is well-defined because the kernel K (E, E )s „approaches
zero linearly in E as E goes to zero [see (6,2)].

VII. PAIR POTENTIAL IN N FOR THIN

WEAK-COUPLING N METALS

We have already shown above (Sec. 1V) that a
pair potential 4„may exist in N without giving
rise to any density of states for 4»& E& (h»A»)'~',
where d s, is the value of hs(E) at. E= &s(E). This
novel feature of proximity-effect tunneling is a
consequence of the quantization of quasiparticle
energy levels which is forced on the N layer by
the existence of a positive pair-potential difference
at the N-S interface. There is an energy gap be-
tween E= 0 and E = (4»4»)'t', but there is no BCS
singularity at the gap edge. Instead, the density
of states rises from zero at (4s,4»)'t' to a maXi-
mum at the bound-state energy E,(1), as shown in

Fig. 3.
We shall consider only thin ' weak-coupling N

metals. In the integrals of (6.7) and (6.8), the
most important energies are low energies (near
4»), where the density of states exhibits sharp
peaks. For weak-coupling materials, it is rea-
sonable to assume that energies of the order of
4~p are far below typical phonon energies. Since
the maximum values of 4»(E} will occur near the
phonon energies in N, and since Ã is a weak cou-
pling material, we therefore expect that for low
energies A»(E) will be,negligible compared to
hs(E) At hig. her energies (phonon energies in N)
we expect that this will not be true, but these en-
ergies have little weight in the E integral. Ne-
glecting &»(E') in the integrals of (6.7) and (6.8)
leaves

OO 1

Z„(x)=Z»= 1 —— dE' d (cos8) [-.Im cot(ddPd+if)]K (E,E')„N N g

Q»(x) = dE' d (cos 8} -Im . » . K,(E,E')»cos[MF(x+ d)]

(7 1)

(7.2)

The order parameter in N is given by

h»(x) = P»(x)/Z»(x) . (7.8)

The spatial variation of P»(x), which predicts
that p»(x) increases as x approaches the tunneling
interface (x = -d), is spurious. It arises from the
fact that we have not solved for the Green's func-
tion of the entive tunneling geometry (including
the L region and the E region in Fig. 2). Certainly,
were we to take into account the influence of the
other regions, we would find that 4»(x) near x

= -d would be depressed from its value at x = 0,
just as we will find that 4s(x) is depressed from
the ansatz (bulk) value hs at x=0. For thin N met-
als, however, any spatial variation of h»(x) is
suppressed, because such a variation over a small
distance would lead to a large free-energy contri-
bution. Since we wish to treat thin N metals,
where h»(x) is not expected to vary much, "we
shall therefore calculate an average of ch,»(x) over
the width of ¹

Averaging the ratio of (7.2) and (7.1):

4»(x) dx = dE' d (cos8) -Im» . „.K,(E,E')„sin(AK»d)

N p ~ d sin hK"d+if (7.4)

Unless cosa&A~»«1, we may approximate
sin(dK»d)/dK»d by unity (4K d=RE'/cos8) since
the dominant values of E' are near &~p and A4~p«l. The values of cose~B+gp account for a
negligible fraction of the total integration range
of cos8. Furthermore, over most of these values
of cos8, sin(rVC»d)/A/C»d oscillates rapidly, giv-

ing a small total contribution. We may therefore
safely neglect the region where sin(AK»d}/4K»d
is not equal to unity in (7.4). Again, there are
two regimes for the energy integration

(i) E'& 6»—Here we find the bound state
E,(cos8). (We assume that the N metal is thin
enough that only one exists. ) Expanding about the
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1

ZN
, ~RE K.(z, E )„

[arctan(Qz, /E') ]'

In order to check the accuracy of our guess for
h~(E) at low E, we calculate 4„(0). Since the im
portant E' variations of the kernels K,(OE')„are
only in the vicinity of E =N(dN, where S+N is a
typical phonon energy in N, and since the dominant
contributions to the integral are at low energies,
E'= h, »«bur„, we set (following McMillan)"

K,(0,E')„=Xg tanh(&PE')e(zc„—E') K (0,E')„
(7.7)

where XP is defined by Eg. (6.17). Thus at E=0,
we have ZN= 1.

