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Erergy loss of correlated charges in an electron gas
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The energy loss of a pair of charges in correlated motion through an electron gas is calculated using

Lindhard's dielectric function, The results of numerical integrations are presented and in particular the cases

of low and high velocities are described. Analytical expressions for the energy loss are given for the case of high

velocities, which are in excellent agreement with the numerical results. A clear relationship between the

energy loss of fast correlated charges and the partition rule for the stopping does not follow from this study.

The results. are in agreement with experimental data for the energy-loss ratio between molecular and atomic

ions in thin carbon foils.

I. INTRODUCTION

The energy loss of charged particles in a degen-
erate electron gas has been a topic of great inter-
est since the work of Lindhard and Winther, ' be-
cause it became of considerable importance for the
study of the energy loss of charged particles in
real media. '

Whereas the energy loss of single atomic parti-
cles in matter has. been widely studied for many
years, the energy -loss of swift ion clusters hag
been the subject of much. more recent work, con-
cerned with the incidence. of -swift molecular ions
on thin solid films. ' ' Molecular effects on the en-
ergy loss have been theoretically described'4 as
a result of interference effects in the energy dissi-
pated in the material, when its electrons are per-
turbed by the fields of external charges in corre-
lated motion. Both of these treatments dealt with
valence band electron excitations and made use
of high-velocity approximati:ons' in calculating the
energy loss, wherein the random motion of the
electrons is neglected. Brandt, Hatkowski. and
Ritchie" have proposed a relation between the . .

energy. loss of ion:cclustkrs and the partition. rule
for the contribution of individual and collective
electronic excitations to the stopping, which will
be further analyzed here. On the other hand,
Arista and Ponce~ performed an analytical calcula-
tion of the energy loss, using simplified models
to describe long-wavelength collective excitations
and short-range individual excitations (tor k «k,
and k»k, respectively, where k, is an appropri-
ate cutoff wave number for the electron gas), and

interpolating through the more complicated inter-
mediate region (k-k, ).

We consider in this paper a more appropriate
treatment for the energy loss of charges in corre-
lated motion through an electron gas, using Lind-
hard's expression' for the dielectric constant of
the medium. This provides a good description of

collective and single-particle excitations with a
self-consistent treatment of screening effects.
Using the dielectric formalism we calculate the
energy loss of two correlated charges; we present
the results of numerical integrations, and also ap-
proximations .valid at low and high velocities.
These results are in addition compared with pre-
vious high-velocity approximati. ons and several
conclusions are drawn.

In Sec. II we express the energy loss of a cluster
of nonrelativistic charges moving in a material
medium, in terms of the longitudinal dielectric
constant e(k, &). In Sec. III we treat the special
case of two correlated charges moving in a degen-
erate electron gas, and present the results of full
numerical integrations of the energy-loss expres-
sions. In Sec. IV we consider in particular the
case of low velocities and we show that interfer-
ence effects in the energy loss are important when
the internuclear separation is not large compared
with the wavelength of the electrons at the Fermi
surface. Using an appropriate approximation for
the dielectric constant we obta, in in Sec. V an
anaLytical expression for the energy loss at high
velocities, which is compared with the numerical
results of Sec. III. The proposed. relation between
the energy loss of swift ion clusters and the parti-
tion rules for the energy loss of single charges
is considered in Sec. VI, and is found not to be in
general agreement with the results of this work.
In Sec. VII we summarize our conclusions and
finally make some comments in relation with cur-
rent studies of swift molecular ions traversing
solid films.

II. DIELECTRIC FORMALISM FOR THE ENERGY LOSS

Let us consider a cluster of X charges Z,.e,
moving with nonrelativistic velocity v in a material
medium ot longitudinal dielectric constant e (k, ~).
Neglecting small deviations of the individual ve-
locities with respect to the average velocity v, we
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can w rite the corresponding charge dens ity as

p (r, t) = Q Z,.e& (r —r, —it),

where r,. are the positions of the corresponding
charges at time t=0.

