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Dynamic polarization echoes in piezoelectric powders
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The phenomenon of dynamic polarizaGon echoes has been studied in powders of several piezoelectric
materials at frequencies in the VHF band and in the C, X, and Ku microwave bands. The phenomenon is
found to be a consequence of the anharmonicity associated vrith the mechanical oscillations of the individual

particles of the pounder. The phenomenon does not result from a parametric coupling of the applied rf fields

to the mechanical-oscillator modes as might be expected by analogy to spin echoes and other types of
polarization echoes. The anharmonic-oscillator model including damping has been developed in the small-

signal limit for finite pulse widths. Although different sources of the anharmonicity cannot be distinguished in

this limit, the experimental data unambiguously. distinguish between the anharmonic-oscillator model and the
parametric field-mode interaction. Under most experimental conditions the small-signal limit is not valid and
the echo shapes, dependence on pulse amplitudes, and decay properties exhibit complex behavior. The
quantitative understanding of this behavior awaits further detailed calculations. Multiple two-pulse echoes are
detected at high rf powers. In the anharmonic-oscillator model multiple echoes arise naturally and the
predicted decay behavior is in agreement with experiment. However the decay time is found to be strongly
influenced by damage on the surface of the individual particles and by gases or liquids vrhich surround the
particles. Measurements of T, ' in a variety of gases with different acoustical impedances are in agreement
with a simple calculation based upon theacoustical impedance mismatch between the solid and the gas.
Measurements of T, ' versus frequency substantiate this model and indicate that the decay mechanism is
internal to the particles when immersed in a high vacuum. Measurements in diluted samples demonstrate that
interparticle interactions play no role in the echo formation process or in the observed echo behavior.

I. INTRODUCTION

Echo phenomena have been observed in a wide
range of physical systems. In addition to the or-
igin@1 work on nuclear' and electron" spin echoes,
several other diverse nonlinear systems have been
shown to exhibit related phenomena. These in-
clude photon echoes from optical transitions in
solids, ~ magnetostatic echoes in yttrium iron gar-
net (YIG},' cyclotron echoes in a plasma, ' echoes
from molecular transitions in a gas, ' ultrasonic
spin echoes, ' and phonon or polarization echoes
of several types involving propagating elastic waves
in piezoelectric crystals'"" and glasses. "

Observations of polarization echoes have also
recently been made in powder samples consisting
of a large number of small single-crystal particles
of magnetoelastic, ' "normal metallic, ' ' super-
conducting, '""'"and piezoelectric"" ' materials.
Powder echoes can be separated into two general
types. ~"~6 "Static" or memory" echoes are those
for which the relaxation time T„ofthe three-pulse
stimulated echo exceeds the lifetime of any reason-
able dynamic process. "Dynamic" echoes possess
relaxation times which are related to some inher-
ent dynamic behavior of the particles. This paper
is concerned only with the dynamic echoes in pow-
ders

Following a proposal by Gould" all echo pheno-
mena can be separated into one of two classes ac-

cording to the type of nonlinear mechanism respon-
sible for echoes. In "parametric field-mode" in-
teraction systems the applied field of the second
pulse interacts with the modes excited by the first
pulse to cause phase reversal and echo formation.
In "anharmonic-oscillator" systems the different
oscillator modes are either nonlinearly coupled to
one another, or, alternatively, there may be a
single anharmonic mode af oscillation. Either of
these nonlinearities can cause the subsequent echo
formation.

The purpose of this paper is to present a rather
detailed experimental study of the dynamic polar-
ization echoes in powders of the piezoelectric ma-
terials SiO„I iNbO„GaAs, and ZnO. A prelim-
inary report of our results has been published else-
where. " %'e shall conclude on the basis of these
experiments and the theoretical concepts discussed
in Sec. II that these systems belong to the anhar-
monic-oscillator class of echo phenomena.

A. Echo sequence

The pulse sequence used in the present work is
indicated in Fig. 1. Radio frequency (VHF, 20-300
MHz} or microwave frequency (C, X, and ICu bands)
electric field pulses of peak amplitudes Fi E2,
and F., and widths n„n„andn, and all with the
carrier frequency coo, are applied to the powder
sample at times t =0, 7, and T, respectively.
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FIG. 1. Schematic of timing sequence for a typical
three-pulse sequence showing occurrence of the ring-
ing signal r(t), and the echo signals e2(2y), e2(37, and

est 7"+7). The pulses and signals all have a common rf
carrier frequency +o. The signals and pulses have been
demodulated as shown here.

After each pulse the sample is found to ra+ate an
irregular quasicoherent ringing signal r(t) which
decays approximately exponentially. At the times
t=m7. , m =2, 3,4, ... the sample coherently radi-
ates the two-pulse echoes e, (n~r) At th.e times
t =nT+P7. , n =0,yl, y2, . . . and P =0, +l, g2, . . .
(with the condition that t& T) the sample coherently
radiates the three-pulse echoes e,(nT+pr). For
large r the two-pulse echo e, (2~) decays expon-
entially as e, (2 7)- exp(-2r /T), „where T, is a
phenomenological decay constant. Similarly, the
three-pulse echo e,(T+ r) decays as exp(-T/T, ),
which can be used to define the decay constant Ty.

In all eases considered here the constant T, is
associated with the damping constant of mechanical
oscillations of the individual powder particles.
The relaxation time T, mill be shown to have the
same interpretation for dynamic echoes of the
type considered here and is etlual to T,/2. For
static or memory echoes in powders T, is deter-
mined by an entirely different mechanism although

T, is again the mechanical damping constant, "
B. Previous work on powder

The first observations of echoes in powders mere
in magnetoelastic ferrite powders. '"" Although
originally attributed to domain wall resonances, "
the echoes were later recognized to involve mag-
netoelastic modes of the individual particles of the
powder. " The nonlinear interaction responsible
for echo formation was assumed to belong to the
parametric field-mode class of mechanisms. Work
on dynamic powder echoes in magnetoelastic mater-
ials has recently been extended to metallic ferro-
magnets' and to paramagnets. " Static powder
echoes have also been observed in magnetoelastic
powders. "

Polarization echoes have also been studied in
powders of both normal' ' and superconduct-

&ng'"'"" metals. Recent work xn thxs area and
reviews of the literature are included in Refs. j.9
and 20. Conclusive evidence is not available to de-
termine whether parametric field-mode or anhar-
monic-oscillator interactions dominate the echo-
formation mechanisms in either magnetic or metal-
lic powders.