Changing the variable in (7.6) from E' to y = arc-
tan(Q»/E'), we obtain [with (7.7)]:

' ' dy(sin2y) tanh[(cosy) —,'p&~, ]
2

REp

In the limit RE,(1)«1, this is approximately

XP vR 4'» ln fl/RE, (1)]. (7.9)

bound-state energy [E,=E,(cos8)]:

-Im[csc(MC d+if)]= mb(z' —Ep)zp
arctan Q E, +E, Q, '

(7.5)

where Q z, = [42» —(E')']'~', implicitly evaluated
here at E'= E,. One obtains this equation by using
(C.4) and (C.7) of Appendix C in Eci. (B.4) of Ap-
pendix B, setting 4N =0, and recognizing that
arctan(Q»/E, ) = 2 Z„dz, /Kv».

Changing the integration variable from cos8 to
E,(cos8) using Eqs. (4.9) and (4.10) for 3,„=0, we
obtain the bound state contribution

dz d(cos8) Qg ~g . 21~~d)gN iso o so+ ~so sin yAK d

x K,(E,E')N (7.11)

for the contribution to 4„(E) in this regime. With
the approximation in (7.7), this becomes

&N&s.
~so

Q» cos(MPd)
d(cos&) ~, ,

~ „~)

& tanh2 pE'. (7.12)

~g [ln(Z, „/Z„)+ I/~+]~„. (7.14)

Since we expect EcN and Ecs to be roughly com-
parable, this result is small compared to 4sp if
XN*«A. S*, as we have assumed.

Thus for RE,(1)« l, kg«Xz*, the initial assump-
tion that 2„(E)is negligible [compared to b ~(E))
at low energies is consistent.

Using arguments similar to those advanced
above, we can obtain a rough picture of the behav-
ior of A„(E) when E is near a typical phonon en-
ergy (Su&„) of N and d z(E) is negligible. In Ref. 15,
assuming that the phonon spectrum of N has one
peak at 1+N of width -b„, it was argued that a rea-
sonable approximation for K,(E,E')„near bur„ is
(neglecting the Coulomb pseudopotential)

Choosing k~T «&», the hyperbolic tangent may be
replaced by unity. This integral is then less than
or equal to

'so arCCOSh cN - ~N~+ so ln cN '? .13E 2E
So So

which is the result in the limit R 0. Using the
zero-temperature BCS value of &sp..

+so= 2Ec se

This can be written

K,(E,E')„=n~(E' —E+ R(a)„-ib„) ' . (7.15)
Assuming that X„*S0.05 (X*for Pb is about 0.48)

and that RE,(1)=RA» c 0.1, we find that this is
less than or equal to about 0.044so. Thus for thin
metals (RE,(1)=RA»«1) t.he assumption that L„

&sp is correct as far as the contribution from
bound states is concerned. The remaining contri-
bution will be considered next. (ii) b, »- E'
Since the most important contributions to the E'
integral in (6.4) are at low energies, we will ne-
glect the energy dependence of hz(E), setting
n. ~(E)= b, » and &„=0; Using

N &So") Z . (~"d) Q (~K"d)

r/2
~2pR+2

N REO

STQ2g
dy 2 (6 ~o cosy —E

+ bcog —ibN)

x tanh(-,' p&~, cosy) . (7.16)

For the integral over the bound-state region, the
temperature dependence must be considered. The
modification of (7.15) to include finite temperature
simply involves a multiplication by tanh( —,PE').