For nonrelativistic velocities, the electric field
E(r, t) generated by the cluster is determined from
Poisson's equation, which yields the simple alge-
braic relation

E(k, &d) = —(4mik/k )p(k, &u)/c(k, ~) (2)

between the space-time Fourier transforms of
E (r, t) and p(r, t). Thus we obtain the following ex-
pression for the electric field:

„, 2ik exp[ik (r —r, vt)]—
k' a(k, k v)

In these expressions the fields due to the external
charges and the fields due to the polarization in-
duced in the medium are summed. In particular,
the force acting on the jth particle is

F,.=Z,.e.E(r,.+ vt, t)

Z&e 3 2k
=( )2 Qz&e dk

1

Im,
)

cos(k' r, ,)aqk, k v

1+Re, , sin(k r, ,)

where r, ,=r,. —r, In E&I. (4) the force has been
written explicitly in real form by using the physical
requirement that the fields must be of real magni-
tudes, which imposes the following condition on the
dielectric constant: e(-k, -&d) = e*(k, ~).

It is i'.'nteresting to compare the behavior of the
two terms in the integral with respect to a change
in the sign of rj„or what is equivalent, to com-
pare the force that the i charge exerts on the j
charge. , with the force that the latter exerts on the
first. We see that mutual forces acting through
the. term in Re(1/(. ) are opposed, and cancel out
if we sum up the forces acting on the whole cluster
of charges. The forces acting through the term
in Im(1/E) are, on the contrary, dissipative (we
are always considering the energy. of the cluster,
and not of the individual particles). Thus, the en-
ergy loss (per unit time) of the cluster of charges
is given by

where we have separated the terms with i = j,
which give the energy loss of totally independent
charges, and the terms with i4 j, which represent
interference effects on the energy loss due to the
simultaneous perturbation of the medium by the
charges in correlated motion.

Since E&I. (5) consists of a sum of similar terms,
the simplest case to deal with —without losing de-
tails of the general problem —is that of two
charges Z,e and Z2e in correlated motion with
velocity v and internuclear separation r, (r, =r,
—r,). We will restrict ourselves here to this case,
for which the energy loss of both charges is given
by

dS' e'
3 k'v -1

dt 2w' k' ™C(k k'v))

&& [(Z', +Z', )+2Z,Z, cos(k r,)j .

III. ELECTRON-GAS MODEL

In the following we will treat the energy loss of
two correlated charges in a degenerate electron
gas described by Lindhar'd's dielectric constant. '

In E&I. (6) the energy loss is given as a function
of the relative orientations of ro and v. We will
consider here the case in which the orientations of
r, are randomly distributed (in a statistica) sense);
this is, in fact, the case of greatest interest in
eonneetion with recent experimental work. " The
mean energy loss QW/dt), corresponding to ran-
dom orientations of ro, may be obtained from Eq.
(6) by simply replacing the factor cos(k r,) within
the integral by its angular average sin(kv, )/(kr, ).
Using the vaiiable &=M'v we can write d'0
.= (k/v) dkd«) d(t), and we get after integrating over
the azimuthal angle &f&

sx ro
rQ

Ip order to introduce Lindhard's expression for the
dielectric constant of a degenerate electron gas,
we write the integrals in terms of the reduced
variables u =(o/km~ and e =k/2k„, where n~ is the
Fermi velocity of the gas and k~ =me~/8; we get,
in this way,
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(
4

[(Z', +Z', )I.+ 2Z,Z, I],

with

zdz uduIm
-1

(9)
6 u, z

-1 sin(2kzrp) .
zdz udu Im

( ) ( )
y (10)

where X'=e'/m5v~, n is the density of electrons,
and the upper limit of integration over u is the re-
duced velocity w =v/vz. The stopping number I
is the same that appears when the energy loss of
a single external charge is calculated, as done by
Lindhard and Winther'; whereas the interference
term I accounts for the additional contributions to
the energy loss of correlated charges.

The dielectric constant is usually written

e(u, z) =1+ (j('/z')[ f, (u, z)+if, (u, z)]; (11)

explicit expressions for the adimensional functions

f, (u, z) and f, (u, z) have been given by I indhard. ~

The integrals in Eqs. (9) and (10) extend over the
regions in which Im[-1/e(u, z)] 40; thus we are

Z =K/2KF

led to consider the characteristic regions in the
u-z plane illustrated in Fig. 1(a). The shaded re-
gion denoted by sp (because there single-particle
excitations may occur) is where f, (u, z) w 0, and

corresponds to real transitions of individual elec-
trons from the Fermi sphere to unoccupied states
out of it, by absorbing the energy he and the mo-
mentum Ak. Outside the sp region the conserva-
tion of energy and momentum forbids any single-
particle excitation of free electrons. The reso-
nance curve indicated with r in Fig. 1(a) is the
region in which e(u, z) =0 or f, (u, z) =-z'/y' [since
f2(u, z)—= 0 outside the sp region]. This defines a
dispersion relation u=u(z), corresponding to the
existence of an undamped mode of collective oscil-
lation of the electron gas (plasmon).