Two groups in the Soviet Union were the first to
report the observation of polarization echoes in
yiezoelectric materials. '" Popov and Krainik'
reported tbe detection of "anomalous" echoes in
polycrystalline SbSI and Kessel' gt al."and re-
ported the existence of similar echoes in ferro-
electric powders. In a later publication" it was
reported that some materials were capable of ex-
hibiting echoes only when prepared in powder form.
Thus the possibility arose that polarization echoes
in powders are fundamentally different from those
in single crystals. In Ref. 24 it was also showy
that piezoelectricity rather than ferroelectricity '"
is a necessary condition for the effect to occur in
dielectrics. Other early work on powders included
a study of the decay rate I'=- T,' as a function of
particle size in KH, PO, (KDP)." However, be-
cause of the high rf frequency (l 6Hz) and large
particle size () 50- p, m diam), the powder nature
of the sample may have been immaterial to the
echo-formation mechanism in these measure-
ments.

During the past two years several short publica-
tions have reported on various properties of dy-
namic echoes in piezoelectric povrdersP' " These
papers have conclusively demonstrated the imyort-
ant role played by the macroscopic mechanical
rgodes of the individual particles in the echo-form-
ation procesa, However, many of the other results
appear to apply only to the specific experimental
conditions used. These studies include the temp-
erature "'"'"'""0frequency, ' '39'~0 and particle
size 's' dependence of the decay constant T» the
temperature, "'"s"'""9'0 frequency, '6 and particle
size'7 dependence of the echo amplitude e, (2r), the
rf power dependence, "'"anal ckhers.

Simultaneous with this work oa dynamic echoes
came the discovery by several laboratories that
the decay constant T, can under certain conditions
exceed any reasonable dynamic relation time in
a material »'28'3~'37s~~-~ Although some confusion
existed initially as to whether the static and dynam-
ic echoes were different aspects of the same phen-
omenon, or distinct phenomena, it soon became
clear that they did indeed arise through distinct
physical processes. Two basic models for the
long decay time T, of the static echoes have been
proposed. One involves the formation of a static
internal polarization or deformation of the indivi-
dual particles as a consequence of the application
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of a two-pulse sequence; T, is interpreted as the
lifetime of the polarization. "'"'"'" This process
is quite similar to that responsible for holographic
polarization echoes in single-crystal piezoelectric
semiconductor~ "'u The secnd involves the pby
sical rotation of individual particles due to the tor-
que exerted by the second pulse on the oscillating
dipole excited by the first pulse. "4' In this mech-
anism the phase of the oscillation at the beginning
of the second pulse is "stored" as the angle through
which the particle rotates. This torque-rotation
model appears to be gaining acceptance~ ""
although the published experimental evidence is not
conclusive.

The theoretical understanding of the dynamical
echoes in powders was not much clearer until re-
cently. Kessel' et a/."proposed that the echoes
could be explained by the existence of an electric
dipole proportional to the third power of the de-
formation (i.e. , strain). Although the physical or-
igin of such a property was not elaborated upon, it
would fall into the anharmonic-oscillator category.
Some later papers implicitly assumed that para-
metric field-mode interactions similar to that pro-
posed for single crystals' were dominant. "' s"
Others made no suggestion as to the origin of
echoes. In one paper an anharmonic-lattice poten-
tial was transformed into a parametric field-mode
interaction during the second applied pulse. " This
model requires that the frequency of the second
pulse is twice the natural oscillation frequency of
the particles. Smolenskii et al."and I.aikhtman"
have recently argued that anharmonic-oscillator
mechanisms should be much more effective than

the parametric field-mode interactions considered
previously. ""s" However, they do not explicitly
discuss the qualitatively different decay behavior
expected of an anharmonic-oscillator echo system.

In a preliminary report of the present work we
showed that only the anharmonic-oscillator mech-
anism is consistent with the experimental results
in SiO„I iNbO„GaAs, and ZnO." The conclusive
evidence is the behavior of the echo amplitude as a
function of pulse separation r. In the anharmonic-
oscillator case the echo builds up from zero for
v =0 to a maximum before decaying exponentially
for large 7. Echoes from a parametric field-mode
interaction decay monotonically from a maximum
for 7 = 0 (with the exception of certain singular
cases involving the interference of diferent echo
modes").

C. Outline of remainder of this payer

The main emphasis of the present work will be
the establishment of a more complete picture of
the experimental facts concerning dynamic polar-

ization echoes in piezoelectric powders. In Sec.
II we present a discussion of the relevant theo-
retical concepts including the distinction between
anharmonic oscillators and parametric field-
mode interactions. %e also carry out calculations
of a specific anharmonic-oscillator model using
pulses of finite midth valid only in the small-signal
limit and using 6-function pulses in the large-sig-
nal limit. Section III is devoted to the details of
the experimental methods used to acquire the data
which are described in Secs. IV and V. A summary
of the results and conclusions to be drawn from the
mork reported here is presented in Sec. VI.

II. THEORY

All echo phenomena are inherently nonlinear. ""
In order to understand the formation of echoes by
a particular system, it is necessary to have a. mod-
el of the responsible nonlinear mechanism and to
solve the relevant nonlinear equations. Because
the linear response of the system can serve as a
useful guide, we choose, in Sec. IIA below, to dis-
cuss in some detail the linea, r response to an ap-
plied electric field of a sample consisting of a large
but finite number of piezoelectric particles. In

Sec. IIB we present a general discussion of nonlin-

ear mechanisms responsible for echo formation.
In particular we distinguish between "parametric
field- mode" type interactions and "anha, rmonic-
oscillator" mechanisms. Echo phenomena resulting
from fourth-order lattice anharmonicity of the
particles are discussed in Sec, IIC. There we

treat, firstly, the small-signal limit which takes
into account the finite width of the applied pulses.
Secondly, me treat the large signal limit using
5-function pulses.

A. Linear response

Although the linear response of a single piezo-
electric particle is well understood"" for a
limited number of simple geometries, we review
it here in order to (i) develop notation and formal-
ism for later use when me discuss the nonlinear
response of such a particle, and (ii) to arrive at
an explanation of the linear response of a sample
consisting of a Large number of such particles.