One may now proceed as before to obtain the
bound- state contribution

we obtain

(7.10)
For b„/6»»RED, the variation of the E depen-
dent term is slow compared to that of the other
terms in the integrand for y near RE,. In this
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case, (V.16) may be approximated by

( ac(»RA'g0ln (h»0 —E+ h(u» —ib») '. (7.17)
N p

determined by the equation

~,(E')
E (E) . [(E')'-n (E')'J"*)

An approximation. for the contribution from states
above +sp may be obtained by taking the limit R- 0, yielding [compare Eq. (24) of Ref. 15t where

x X,(E,E')„ (7.20)

[(E — Ktcsicb)s-O'c]' ' —E s c„-ntb )I„
&Sp

(7.18)

At the peaks of the real and imaginary parts of
the sum of (7.17) and (7.18), we find [setting Z»
= 1+J[» and neglecting the logarithm in (7.18)]

Reh„(E), Im&»(E)= " »Rh»0ln

x X (E,E')» . (V.21)

One may verify this exactly by evaluating (V.l) and
(7.2) in the limit as R —0.

if it turns out that a calculation of h»(E) from
Eq. (7.20) yields a h»(E) which is comparable to
LL»(E) at low energies, then it is necessary to
carry out a full self-consistent treatment, based
on Eqs. (6.7)-(6.10). We will assume that the
coupling strength in N is so small (Xp«J].a} that
this is unnecessary.

SP + So

(7.19)

VIII. PAIR POTENTIAL IN S FOR THIN
WEAK-COUPLING N METALS

In the lirgit Russo-0, this reduces to the result
in Eq. (25) of Ref. 15.

Inspection of Eqs. (7.9), (7.13), and (7.19) in-
dicates that, in the limit as R&sp approaches
zero, and for XP«X»* (so that 4» may be neglected
relative to 4»), the induced pair potential may be

In Eqs. (6.9) and (6.10) we may again neglect
cb»(E'), since the energies contributing the most
to the E' integrals are near E'= b z„where 4»(E')
is small. Using Eq. (V.10), neglecting the energy
dependence of ha(E), and taking the real parts, we
find

] 1

Z»(x) = 1 —— dE' d(cos 8)
SO

x E (E,E'},

{E'/0 „)(0's —nc, sin'(nKsd)[1 —cos(nKss)] —n's„(0,/E') —'sin(soKsd) sin{El'css)]
)

I
SO

2
~~

~
P

~ 2 N ~
~
S0

2

S

S0
~

~
2

2
~~

N
~

~

~~
I ~~I

I ~ ~ S

(8-1)

(t)a(x)= dE' d(cos8)

(n, /0 )[0,+n', sin*(nK"d) —(E )'sin (EK"d)c'os(olc s) ——'E'0, sin(bole"d)sin(EK*s)])
0'a0+ 0 'a0 sin2(AK"d}

x K,(E,E')a.
%e are particularly interested in the values of these functions at the N-S interface, where the

deviation from their bulk values is maximal, so we set @=0. The cose integral in (8.2) may then
be approximately obtained in the limit of small R4sp..

~ &sp ~SOR&' sp
Sp Sp SO Sp

(8.2)

(8.3)

'The energy integrals will be evaluated for E= 0,
which is assumed to be far enough from phonon
frequencies in S that the approximations (4»
»O, T),

R', (0,E'),= ~*,e(E„-E'),
K (O, E')a= 0

are appropriate. Taking Z»(0) = 1, we have (3[) &(0)
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'fhe first term in (8.3) corresponds to the
value of iso in the bulk. The second term is the
modification of 4«at the N-S interface due to the
presence of the interface. The result of the first
integral is

s~so in(2Ec s/~so} . (8.4)

One must compare this to the result of the second
integral, which may be written

~s~so +so
+CS~~SO (q2 1)&& &(

d~ 2
&

arctan
R~s

(8.5)

This is less than or equal to

Xshsos AAso ln s + ln —1/2 ln2
&so R~so

(8.6)

Thus if R 4 s,«1, as is assumed throughout this
paper, then the modification of 4» at the N-S in-
terface is negligible, and 4 s is equal to the bulk
pair potential in S.

IX. SUGGESTIONS FOR IMPROVEMENT

QF THE MODEL AND CONCLUSIONS

In our opinion, a complete picture of proximity-
effect tunneling has been obtained here for thin N
metals in perf ect contact with much thicker S '

metals, where both N and S are clean. An exten-
sion of our results to thicker N metals may make
use of the Green's functions derived here, but we
suspect that the spatial dependence of the pair
potentials in N and S will require a different ap-
proach in order to achieve self-consistency. For
this reason, we have restricted ourselves to thin
N metals.