We can, separate the contributions to the values
of L and1 in the following way:

L =L,+L„, I=I,+I„, (12)

where L, and I, are the contributions due to single-
particle excitations. These are to be calculated by
integrating Eqs. (9} and (10) over the sp region,
in which c,(u, z)4 0, and below the line u=w.

L„and I„are, on the other hand, the contribu-
tions due to collective excitations, .obtained by in-
tegrating along the resonance curve ~, where the
double integrals reduce to line integrals. There
is a minimum velocity v, for plasmon excitation,
corresponding to the point z„u, (with z, =u, —1),
where the resonance curve merges. into the sp
region [Fig. 1(a)], that is, v, =u,vz. '

In order to write the integrals for L„and I„it
is convenient to express the energy-loss function
as

-1 ~5(u -u(z))
e(u, z) s&, (u, z)/su '

using this expression in Eqs. (9}and (10}we get
'(

6 z~ ZQ

0
LL

~CD

U

C
16 6 4

)
rp=2

1 2 . Z = K/2KF

FIG. 1. (a) Regions of integration in the &, & variables.
The dashed region, denoted by sp,

' corresponds to
single-particle excitations; the curve & corresponds to
resonant excitations of the electron gas (plasmons) for
the case &+= 0.75 a.u. (b) Interference factor g(&)
= sin(2&zroz)/2&z&p as a function of &, for && = 0.75 a.u.
and for. internuclear distances &0=2, 4, 8, and 16 a.u.

6 '~ sin(2k~r~) zu(!,( ( 2k ('g ((& (((, ('-)('((l(}„-„(,(
(15)

where z (w) is the minimum value oi z that enters
in the:integration and-corresponds to the maximum
vain'e of u: u =w. The integrals of Eqs. (14) and
(15) were calculated starting from the point (u„z,)
and running over the resonance curve x, with small
negative increments of z; for each new value of
z the corresponding value of u was found from the
co ndition e, (u, z ) = 0.

Figure 2 shows the results for I,—the contribu-
tion of single-particle excitations to the interfer-
ence term —as a function of the reduced velocity
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xg, for @~=0.75 a.u. Rnd for several values of the
internuclear separation xo. We observe an approx-
imate m~' dependence for low velocities, whereas
for large zo, I, tends to a constant value. This
behavior is due to the strong variation of the inter-
ference factor g(z) = sin(2k„,-~,z)/2k~a, z shown in
Fig. 1(b), which tends to cancel out the integration
over large values of z (when I, is calculated by
integration over the sp region); it corresponds to
the physical circumstance that "close collisions"
(high-k excitations) do not contribute much to the
interference effects.

The interference term I„, corresponding to r eso-
nant exc itations, is shown in Fig. 3 as a function
of s6. To RnRlyze the effect of the intel"fel"ence
factor g(z) on the value of the integral we note
that„ for large velocities, the most important con-
tr'lbutlon to. resonant excitRtlons is given by the
low-0 r'eglon. %Kith incr'eRsing 26 the integration of
Eq. (15) covers smaller values of z, for which
g(z)- I; it may be seen that this gives place to a
logarithmic behavior of I„for sufficiently large
values of zv, as observed in Fig. 3. The value of
~g for which this dependence is reached increases
with ro. This behavior may be physically under-
stood by observing that fast charges excite plas-
mons with a maximum wavelength proportional
'to v/M~ (where (d~ —47LHe /v1 ls the plasma fre-
quency of the electron gas), so that if. v/I '„»r,
the excitation. of 'the longest wavelength plasmons
occurs as if the particles were united.

I- I I' i I -I I i I ! I i

3 4 5 6 7 81.
I"IG. 3. Results of numerioal integration of the inter-

ference term 1„(corresponding to resonant excitations)
as a function of the reduced. .velocity ~=z /vz for vE
=0.75 a.u. and for several values of. .the internuclear
distance 7.0.

The results for I-, and I-„correspond to the
curves for x, =0, shown in Figs. 2 and 3; the cal-
culation of. these terms was previously described
by Lindhard and Winther, ' and so does noi deserve
special comments here.