%e approximate an irregularl, y shaped, random-

ly oriented piezoelectric particle with its eognpli-
cated electromechanical mode structure by a thin

platelet of thickness 2b and cross-sectional area
A and we consider only thickness vibrations of the

platelet, The orientation of the normal to the plate-
1et rel, ative to the applied field is given by the

angle 8 and it is assumed that the normal compon-
ent of the applied field E cos8 couples to the thick-
ness vibrations of the platelet with the l.inear piezo-
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T = = c2S —eEi
BP„
BS

(2a)

aU,D=- =cE +eSil
in

(2b)

where D is the electric displacement and T is the
stress. The damped-wave equation for the elastic-
displacement field u(x, t), where S= su(X, t)/Bx, is
given by

electric constant e. We assume that the electrodes
producing the applied field are at a sufficient dis-
tance from the particle that the field outside the
particle is just E = V/d, where V is the voltage ap-
plied to the electrodes and d is the electrode spac-
ing, Further, when calculating the response of a
large number of particles in a single circuit, we
shall treat each particle independently of the
others, neglecting any particle-particle interac-
tions.

The internal energy density of the platelet for
this one-dimensional linear problem may be writ-
ten

U„=— S — E S-—' E

Here, c» e, and a are, respectively, the appro-
priate second-order elastic constant, the piezo-
electric constant, and the dielectric constant of
the material. The elastic strain of the thickness
mode is S, and E„is the component of the internal
field normal to the platelet surface. The piezo-
electric equations of state take the form

eE„(X,t) =eE„(x,t) [U(x+b) —U(x —b)]

and its gradient is given by

(5a)

—[eE„(x,t)]=e ' ' [U(x+b) —U(x —b)]
9 aE),(x, t)

+eE„(+b,t)[ &(x+5) —6(x —b)].

Ein—=0 =6 +e —
)ax Bx

the resulting equation for the amplitude a(t) in the
slowly varying envelope approximation is given by

a+[F-t(o)o —Q)]a=tPE„(+b,t)e'"o" 4) (Va}

where the piezoelectrically stiffened normal-
mode frequency is given by

c,(1+fZ') j mm„„dV c,(1+fan')

P JmdV P

The second form of Eq. (Vb) is obtained by taking
m(x) to be the simple, odd, periodic function

m(x) = b sinbx. (Vc)

Here, k is the wave vector of the normal mode.
The constant P in Eq. (Va) is given by

(5b}

Here the unit step function U(x) = 1 if x & 0 and
U(x) =0 if x &0, and 6(x) is the Dirac 6 function.

Making use of Poisson's equation within the par-
ticle

laT c, leu+ 2Fu = ——= —'u ———(eE,),
p gg p Ãg p

e m(b}
~Po

(Vd)

where F= T,' is the damping constant u =- Bu(x, t)/
st, u = s'u(x, t)/st', and u,„-=s'u(x, t)/sx'.

We take the field E„to be osciBatory
I-exp[-4&o(t —t )])owith a slowly varying amplitude.
The solution to Eq. (3}is taken to have the form

From Eqs. (4b} and (Vc) one finds

&= 1- stn2&b/2bb. (Ve)

The electromechanical coupling constant is given
by

u(x, t) =a(t)m(x)e &"o« 'o), (4a)
K =8 /fc (Vf)

V ' mdV=pb ~, (4b)

where the integra1. is over the volume V of the par-
ticle and 6 is a normalization constant. The second
term on the right-hand side of Eq. (3) can be evalu-
ated by noting that eE„(x,t} is discontinuous at the
surface (x =+b) of the platelet

where a(t} is a dimensionless slowly varying ampli-
tude and m(x) is a real, odd, normal-mode func-
tion normalized according to

The boundary conditions at the surfaces of the
platelet (x = yb) are: (i) the normal component of
the electric displacement D is continuous; and (ii)
the surface is stress free 7=0. Their application
leads to 5 =1 and to an expression for the normal
component of the internal field at the surface
E„(+b,t), in terms of the normal component of the
external applied field E(t) cos8

E„(ab,t}= ', cos&E(t).

The solution to Eq. (Va) is

t
(i)= (e(),)eip e„(e),r)e e[r(r —t)eio(r —t)ldr, eee[-[r —'(e,, —ie)[(e —e,)[.

to
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We take E(f) to be the real part of a rectangular
rf pulse of frequency (d„amplitude E, and width
Qa

E(f) =t'Ee '"o" 'o'[U(t —t, ) —U(f —t, —&)). (10)

Note that this specific form assumes a particular
phase for E(t). Although inconsequential for the
present case of piezoelectric tinging, the precise
choice of phase for the pulses does affect the phase
of the echo as derived in Sec. IIC below. The
solution to Eq. (9) for t & f,+ 6 can then be written

Cl

~ n0
CL

«X
I2-

{&)D= &p.s-
T&.= 200ps

l

----—+-—-
(b) 6= 6p.s

T&= 200ps

e(f, ~, e) = [e(f„&,8)+e (&, e,E, n)]

x exp(-[I'- i(a, A)—](t —f,)], (1la)

G(() =(sin(/])e ",

a~(ur, e,E, a) = p(e-,/[e, /e/(I+K')] coseEnG($),

(11b)

(11c)

C9
}

(L' 8—

0
0 l00

TlME (p.s)

II 9 I

5 = (~+&F)k&,
and

ou ~ (oo

(lid)

(11e)

FIG. 2. Evaluation of the ringing signal, Eqs. {13)and
{14), for 4000 particles whose natural frequencies are
randomly chosen within -5 x 106 ~ c.~/2~ ~ 5 x 106 Hz.
Decay time 72= 200 ps and pulse widths 6= 1 and 6 ps.

Here we have neglected sum frequency terms in

(d, + 0 corresponding to antiresonance.
The electric dipole p(t;&u, 8) associated with the

oscillating platelet is given by

p(t, w, 8 flan, t=, ro, 8) dv

e:S(x,f, ur, 8) d V, (12}

where )3(x, up, 8) is the piezoelectric polarization
of the platelet. Using the difference frequency &
as a particle-mode label, the voltage response of
a circuit containing a sample consisting of many
particles is

V(t)=pt„=pp(f,~, e) eG, (~), (13}

where 0 is a unit vector in the direction of the elec-
tric field mode of the circuit and Gs(ur} represents
the rf frequency response of the circuit and re-
ceiver. The sum Q„is over all modes of all par-
ticles of the sample, the modes being labeled by
the difference frequency (d.

On demodulation by video detection the receiver
output is given by

v„„(f)=(iv(f) j), (14)

where (~ })denotes the time average over the video
bandwidth of the absolute value of the quantity en-
closed.