It may be possible, however, to extend our ap-
proach to the case of a thin N metal and a com-
parably thin S metal by keeping a (the thickness
of S) finite in the Green's function of Eq. (3.10),
and carrying out the calculation of G(xx'} for this
case. The thicknesses of both S and N should be
less than a coherence length, in order that the
pair potentials remain spatially constant. In this
event, &s would correspond not to the bulk value
of the pair potential in S, but to the final self-
consistently-determined value, which will be less
than the bulk value because of the influence of the
N layer. We also expect that &„will be smaller
for this case because the 4s potential, which in-
duces the 4~, is smaller.

If the, contact between S and N is not perfect,
i.e. , if there is an effective potential barrier at
the N-S interface, as is probably the case in ex-

periments, the approach must be modified. The
behavior of the NDC at energies near and below
4s should be most affected since the existence of
normal scattering (scattering present when both
N and S are in the normal state) will decrease the
height of the peak due to the bound states, allowing
states to exist in the region between 4s and the'
highest-energy bound state. The weaker coupling
of N and S will also cause the induced pair poten-
tial (n,„)to decrease.

Finally, it may be desirable to introduce a finite
amount of elastic impurity scattering and diffuse
surface scattering. In the bulk, there is a general
theorem that elastic impurity scattering does not
affect the energy gap. Hence no effects are ob-
served on the NDC for one superconducting layer.
As we have seen, however, proximity-effect tun-
neling is capable of measuring the renormalization
parameter Z(E) separately. Since elastic scatter-
ing does affect Z(E), its effects on the oscillatory
terms in the NDC may be observed.

At energies far above b, s, Eq. (4.15) indicates
that the NDC behaves in a relatively simple way
as a function of 4s and 4„. We believe that before
one attempts to extract information on 4~ from the
NDC, however, the role of normal scattering at
the N-S interface must be determined. Upon in-
clusion of this into the theory, one should be able
to determine the energy dependence of h„(E) from
the NDC by knowing Es(E) and the transmission
coefficient at the N-S interface. A determination
of n2E for the N metal might then be made, based
on the "inversion" of an equation for hs(E) like
Eq. (6.4). A knowledge of tunneling selection rules
for the tunneling interface would also allow one to
obtain separate information on the renormaliza-
tion parameter in N in the same experiment.

APPENDIX A: GENERAL EXPRESSION
FOR THE DOUBLE-LAYER GREEN'S FUNCTION

The Feuchtwang technique involves the application
of Green's theorem over the region in which it is
desired that the exact Green's function G(x, x')
be known. First, consider the equations

a2
zo((x, x') ~

3 . —v) o, (x, x')v, -o, (x,x')z, (x')
PB BX

=5(x -x') = G, (x,x')[E -H, (x')], (Al)

8E+,—g„~,-E(x) G(x, x')2' 9X2

=5(x -x') =[E -H(x)]G(x, x'). (A2)

The index i designates the layer occupying region
D, . Z, (x'} is the ansatz matrix self-energy in this
region. The direction of the arrow indicates the
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direction in which the second derivative operates. One now constructs the identity

fX-R
(G, (x,x )[E—H, (x,)]G(x„x')-G, (x, x,)[E—H(x,)]G(x„x')}dx,= G(x, x')8(x cD;) —G;(x, x')8( 'c D, ) .

x«

The unit step function 8(x c E;) vanishes unless x is in region D„which has a boundary on the left-
hand side at x«, on the right-hand side at x,R. The left-hand side may be partially integrated, yielding

(A3)

k B 8
G,(x, «, )~,c(x„x') G,(—x, x,)~, G(x„x')

X)R X R
+ d«,c, (x, x,)[Z(x,) —Z, (x,)]c(x„x)x«x~g

= G(x, x')8(x c D)) —G;(x,x')8(x' c D,), (A4)

since both Green's functions are solutions to a self-adjoint boundary value problem. A similar calculation
using