= 0.75

IV. LOW VELOCITIES

%e consider in this section the case v «v„; that
is, low reduced velocities as indicated by sv, in
Fig. 1(a). It is clear that in this case there is no
excitation of plasmons, the only excitations that
take place being those in a thin horizontal stripe
given by 0- ~-zv and 0 ~z & 1. In this region we
can use the following expression for f2 (Ref. 7):

f, (u, z) =-,'mu, (16)

which is applicable over almost the whole region
of integration (except for a small triangle just
above the point z = l, u =0). We then get, for u «I,
the energy-loss function as

Eg

e (u, z) 2 [z'+ X'f, (0,z)]' (17)

9/= 9/VF
) I i l i I il

3 4 5 6 7 8

FIG. 2. Results of numerical integration of the inter-
ference term&, . (corresponding to single-particle excita-
tions) as a function of the reduced velocity ~=&/&z for
&I, = 0.75 a.u. and for seve'ral values of the internuclear
distance &o.

I

Replacing this expression in Eqs. (9) and (10), and
using Eq. (8), we get for the energy loss per unit
pathleng th

dE 1 dR'
4(X: .'0 Cft

4
ZP[(Z ~+Z2)CI + 2Z~Z2C. I]:,IVF
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with

w', [z'+X' f, (o,z)]' '

I ' zsdz sin(2kzrp)zg', [z'+)P f,(o, z)]' 2k~my
(20)

for the relation C~/C~ as a function of k~r, . We
conclude from these results that, for low veloci-
ties, interference effects in the energy loss are
important for small internuclear distances, such
that k r, & 2.

The coefficient C~ depends only on the density of
electrons through the value of X', whereas CI de-
pends both on X' and k~rp. The first term in Eq.
(18), proportional to C~, corresponds to the result
of Lindhard' for the energy loss of two slow inde-
pendent charges Z,e and Z,e, and it is character-
ized by its linear dependence on the velocity.
Equation (18) indicates that this linearity subsists
for the energy loss of slow correlated charges
(because CI is also independent of the velocity).
The dependence of CI on k~rp may be understood
in simple physical terms; for v «v~ the electrons
that can be excited are only those located in a thin
spherical shell near the Fermi surface {of width
R~-25'kzv «Ez = zmv~2), so that the relative veloci-
ty between these electrons and the external charges
is -v~; the natural parameter to describe the in-
terferences is then the ratio between rp and the
wavelength k~ =kz'= k/mv„of the electrons at the
Fermi surface.

The values of C~ and CI have been calculated for
v~ =0.6 and 0.9 a.u. , by numerical integration of
Eqs. (19) and (20). In Fig. 4 we show the results

V. HIGH VELOCITIES

In order to calculate the energy loss for veloci-
ties v»vz [large reduced velocities, as indicated
by w2 in Fig. 1(a)], we can use the following ap-
proximate expression for e(k, ~) (Ref. 7):

(k'k'/2m)' —((u+ i6)' ' (21)

with

(d~= &d~+ (Kk /2m)

Using Eq. (22) in Eq. (7) we get

dR' one '2dk 2 szn kr

(23)

where the values of k, and k2, for (m@2/h m~)z» 1,
are given by

where ~ is an infinitesimally small positive quanti-
ty. This approximation corresponds to the case
~/k»g~, but otherwise arbitrary k, and describes
in a very simple way the collective and individual
electronic excitations. For ~- 0, we get

k, =—(op/v, k, =—2mv/I, (25)

which correspond to the extreme momentum trans-
fers hk, and Sk, . Expressing the energy loss as
in Eq. (8), we finally obtain

0.5

'2' 2mv'

1

k krp v
1

where the function E(x) is given in terms of the
cosine integral Ci(x) as

F(x)=x 'smx —Ci(x).

(26)

(28)

VF= 0.6
KF f0

FIG. 4. Ratio between the interference coefficient &~
and Lindhard's coefficient Cz for. the case of low velo-
cities, as a function of &+&0. We show the results for
&~=0.6 and 0.9 a.u.