It is useful to evaluate Eq. (14}for a large but
finite number of particles. Taking the rf band
width to be infinite IGe=Gs(0)] and the video band

width to be much less than (d„and assuming for
convenience that b and 8 are the same for all par-
ticles, the video response for 4000 particles whose
difference frequencies ~ are randomly chosen
within -5 x 10 ~ ~/2v ~ 5 x 10' Hz has been evalu-
ated and plotted in Fig. 2 for pulse widths a=1
x10 '

p, s and ~=6 x10 ' itis. The essential fea-
tures of these plots are: (i) the envelope of the
irregular "ringing" signal decays as exp[-F(f
—fo)]; (ii} the details of the signal are dependent
upon the exact choice of the random values of &,
and (iii) for wider pulse widths lower-frequency
components appear in the signal [compare Fig.
2(b) with Fig. 2(a)].

The calculated signal ampbtude is clearly pro-
portional to the applied field strength, whereas its
calculated dependence on the pulse width is more
complicated as indicated in Eqs. (11). In Fig. 3

the calculated dependence of the. signal amplitude
on the pulse width is shown. The pulse-width de-
pendence is determined by the explicit factor of
a in Eq. (lla) as well as the n dependence of the
effective Fourier spectrum of the pulse [Eq. (Ilc)].
As the pulse width increases the width of the pulse-
frequency spectrum decreases thus affecting fewer
particles, whereas those particles with (d = ~ ' are
excited more strongly.

The dependence of the ringing signal on the drive
frequency &, can be easily deduced from Eqs. (11)
and (13). When a reasonably well-defined particle
size isused, the platelet width b can be factored out
of the sum over (d. Further, assuming that the
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FIG. 3. Dependence of the ringing amplitude w(t) on
pulse width Q for F048 particles and a receiver' band-
width of 4 MHz. The natural frequencies of the pax'-

ticles were chosen as in Fig. 2.

density of particle modes is reasonably smooth
over the width 4 ' of the Fourier spectrum of th
applied pulse [Eq. (11c)]the dependence of the
ringing amplitude on 0 is given entirely by the
density of modes G„(~};all other frequency fac-
tors cancel. The existence of an upper limit to
the particle size results in a cutoff frequency
Q, =vv/b below which G„(&o}-0and the sample
does not respond. In general there will exist no
corresponding high-frequency cutoff in G„(+)be-

cause of the excitation of higher harmonics.
Contrary to existing statements, "the ringing

signal considered here is not an analog of the
free-induction decay of a spin system. The ringing
is a linear and essentially incoherent signal which
vanishes in the Emit of an infinite number of par-
ticles because of phase cancellation of the signals
from the individual oscillators. The free-induc-
tion decay of a spin system is coherent and con-
sequently does not vanish as the number of spins
inc reas8$.

in Sec. IV A we shall compare the above calcula-
tions for the ringing signal to experiment and con-
clude that good agreement is obtained.

The irregular ringing signal described here is
the remnant of the incomplete phase cancellation
of the oscillating dipoles associated with the modes
of each particle. In the limit of an infinite number
of modes the sum in Eq (13).can be replaced by a
double integral over the mode distribution G„(&u),
and the sold angle sin6}dyd8, where y is the azi-
muthal ~1,e in the plane normal to the field.
Taking the distribution of particle orientations to
be uniform [G„(8,p) =- I/(4v)] we find

Taking G„(z)to be slowly varying with respect
to 6 ' and to G„wefind from Eqs. (11)-(13)and
(15)

sin8cos&d8 u t, ~, 8 exp -ia, t-to 6„~d~.
m os

G, (~) =G,(0}/[I+(~/~&}'], (IV)

and using the linear solution given by Eq. (lla) with

a(t„u&,8) =0 we obtain

V(t) =-
3 1, , cov', EaG„(0)G„(0)G(gs)
r K'

2 Am'(b)

x exp [-i(u, (t —t,) —(I'+ +s)(t —t,)],
where $s = $(ur =i~s) = 2t(u&s+ I' )n. In the experi-
mentally interesting case of &~» F we have that
V(t) is just the ringing of the electrical circuit
at the drive frequency ~, damped by the circuit
band width &os. In the limit &gs- ~ we have V(t)
-0. Thus, as expected in the limit of a very large
number of piezoactive vibrational modes, complete
phase cancellation of the particle oscillations oc-
curs and no signal is detected.

In our discussion of the coherent nonlinear re-

sponse of the powder sample we shall make use
of Eq. (16) with a(t, &o, 8) representing the solution
to the appropriabe nonlinear wave equation.

$. CLIIIificadon of nenhaearities

Gould" has distinguished between two general
types of nonlinear mechanisms which can give
rise tb echo phenomena in classical oscillator
systems: (i) "Field-model interactions are those
in which the applied field couples parametrically
to the previously excited modes of the system
causing phase reversal and subsequent echo form-
ation. (ii) "Anharmonic-oscillator" interactions
exist even in oscillator systems which interact
linearly with the applied field. However, either
the different free-oscillation modes are coupled
anharmonically (e.g. , in harmomc generation) or
the free oscillations exhibit nonlinear amplitude-
dependent dispersion and/or damping. In the fol-
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lomal; paragraphs me discuss these two classes
of interactions and give examples of each. One
of the conclusions of this paper is that the nonlin-
ear mechanism(s) responsible for dynamic polar-
iaatim echoes in pieioelectric powders belong to
the anharmome-oscillator class.

4. Fke~ =@de keterections

In many physical systems there exists a para-
metric coupling between an applied electromag-
netic field and previously excited normal modes
of the system. The first pulse (at t =0) of a two-

pulse echo seyaence in such a system excites
normal modes. The second pulse (at t = 7) interacts
yarametrically with these modes so as to reverse
their phases. Thus the dephasing occurring during
the interval 0&t & r is recovered during the inter-
val r&t c 2r. Cces~uently, the modes coherently
radiate an echo I,t t =27. Since the phase reversal
occurs only during the second pulse at t=r, the
echo amplitude (neglecting damping) is independent
of the pulse separation r. On taking damping into
account, the echo amplitude decreases from a fin-
ite vatue monotonically with increasing r from its
maximum vsse at 7 =0.

Spin echoes x'epresent the most familiar example
of echoes resultinN, from a parmnetric field-mode
interaction. The interaction of a spin S with the
applied field 8 is described by the Bloch equations,
which are parametric in H„.Similar considera-
tions hold for photon echoes and phonon echoes in

par amagnets and glasses. "
Parametric backward wave interactions giving

rise to polarization echoes in crystals represent
another form of parametric field-mode interaction.
In one class of Iuchprocesses the interactionarises
from nonlinear piezoelectricity of the form
U= &y,ES', where y, is a fifth-rank tensor. " The
resulting stress is T =y,ES. A forward propaga-
ting strain wave S-e ""~ ~', and an applied field
E-e""', at twice the frequency, lead to a back-
ward propagating stress wave T-e""'~', which
is detected as the echo. When the frequency of the
field E and that of the strain wave S are equal, a
nonlinear electrostrictive interaction has been
proposed of the form U= —,'yg'S', where y, is a
sixth-rank tensor. " The magnitude of y, is un-

known and therefore it is difficult to assess the
importance of this mechanism. This mechanism is
considered in detail in the Appendix explicitly
for powders. We note here only that it does not

by itself give rise to multiple two-pulse echoes at
t =mr, m &2, nor does it give rise to a stimulated
three-pulse echo.