XcR
dx,(G (x, x,)[E—H, (x,)]G, (x„x')—G (x, x,)[E —H(x,)]G; (x„x')}

X]1

yields

O' B, B iR~ $R
G(x, x,) 7, G, (x„x') — G(x, x,) r,c;(X„x') + G(x, x,)[Z(x,) —Z, (x,)]G,(x„x')

=G(x,x')8(x'c D, ) —C, (x, x')8(xc D,). (A6)

—G (x,x') = 0=,—C„(x,x') . (A7)

For the double layer function

C{x=a,x') =O=c(x,x'=a),

—G(x, x ) =O=, G(X, « )
8 I BBx,p-

i
x'=-d

(Aa)

(A9)

where a and -d are defined in Fig. 1. Conditions
(AB) and (A9) must also be obeyed by Gz and C„,
respectively.

The Dirichlet boundary condition (A8) at the free
surface must be taken to include the implied limit
a-+~, as mentioned in the text after Eq. (3.10).
Otherwise, the absence of outgoing-wave behavior
atx =a would lead to no net current. The com-
bination of the a ~ limit and the temporal bound-

It is convenient to assume that Z, (x) can be
chosen so that Z(x) —Z, (x) is negligible in the
region D, . An initial assumption of this type is-

justified only if, using Z, (x) to calculate G(x, x'),
it is found that the value of Z(x), which depends
on G(x, x'), differs negligibly from Z, (x) everywhere
in D, . In the following, we assume that such a
Z, (x) can be found. In the main text we verify how

good our initial guess for the self-energy Z, (x) is
by calculating Z(x) with Green's functions depending
on Z, (x) and comparing with Z, (x). If Z(x) is
spatially independent in the region D&, it is always
possible to choose Z, (x) to coincide exactly with
z(x).

The appropriate boundary conditions on Green's
function at interfaces are

ary condition on the retarded Green's function
automatically produces the necessary outgoing
wave.

As Feuchtwang has shown, "one is free to
choose whatever boundary conditions are con-
venient at the interfaces. He has also shown"
that, in the normal state, the choice (A9) for
Green's function for the right electrode (which is
an N-S double layer in our case), and a similar
choice for Green's function for the left electrode
reproduces the tunneling Hamiltonian expression
for the current, of which we make use in this work.
This expression involves the product of the tun-
neling matrix element squared and the local den-
sity of states in the left electrode (assumed normal)
at -d times the local density of states in the right
electrode at -d. %e have shown that the same
result holds in the superconducting state. "

With these boundary conditions, (A4) and (A6)
reduce to single expressions depending only on
the first derivative of the double layer Green's
function at the N-8 interface. One now may obtain
the necessary first derivatives by differentiating
(A4) and (A6) at the N Sinterfac-e, leaving an
expression depending on the mixed second de-
rivative

B
, G(x, x')

BXBX ~-~I—p

which is continuous.
Using the discontinuity of G(xx') at the source

point x =x':
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eG(x, x'} "="' 2m a

ex „, k' ' ex'

one may easily solve for the mixed second de-
rivative atx=x'=0. In this way, Eqs. (2.8) and
(2.9) are obtained.

The calculation of G(x, x') from (2.8) and (2.9) is
a straightforward but algebraically complicated
affair, The only approximation employed is the
replacement

Kf.'- k»» =[(2m/I')u —k(')]' ',

G„(0,0) + G (0, 0)

m E Z
=a' n„D -'n, D-

~b+ (D»++D»p)Tg+. . D» + Dg
N

' S

(A12)

where

x„,(d) sin[(K»+ K",)d]
W», k»» sin(K»d) sin(K"d)

whenever K", 's is not involved in the argument of
a trigonometric function in the Green's functions
of (3.9) and (3.10). Corrections to this approxi-
mation are of order a/Zz. We also use (3.10)
in the limit a-~ [see Eq. (3.11)].