In contrast with the case of low velocities, two
characteristic distances appear here, x,„=v/&u~
and r „=k/2m@, which are the reciprocals of the
wave numbers corresponding to minimum and
maximum momentum transfer, respectively, as
given in Eq. (25). They may be physically inter-
preted as the adiabatic distance for plasmon ex-
citation and the minimum impact parameter for
the collision between a classical particle and an
electron. By comparison of rp with these char-
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0.5

0 I 1 l I l l I I~
0 ~ t /V"

FIG. 5. Ratio between the interference term I and
Lindhard's stopping number L, as a function of ~Imp/v
for v&=0.75 a.u. and for velocities v =1.5, 3.0, and 6.0
a.u. The solid lines are the results of the analytical
expressions [Eqs. (26) and (27)].; the dashed line cor-
responds to calculations by Brandt et &. (Ref. 3), the
circles are the results of numerical integrations using
Lindhard's dielectric constant.

excitation of the longest wavelength plasmons (be-
cause r, «v/w~).

ln Fig. 5 we show the results for the relation I/L
as a function of e~r, /v for different values of the
velocity v. Here the continuous lines correspond
to the high-velocity analytical results of Eqs. (26)
and (27), whereas the circles are the results of
numerical integrations using Lindhard' s dielectric
constant. Small discrepancies exist for v = 1.5 a.u. ,
whereas for larger velocities the agreement is
excellent. The dashed curve is the result of nu-
merical integrations of Brandt et al.' on the basis
of a high-velocity approximation; their curve shows
a plateau for fz/2mv «ro «v/&uz, which is in dis-
agreement with the results presented here.

We notice that, in particular, the value. of
F(2 mrv, /8) may be neglected for the case of swift
molecular ions, as long as the condition ro» h/2mv
is fulfilled, so that we can express the interference
term I as a function of the parameter r,co~/v alone:
I=F(r,cup/v).

We finally observe that the value of the ratio I/L
is an appropriate quantity to describe the relation
between the energy loss of correlated charges and
the energy loss of independent ones. ; in fact, the
energy loss of independent charges is simply

I -=(1 —y) +1 (nvr/, &u~), (30)

where y =0.577 is Euler's constant. This limit
corresponds to the important case in which the
charges behave as if they were separated with re-
spect to the closest individual excitations (because
ro»h/2mv), but they act as united charges in the

'acteristic distances we can distinguish the follow-
ing limiting cases.

a. Separated charges. If ~, is much larger than
the adiabatic distance, r, » v/u&~ (and consequently

»rob/2 m), vwe can use the limit E(x)- 0 (for
x-~), and then I=0. The energy loss is given by
the first term in Eq. (8), with I given by Eq. (26).
This corresponds to the case of separated charges
dissipating energy independently.

b. Unj ted chmges. This is the case for xo +min
= 5/2mv, so that the separation between the parti-
cles is unobservable, even for the closest colli-
sions. Using now the limit E(x)- (1 —y)+ln(1/x),
for x-0, we get

I =—1n(2mv'/S (u&) = L,
and the factor between, square brackets in Eq. (8)
becomes I,+Z, )'I. This corresponds to the case
of a simple charge of value (Z, +Z2)e.

c. Mixed case. We finally consider the following
condition: 5/2mv «r, «v/&u~. Using the appropri-
ate limits for E(x) we now get

4 4
a (Z' Z2)L

Rl'0i'

and thus the ener gy-loss r atio becomes

p dN', .
) (

Z,Z,2)
I

(31)

(32)

VI. ENERGY LOSS AND PARTITION RULES

A simple argument to estimate the energy loss
of a cluster of fast charges has been given by
Brandt et al."' on the basis of partition rules for
the stopping and with the additional assumption
that, if the separation r, between the charges Z,e
and Z2e is such that

h/2mv «r, «v/~~,
they will act independently with respect to single-
particle excitations ("close collisions" ) and as a
single charge, of value (Z, +Z, )e, with respect to
plasmon excitations ("distant collisions" ). For
Z, =Z, they give the following formula for the en-
ergy-loss ratio R:

8 —= 1+L„/L; (34)

whereas according to Eq. (32) we get 8 =1+I/L.
Using in Eq. (34) Bohr's equipartition rule for the
energy loss, which states that the energies lost in
close and distant collisions are approximately
equal (L„-L,-,L), they find A=—1.5. -On the other
hand, the partition rule of Lindhard and Winther
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states that I-, =I.„+C, where the partition constant
C is a positive quantity independent of the velocity.
Using this latter rule in Eq. (34) more appropriate
values of R were found, ' always smaller than 1.5.