A different parametric mechanism has been
shown to be responsible for polarization echoes in

high- resistivity piezoelectric semiconductors when
the field and the strain wave are at the same fre-
quency. '"" The field at frequency &, causes ion-
ization of charges trapped at shallow defect states
to give a component to the conduction electron num-

ber density n which oscillates at 2~, . This number
density then interacts with the longitudinal electric
field E -e ""'~' of the forward propagating
piezoactive strain wave via the drift current
J=q pE&, where q is the electronic ch3rge and

p, the mobility. Consequently, a backward cur-
rent wave J™e""'~',and concommitantly a
backward strain wave and echo are generated.
A related mechanism is responsible for holo-
graphic echoes with long time storage capability
in such materials. '

Polarization echoes with very long time storage
in piezoelectric powders constitute yet another echo
phenomenon arising from a parametric field-mode
interaction. The nonlinear mechanism has been pro-
posed to be simply the tot que exerted on an oscillating
electric dipole by an applied rf electric field. "'""
The resulting mechanical reorientation of the indi-
vidual particles effectively stores the phase of the in-
dividual particles at the instant (f = 7) of application
of the second pulse. The dependence of the excita-
tion of a particle by a third pulse on the orientation
of the particle causes the coherent radiation of the
stimulated echo. A two-pulse echo is radiated in
a similar manner. The present paper is concerned
only with dynamic echoes in powders, processes
which do not involve particle reorientation. By
methods discussed in Sec. III the long-time storage
effects have been suppressed in all experiments
described in this paper.

2. A nharrnonic-oscillamr interaeti ons

A system of oscillators which interact only lin-
early with applied fields can nonetheless exhibit
echo phenomena if the oscillators are themselves
anharmonic. " In a two-pulse echo sequence the

first pulse serves simply to excite the oscillators
and the second pulse does precisely the same.
However, between the two pulses and, in particu-
lar, after the second pulse the oscillators behave
anharmonically. In effect the anharmonic coupling
between the oscillations excited by the first pulse
and those excited by the second causes a cumula-
tive phase reversal to occur after the second
pulse, thus undoing the dephasing which occurred
between the two pulses. At t =2r this reversal
is complete and a coherent echo signal is radiated.
Since the time interval 7 &t & 2r is that during
which the anharmonic interaction occurs, reducing
r to zero causes the integrated interaction to van-

ish and the echo amplitude must also go to zero.
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C. Anharmonic oscillator

Consider the nonlinear behavior resulting from
lattice anharmonicity. The internal energy den-
sity U of a particle takes the form

U= U~+ UNL (19)

where the linear term U„is given by Eq. (1) and

the nonlinear term U„Lcan be written

Consequently the echo amplitude increases with
increasing pulse separation 7. in contrast to the
behavior exhibited by echoes derived from para-
metric field-mode interactions. In practice, mode
damping dominates the behavior for large v. This
causes the echo to initially increase with 7, reach
a maximum, and finally decrease for large v..

The three known examples of echoes from anhar-
monic oscillators are cyclotron echoes in plas-
mas, "'"s"magnetostatic echoes in YIG" ~ and
dynamic polarization echoes in powders. " The
simplest consequences of anharmonicity are am-
plitude-dependent dispersion and damping. Addi-
tional effects such as harmonic generation cannot
always be ruled out. The physical origin of the
anharmonicity can be inherent to the system or be
induced by defects of various types.

In Sec. IIC we describe a model based upon pure
lattice anharmonicity.

fourth-order term.
The lowest order the fourth-order anharmonicity

causes nonlinear dispersion (phase shift) of the
fundamental modes. Therefore, although odd har-
monics are allowed by the boundary conditions of
a thin platelet, we neglect all harmonic generation.
Assuming a solution of the form given by Eq. (4a)
we can derive in the slowly varying envelope ap-
proximation [see Eq. (Va) j the equation

b+ [I'- t(~, —&)]a —ty ~a ~'e

=APE„(+b,t)e'~o" 'o' (22a}

where 0 and P are given, respectively, by Eqs.
(Vb) and (Vd), and y is defined by

mm„m dV
4 * =- —,

4 k4b' (22b)
P&o J m'dV P&o

where the second form of Eq. (22b) arises specif-
ically for the platelet geometry [see Eq. (Vc)].
Equation (22a} explicitly ignores harmonic gener-
ation.

In the limit of y=0 [see Eq. (9}]or in the limit
of E„(+b,t) = 0, Eq. (22a) can be solved exactly.
In the discussion below we describe the echo form-
ation process resulting from Eq. (22a) in (i) the
small-signal limit for finite pulse widths, and in
(ii) the large-signal limit for 5-function pulses.

U„~= (1/3! )c,S + (1/4! )c4S + (20)

Here c, and c, are, respectively, the effective
third- and fourth-order elastic constants. The
nonlinear wave equation

c c c, I S(eE,.)u+2ru-~u -~u u —~ u'u
p xx p Ã xx 2p x Ãx p

(21)

The linear piezoelectric driving force on the
right-hand side excites only those modes in the
neighborhood of the applied rf frequency (do. %e
refer to these directly excited modes as the "fund-
amental modes" and assume that for a given par-
ticle and frequency (d, only one such mode is ex-
cited. The nonlinear terms on the left-hand side
of Eq. (21) cause amplitude-dependent phase shifts
and damping of the fundamental modes as well as
harmonic generation.

Rather than attempt to find a general solution of
Eq. (21) we make the somewhat arbitrary simpli-
fication of retaining only the fourth-order anhar-
monicity. The higher-order terms can be dropped
on the basis that they are small. The role of the
third-order term in causing harmonic generation
and echo formation has also been considered. Ne
note here only that in the small-signal limit the
results are similar to those obtained here from the

1. Small-signal limit-Finite pulse widths

We restrict the analysis here to: (i) the small-
signal limit correct only to first order in the non-
linear constant y; and to (ii) pulse widths 6 small
compared to the damping time T, = I'"', 1"6«1.
In this case the nonlinearity can be neglected (y =0)
during the applied pulses. The solution [Eqs.
(lla}-(lie) J of the linear driven equation [either
Eq. (Va} or Eq. (22a) with y=0] at the end of each
applied pulse is then used as the initial condition
for the solution of the freely oscillating [E„(+b,t)
= 0] nonlinear equation of motion described by Eq.
(22a).