%e wilf illustrate the calculati. on Of the Green's
function for the double layer by using (3.9) and
(3.10) in (2.8), then taking the limit a-+~.
First by defining

and

—sin[(K', ~ K')a]
k»» cos(Kfa) cos(K'a) (A14)

%he approximate equality is due to the replacem, ent
K", ' - k„& discussed above. The matrices 7„v„
and 7'3 are the Pauli matrices in Nambu's notation.
(The unit matrix is implied wherever necessary. )

The inverse of (A12) is easily obtained. Using

X»a(x&) cos(Kgx)) )

X„,(x, +d) =cos[K&(x, +d)], (A10)

G„(,O) =G„(O,x) (A&5)

x .(x )x». (x, +d)
Xp X( x =x

we may write (3.9) in the form

m

"' (&»/n» (z+n»)/n»)

XX .(x )X«(x +d). (A11)

G„h, o)= —. g s &, sT, + "r) n„, , (A)8)

where

x», (x+ d) cos[K", (x+ d)]
W'))(, k»» sin(K~d)

and

&»~ = x»~ (x'+ d)/&»~,

with (choosing x' &x),
The term W» is the Wronskian, and is therefore
spatially independent. By first replacing Ã by
S and then letting x, +d-x, —a+ v/2E', and
x, -x„Eq (3.10) .may be obtained from (A11) and
(A10). Using this device, the "symmetry" in
N and S exhibited by (2.8) and (2.9) may be ex-
ploited, so that by finding (2.8) in term(s of the
functions in (All), we may also determine (2.9),

For the matrix sum we find [using X»+(0) = 1]

G»(X)x ) )=I ~+ n + ~s+ n rg X»&{X )+»»
ri ~ Qg S

(A18)

one may now obtain the right-hang side of (2.8)
for x' &x, In the expression thus obtained one
next rearrang;ey terms so as to obtQ, in the co-
efficients of p„, and a~ .

The result of these m@q.ipulations is, for x'& x:

where

a = (z/n„)D„+ (z/n, )D, ,

& =By++as+

c = (~„/n„)D„+(~,/n, )D, ,

(A2o)

~M„. =a(Z/n„) k~ c(r „/n„)— —

=D„+F(Z)D» —(D» +D» )o, (A21)

&I.„.=s(~„/n„) -c(z/n„) =-G(z)D. . (A22)
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Both F(E) and G(E) are defined in (3.13), and
0 =+. We also note that

a' —b' —c = 2 F(E)D„De —2 D»,De,

+&N- -&N++DS- -&S+ ~ (A23)

APPENDIX B: DERIVATION OF EQUATIONS
FOR THE SELF-ENERGIES IN N AND S

The quantity relevant to the calculation of the
self-energies is the matrix

- 1/v Im[G(x, x)]. (B1)
In the limit as a-~ we have (approximating 1/Ke,
by 1/k ):

Ds.-o

D, --2i/k»».

Using (A.13} this gives for (A.23) (approximating
1/Kf by 1/k»» throughout)

4 [iF(E) sin(nK"d) —cos(gK"d)]
k&» sin(K"d) sin(K"d)

Also in this limit we have

4A x'
Na No P S&n ~~g N

(A2 5)

and

2L„,n'„, -4oB„,(x')/k»» sin(K", d), (A26)

The result (A24) is the same for this case [see
(A23)]. However, for the other terms we have

gM~, =De +F(E)D„—(D„,+D~+)(r,

aLe, =G(E)D„

(a'- k'- c')X,.(x, ) —2M,.o, ',.
-&as~~—2e ' o" A8, (x() (A28)

k»2» sin(K"d) sin(K"d) '

-2e-" '"' B„(x,)
k sin(K"d) sin(K"d) '

where A~, (x, ) and B~,(x, ) are defined by (3.18)
and (3.19), respectively. Thus is Eq. (3.16) ob-
tained from (A19).

(A29)

where A„(x') and B» (x') are defined by (3.14)
and (3.15), respectively.

If x& z', the only modification of the above re-
sults is the interchange of x and x'. Thus (A19)-
(A26) remain valid when we replace x' by x, and
x by x(. One now readily observes that (A19) is
equal to (3.12).