We note that condition (33) is the one correspond-
ing to the mixed case of Sec. V, and furthermore,
that the behavior of separated or united charges in
this case is rigorously c'orrect only if we consider,
respectively, high-k individual excitations, such
that 0 ~~ xp or ' 1ow-0 r esonant exc itations in the
sense that k «go'. However for intermediate val-
ues of 0, which also contribute to the stopping, the
variation of the interference factor sin(kr, )/kr,
gives place to a more complicated behavior [see,
for instance, Eqs. (10), (15), and (27)]. On the
other hand, when condition (33) is fulfilled, Eq.
(30) gives a quite satisfactory analytical approxi-
mation for the interference term I at high veloci-
ties. This analytical result corresponds to inter-
nuclear separations such that the charges behave
as separated with respect to violent individual ex-
citations [r,k, =r, (2mv/k)» 1], and as united
charges for long-wavelength collective excitations
(r, k, =r,~~/v «1), and where the interferences
are adequately integrated over the whole interme-
diate range of k. As the internuclear separation
r, increases (for constant velocity v), the contri-
bution from the collective excitations to the inter-
ference term I decreases in a continuous manner,
as our results show (Fig. 5).

In conclusion, the behavior described above does
not support the existence of a general relation b.e-
bveen the partition rules for the energy lops of a
single charge, and the energy loss of a cluster of
charges with internuclear distances in the range
k'/2mv «r, «v/&o~ This co.nclusion also raises
some question on the use of experimental data for
the energy-loss ratio between molecular and
atomic ions, in order to get a quantitative evalua-
tion of the partition rule. '

VII. DISCUSSION AND CONCLUSIONS

We have calculated the energy loss of a pair of
charges in correlated motions through a degenerate
electron gas, within the linear response approxi-
mation, and using Lindhard's dielectric constan't
to describe collective and single-particle excita-
tions. For sufficiently low velocities the energy
loss of correlated charges depends on the relation
between the internuclear distance x, and the wave-
length of the electrons at the Fermi surface/+.
For r, »$~ the interference effects on the energy
loss become negligible, as it is physically plausi-
ble.

Numerical calculations of the energy-loss terms
(L„, and I„,), have been performed over a wide

range of velocities, and the results compared with
simple analytical expressions for the case of high

,velocities. We conclude from this comparison that
the analytical expressions give an accurate ap-
proximation to the energy loss for v/v~ ~ 2. The
results of this work do not support a proposed re-
lation between the partition rules for the energy
losses of a single charge and the energy loss of a
cluster of charges.

We will finally make a few comments in relation
with recent studies of the energy loss of molecular
ions traversing thin solid films. ' ' In the velocity
range that has been studied experimentally, both
plasmon and short-range excitations of valence
band electrons give the most important contribution
to the energy loss. Clear evidences of molecular
effects on the energy-loss ratio R have been pre-
sented, and they were interpreted as arising from
collective resonance excitations.

Tape et al. ' have remarked that the experimental
results are clearly lower than the value R= 1.5,
which might be expected from an application of the
equipartition rule; they are instead in better
agreement with estimations' using the partition
rule of Lindhard and Winther. It must be admitted
that one should not expect an accurate description
of the energy loss in real media from a direct ap-
plication of the results for a free electron gas;
however this procedure may give a reasonable
estimation for the energy loss of swift charges due
to the excitation of valence electrons. ' Using the
results of our work it is quite straightforward to
get an estimation of R for fast H2' ions incident
on carbon foils; we take x, = 3 a.u. , v = 7 a.u. , and
~p=0.9 a.u. , which are appropriate values for the
experimental situation. '" Using these values
in Eqs. (26) and (30), we get" A=1+I/L=1+(1.4)/
(4.7) —= 1.3, in fairly good agreement with the mea-
su rements.

For a more consistent evaluation of the energy
loss of swift molecular ions in a film, one must
integrate over internuclear distances which in-
crease, due to the mutual Coulomb repulsion be-
tween the ions, during their transit through the
film. This can be readily accomplished when the
analytical expressions (26) and (27) are used.
Smaller effects in the case of carbon targets are
the excitation of the inner shell and the width of
the plasma resonance, which however, may be
taken into account in an approximate manner.
After performing these calculations, for H, ' inci-
dent on a carbon foil, good agreement was obtained
with the results of Tape et al. within experimental
uncertainties. However, from a quantitative point
of view, we believe that more accurate experimen-
tal results are necessary to enable a conclusive
comparison.
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