The exact solution of Eq. (22a) with the right-
hand side set equal to zero is

a(t) =a(t, ) exp[-[I'- i(~, - a)](t - t, ) - y/(y - y*)

x in[1 —t(y —y*)/21'
~ a(to) I'

x (1.—e '"" 'o')]J. (23a}

Here we have specifically allowed p to be complex
and therefore are including possible nonlinear
damping effects as well as the nonlinear dispersion
arising from the real y of Eq. (22b). To first order
in both the real and imaginary parts of Z we have
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«(f) = s(f, ) exp(- [I —i(~, —a)] (t —t,)]

x 1+i l«(t, ) l'(I-e '"" 'o') . (23b)

To first order in y, only the nonlinear behavior
occurring after the second pulse of a two-pui. se
sequence is of importance. Applying Eqs. (lla)-
(lie) for the excitation caused by both the first
and the second pulses, the initial condition «(fo)

at t, = T+ g for Eq. (23b) is found to be

z + ~) (s s-&r &o&~+&& )s-&r+&o&«~

where u~, and a~ are the excitation amplitudes
imparted by the first and second pulses, respec-
tively, and are given by Eq. (lib).

On substituting Eqs. (23b} and (24) into Eq. (16)
the following expression is obtained for the coher-
ent voltage generated in the circuit after a two-
pulse sequence

X4 e' m4b
V(f) = ~ G (0)c, ,},(-,'&o, T,) ~ I, AG„(0)o,,~,E', exp[ i~,(f--2r)- I'(t 2n, )]

xP-e'""."~')f G'&& )C'&& )s'""-"&a~.
a&o

(25)

Here we have set G„(up)=G„(0)and G~(&u) =G„(0)
and taken them out of the integral, and $y and
correspond to $ of Eq. (lid) for the first and sec-
ond pulses, respectively.

Several significant conclusions can be drawn
from the small-signa1. limit represented by Eq.
(25). (i) The signal amplitude is proportional to
the anharmonic coefficient c4, the square of the
electromechanical coupling constant K' (when
K' «1), and the mechanical Q of the particles
(Q= to, T,/2). (ii) The signal amplitude increases
with the applied field amplitudes E, and E, as
E,E',. (iii) The dependence on the pulse separation
r is given by the exponential factors preceding the
integral; for I' n, «1 and t =2m it is given by
e '"'(1-e '"'). Thus for r-0, (V)f-r andfor

~, V(t) =e "'. (iv) The integral over ru in Eq.
(25) is nonzero only for t =2v. To first order in

c~, this 27' echo is the only coherent signal radi-
ated. (v) The echo shape is given by the evaluation
of the integral over &. Several representative
echo shapes are given in Fig. 4. (vi) Allowing c,
to be complex has no effect other than to shift the
rf phase of the echo. Consequently, in the small-
signal limit nonlinear absorption and dispersion
of these general types are indistinguishable. The
properties (ii), (iii), and (iv} can be used to com-
pare this class of small-signal anharmonic-oscil-
lator theories to experiment. %e make this com-
parison in Sec. IV.

The validity of the small-signal solution can be
seen from Eq. (23) to require that

'T~[ T

0

gl= g, =l~S

»5 .=25'

050-

l 00-
(l)
hl=aP=l

075- I =25]}is

0.50-

CD I
I

0.25-

l00I- '

I (c)
075~ Ql lOP,s

5p- lps.
-25ysf

025;

l00, (g)

075}- ~l lW

5p= lOps
050" T =25'

025
}

0 l0 20 50 40 50

t-rI p.s)

L(E, n, (y, e, f) -=l a(t, ) l'(1- 's"" 'o') «l. (26}

Not only does I. depend upon the applied pulse
amplitude E and width 4„-but also on the relative

FIG. 4. Two-pulse echo shapes and positions com-
puted from Eq. (25) valid for the anharmonic oscillator
model in the small signal limit. Amplitude plotted vs
f —7' with z= 25 ps, T2= 1000 ps, and (a) 4&= &2= 1 ps,
0) g, =g~=&0 us, (c) Z, 3.0 ps and Z, =l ps, and {d)
4&~l p8 and 4&=10 ps.
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mode frequency ~, the particle orientation 8, and
the time t. Thus for a given applied prise, some
particles in a single sample may exhibit large-
signal behavior while others satisfy the small-
signal limit.

If, as a fairly realistic example, we choose
8=0, &v=0, t-~, Q= '+OT2—=10', E =10 V/m,
n, =10 6 s, 21'a «1, K2=0.25, p=3 x10~ kg/m',
5 = 50 x 10 ' m, e,/e = 1, then we find that the
small signal limit breaks down for e, ~ 1Q'c,.

In order to extend the small signal result to
arbitrarily large signals (i.e., higher applied
fields), one should solve the full nonlinear inho-
mogeneous equation, Eq. (22a).

2. Lurk@-signul Eimit-5-function pslses

In the limit of 6-function applied pulses, the
problem, as formulated by Eq. (22a), can be

solved exactly. Because of the infinitesimal
pulse widththe pulses only provide the initial
condition for the solution to Eq. (22a) with E„
=0. For real y the solution [Eq. (23a)] is

a(t) = a(to) exp[- [1 —i (ar, —&)](t —t, )

+i(r/2I") ~a(t.) I'(I - e """')]

In accordance with Eq. (lib) for delta-function
pulses [G(g)-l], we set

(27)

a«-=-P[eje/(I+K')]cos8A, ; i =1,2 (28)

to be the amplitude of the excitation caused by the
~th pulse, where A, =E, 4,. is the pulse area in the
limit 4,-0, The solution for t & 7. for a two-pulse
sequence is

a(t ) r) ={a»exp[-(I +iA)v'+i(y/21') ~a» ~'(I —e 'r')]+ a»)exp(- [I"-i(&g, —Q)](t- r)].

xexp(i(r/2r} la»exp[-(r+in)a+i(r/2r) la» I'(I —e '"') ]+a» I'(I —e '"" ")& (29)

Setting

q -=(y/21') 2a»a ~ "'(1-e '"" "),
e=-n~-(y/21) ~a., ~

(l-e '" ),
6 =(y/21'){a' (I-e-sr&t-~&)