For (x, x') & 0 one performs the transformation
described below (A11) on the results in (A19)-(A23).
Using (3.11) one observes that

Lim n „=—(ia jk»»)e" »~"&. (A2 7)

This matrix may be obtained from (3.12) and (3.16)
for x in the N layer and S layer, respectively. As
mentioned below Eq. (6.6) in this paper, the ele-
ments of this matrix contain terms which oscillate
rapidly as a function of x, going as exp(+ 2ikzx),
both in the N layer and in the S layer.

For the N layer, the rapidly oscillating terms
must be separated from the following products of
tr igonometric functions:

cos(K",x +Kid) cos[K»(x +d)]

=2 (cos[2Kfx + (K"+K")d] +cos(aK"d)),

sin(K",x +End} cos[K",(x +d)]

=—,
' (sin[2K",x + (K+" +K"}d]+ sin(AK"d)),

cos[K,"(x +d)] cosg", (x +d)]

=
~ (cos[(K,"+K")(x +d)] +cos[aK"(x +d)]].

When averaged over the width of the N layer, the
first terms on the right-hand sides of the above
equations give a relatively negligible contribution
due to their rapid oscillation. We will therefore
neglect these terms. Thus

A„„(x)cos[K",(x+d)]= ,'[iF(E) cos(—nK"d)+sin(nK"d)]

—&n
N &

B»(x) cos[K"„(x+2)]=,'iG(E) cos[b—K"(x+2)] .
In a similar way, we find that the approximation

Az, (x) = cos(EK"d) —i F(E) sin(n, K"d)

is appropriate when considering (Bl) for the S
layer. As discussed below Eq. (6.6) in the text
of the paper, we presume that in a fully self-
consistent treatment, rapidly oscillating contribu-
tions to the self-energy will be suppressed, justi-
fying the neglect of such terms.

With these approximations we find for the N layer
[from (3.12)]:

——[G(xx)~s] = —P~+ iG(E)r r VEX N N

xcos[aK (x+SH} S,

-1——[G(xx)„]= i G (E) cos[sK"(x +d)]
m' mjg v~~

+g I'
N
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where

S =iF(E) sin(b, K"d) —cos(bK"d) .
For the S layer, we obtain

——[G(xx)„]= — — —-i G(E)
i E . ag

m@v px Qg Qg

x sin(sd d)e'~ */d),

x sin(/SKed)e'~ '/S)

By employing Eq. (5.1), one observes that

p„/S = cot (aK"d +i)),

iG(E)/S =csc (aK"d+ij) .
(B8)

(B4)

Using (C1) and (C2), the right-hand side of (C5)
becomes

S G
dE +GdE (E E)—d(aK"d) 1 dF

&=&nc
(C6)

@vox Qg EQ~Q~

Evaluating the numerator of (4.5) at E using
(Cl) and (C2) we find:

s

We neglect the possible energy dependence of Z~
and (/i „,Az), as well as any imagninary part of
these functions, near the bound-state energies
[see discussion b'elow Eq. (4.8) of main text]. The
energy derivatives in (C6) thus yield

With the transformation of the k, t
integrals to in-

tegrals over cosg = [1 —(k„/kz)']" the derivation
of (6.7)-(6.10) is completed.

APPENDIX C: BOUND-STATE CALCULATIONS

From Eq. (4.7), at any of the bound-state ener-
gies E, we have

sin(aK"d) =0 0„/E(d -h„)—= 1/G, (C1)

(C2)cos(aK"d) =F/G,

where

G =iG(E),

F =(E'-~,Z„)/n, n, =iF(E)

(C8)

(C4)

+ sin(b. K"d) (E —E„).dF
&=&m

(C5)

(note: F '+ 1 = G').
The expansion of the denominator of (4.5) about

E is

S —= iF (E) sin(b, K"d) —cos(AK"d)

[Fcos(EK"d) +sin(bK"d)] d ~K"d
dE

—[iF(E) cos(dK"d)
-2

7thv ~~ Q„

+sin(nle d)le "iG(Z))
QN

The ratio of (C8) and (C7), summed over all
possible m, yields (4.8).
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