—a2»[(m —1)(1—e ')

e-2r~(I e-2ro-~~)]]

(30a)

(30b)

(30c)

l

and uslIlg

e'"~'e=Z, (q)+2+i~J (g) cosmC,
m~&

(30d)

where J' (g) is the mth order Bessel function of the
first kind, we find on insertion of Eq. (29) into
Eq. (16) that V(t} is zero except near t =mT(m = 2,
3,4, ...}. The expression for the voltage corre-
sponding to the echo at t =mT is

1 K' c Am'(5)jfs
mT 2 j+~& 0 p

exp [-I'(t —r) —ie (t —mr)]0

x G„(&o)Gs(&u)e'""~"d&o sin8cos'8e+~'s[iA, Z (q)e "' A,+J,( })]dt8
0

(31)

This result is similar to that obtained by others'~
except that here we have included damping and
have not neglected the phase factor 6 (8}because
of its dependence on the particle orientation 8.
For large amplitudes 6 (8) can exceed 2v and phase
cancellation of the radiation of particles with dif-
ferent 8 can occur. In addition, g is dependent
upon 8. Thus the integral over 8 in Eq. (Sl) has
a significant effect on the echo behavior in the
large-signal limit. As in Eq. (15}the solution
given by Eq. (31) has assumed a uniform distri-
bution of particle orientations. Ef only a single
orientation were present in the sample, one would
insert into the 8 integral a 6 function 6(8- 8,). In
the small-signal limit [6 (8) «2s, g(8) «1] there
is no qualitative difference between these two ex-

tremes. On the other hand, in the large-signal
limit the decay of the echo as a function of pulse
separation 7 is significantly different for the two
extremes. En particular, for a single orientation
8, the echo amplitude oscillates as a function of
r due to the nature of the Bessel functions in Eq.
(31). The period of the oscillations decreases with
increasing g. For a uniform distribution of 8, the
integral over 8 smoothes out the oscillations either
partially or completely depending on the ampli-
tudes A, and A, . Thus we conclude that in discus-
sing experiments on randomly oriented particles
carried out in the large-signal limit the integral
over 8 cannot be ignored in this or any other an-
harmonic-oscillator theory.

The shape of the echo is determined by the re-
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maining integral over ~ which is dominated by the
narrower of the mode distribution function G„(&u)
or the receiver response function G„(&g). In the
present powder experiments G„(~)can be taken
to be constant and the echo shape is simply the
Fourier transform of G~(~) when using 6-function
pulses.

We note that the mw two-pulse echoes with
m & 2 arise quite naturally out of the anharmonic-
oscillator theory with a simple fourth-order an-
harmonicity. This contrasts with certain types of
parametric field-mode interaction theories (see
Appendix) .

Expanding V, to lowest order in q we find

P' ~ ghlclll 1/sl 1A~c 2 r(t &)(I c art tM))Ill 1 (32)ISA 4 1 2

Note that for 21'(t —7')» 1 the mr echoes all decay
as exp[-2I'(t —7}]where t =m~. This general be-
havior will be compared to experiment in Sec.
IV. Note that the relative phase of V, is given
simply by the j factor.

Carrying out the above procedure for a three-
pulse sequence readily reveals that three-pulse
echoes shall occur at t=nT+pv with n, p=0,
a1, +2, . . . and t & T.

3. Finite pulse widths-Large-signal behavior

The complete evaluation of the anharmonic-
oscillator model for fourth-order anharmonicity
requires the numerical integration of Eq. (22a)
for a two-pulse sequence and the numerical inte-
grations over the frequency difference & and the
orientation 8 in Etj. (16). This complete solution
is beyond the scope of the present paper.

An approximation to the exact solution can be
obtained in the following manner. Assume short
but finite width pulses so that the nonlinear term
(-iy ~a ~'a) in Eg. (22a) can be neglected during
the applied pulses. Thus the solution during the
pulses is just that given by Eg. (11). Between and
after the applied pulses the exact solution to Eq.
(22a) is given by Eq. (23a). Matching these solu-
tions at the leading and trailing edges of the pulses
gives the solution with the approximation that the
nonlinearity is "turned off" during the pulses.
This procedure has been carried out and presented
elsewhere. " The decay curves (e, vs r) and the
echo shapes calculated in this way show many fea-
tures similar to the experimental data presented
in Sec. IV. However, several inconsistencies re-
main and it is not yet known whether or not they
ean be resolved by taking account of the distribu-
tion of 8 and of I'-=T,'.

III. EXPERIMENTAL METHOD

The experiments reported in this paper were
performed in two frequency regimes: (a) VHF

(10-300 MHz}; and (b} the C (5 6Hz), X (10 6Hz),
and Ku (18 GHz) microwave bands. We discuss
these two regimes separately.

A. VHF

The preparation of powder samples for use at
VHF frequencies consisted of several steps. Sin-
gle crystals were ground in a mortar and pestle
and the particles sized using standard mesh
screens. Then the particles were washed, so as
to detach very fine particles electrostatically
adhered to the larger ones and sieved once again.
In most cases they were then outgased at -200'C
and sealed in a high vacuum in a pyrex holder in
which plane parallel electrodes were constructed.
The electrodes were separated typically by 1 mm.
In the case of QaAs we found that by briefly etching
the particles prior to the final sieving, the decay
constant T, = 7' ' could be increased by some two
orders of magnitude or more. We believe that
before the etching, T, was limited by surface
damage incurred during the grinding process.
The increase in T, achieved in this way was an
important factor in the success of the experiments
performed on GaAs powder. The T, of the quartz
powder samples obtained from powdered silica
(Fisher Scientific S-153) was unaffected by either
etching or annealing procedures. In spite of these
preparation procedures it should be noted that the
individual particles of a powder sample have a very
irregular shape, and consequently, extremely com-
plex electromechanical mode structure.

A typical sample consisted of about 10' particles.
In general it was the echo to ringing ratio which
limited the accuracy of the experiments rather
than the echo-to-receiver noise ratio. The echo
to ringing ratio increased with increased number
of particles. For fewer than 10' particles echoes
were not detected.

A block diagram of the apparatus used at VHF
frequencies is shown in Fig. 5. The rf pulses were
derived from two rf pulsed oscillators (Matec
6600}whose relative pulse amplitudes, frequen-
cies, widths, and timing were independently ad-
justable. Typically, the pulse amplitudes were ad-
justable up to 1000-V peak across the 1-mm thick
samples. The pulse widths ranged between 0.5 and
16 p, s and the pulse repetition rate ranged up to
1000 Hz. In most experiments the sample capaci-
tance was resonated with a lumped series induc-
tance or with stub tuners. The resulting band
widths were typically 4 MHz. A boxcar integrator
wa.s used to obtain the detailed shapes of the echoes.

If an oscillator is started at t =t„the pulse is
represented by the real part of Eq. (10). The rel-
ative rf phase of two pulses started at to 0 and
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FIG. 5. A simplified
block diagram of the PHF
spectrometer used in the
present experiments. The
amplitudes g& and E2, and
the widths 4& and g., of the
two pulses are independently
variable. Additional pulses
with amplitudes equal
either to E& or E2 could
also be applied to the pow-
der sample. The tuning
circuit consisted of either
a lumped series inductance
or a stub tuner to resonate
the sample capacitance.

at t, =7 is just pT If T varies randomly 67 from
one two-pulse sequence to the next, the change in
phase is p67'. If (dp~~«1, the pulse sequences
are effectively phase coherent. If (dp&7 ~ 1, they
are incoherent. In the experiments reported here
the pulses were intentionally made incoherent.
This insures that "static" echoes, which are gen-
erally weaker than dynamic echoes but which,
when summed or integrated through the use of co-
herent pulse sequences, are often larger than dy-
namic echoes, are reduced to at least 20 dB below
the dynamic echoes. Consequently, "static" echoes
can be neglected in this paper.

B. X andEu bands

All of the reported results were obtained on
Fisher Z-52 ZnO powder. The particle sizes
were less than 1 p as shown in Fig. 6. Experi-

ments on N.J.Zinc-HC-016-100 ZnO powder were
unsuccessful, possibly because of the larger
particle dimensions as seen in Fig. i. The
powder mas placed in 2-mm-i. d. fused quartz
tubes for use in a reentrant cavity, or, al-
ternatively, in thin-wall pyrex boxes, approx-
imately 1 in. in length, with the other dimensions
made to provide a sliding fit inside an X-band
waveguide (10 mm x 22 mm). The containers were
then pumped out and sealed at high vacuum. The
effective volume of the reentrant cavity (2-mm
gap) thus contained about 10"particles, while the
waveguide boxes held about 10"particles. Ringing
signals could be detected at the highest input pow-
ers used and mith full receiver gain, but under the
conditions at which most echo measurements were
made, ringing was not observable.

Because of the larger number of powder par-
ticles, the signals observed from waveguide sam-

FIG. 6. Electron micrograph of Zno powder utilized
in X'-&u band-echo measurements.

FIG. 7. Electron micrograph of a Zno powder which
did not show echoes at X-Eu band frequencies.
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FIG. 8. Block diagram of X-Ku band-echo Spectro-
meter.

ples had about the same signal-to-noise ratio as
those which utilized a cavity resonator, even
though the latter are enhanced by the Q factor.
Therefore, because of the re1.ative convenience,
as well as the increased band width which mini-
mizes circuit distortion of echo shapes when using
short pulses, all of the quantitative measurements
were made on waveguide samples. However, under
similar conditions of pulse amplitude and width it
was determined that qualitatively similar behavior
was obtained on cavity samples.

The field in a waveguide is inhomogeneous,
varying sinusoidally along the direction of propa-
gation as well as across the larger perpendicular
dimension in the TE„mode. The powder particles,
therefore, see a distribution of fields varying from
zero to a maximum value which we estimate to be
about 350 V/cm at 1-kW input power. In calculat-
ing this value we have assumed the sample contain-
er to be uniformly filled with ZnO. The effect of
considering empty spaces between particles could
be to increase the above value by as much as 40%.

A schematic diagram of the electronic apparatus
is shown in Fig. 8. The output of a tunable, fre-
quency stabilized, cw klystron oscillator is ampli-
fied by a 10-%' travelling wave tube amplifier.
The output cw power is then split into three approx-
imately equal lines, each of which contains its own
attenuators and fast switches. One line also has
a phase shifter. These lines can then be switched
into a gated 1 k%, 32 da gain, traveling wave
tube amplifier (TWTA}. The TWTA gating
pulses overlap the switch pulses which have
a turn on/off time &10 ns, For all the measure-
ments reported here, pulse widths in the range
20-300 ns were used. The output of this amplifier
is then fed through a variable waveguide, precision

attenuator, and circulator into the cavity resonator
or shorted waveguide which holds the samples.
The latter are contained in a temperature-variable
dewar. The working volume lies within the gap of
a 6-in. Varian magnet, the purpose of which is to
ascertain that the echo signals are not affected by
magnetic fields. No magnetic effects were found

up to 6 kOe.
The reflected pulses and emitted echo signals

at the third part of the circulator are amplified
by a low-noise TQ?TA and detected in a superheter-
odyne receiver with variable i.f. attenuation. The
low-noise TATA is not a necessity but its use ob-
viates the need for a crystal protector before the
mixer and thus allows measurements to be made
at times as short as 20 ns following a high-power
reflected input pulse, which would otherwise satur-
ate the protector-mixer combination.

The overall frequency tuning range of the system
is 8-18 0Hz. The detection band width is 120 MHz.
Since all three pulses are derived from a, single
cw source they are phase coherent, and this al-
lowed echo phase measurements to be made by
adding to the mixer input a small cw reference
signal (obtained from the klystron output before
the first TWTA) having variable phase and ampli-
tude.

It was found early that input pulses at high repe-
tition rates caused the sample temperature to rise
significantly above the ambient, even when the
containers were immersed in superfluid He. In
most experiments a repetition rate of 1 per min
(i.e., one input pulse pair per min) was necessary
to avoid temperature-dependent variations in echo
behavior. Therefore all the data were obtained on
oscilloscope photographs. The photographs shown
in Sec. IV are typical; each echo seen there is the
result of one pair of input pulses, rather than a
superposition of many. There was thus some scat-
ter in the data, particularly at very low input pow-
ers with small-echo signal-to-noise ratios, The
use of single shot data also avoids interference
from storage echoes which, because the pulses
are phase coherent, can occur at high-input pow-
ers. However, we have never observed storage
under these conditions. All detectable storage-
echoes result from integration of many pulse pairs.

Measurements of echo amplitudes were obtained
directly from the scope photos and corrected for
detector nonlinearity. All quoted values of T, were
measured from echo decay envelopes at values of
7 no smaller than T, beyond the last envelope max-
imum. Quoted values of e20 were obtained by ex-
trapolating these measurements to 7 =0, along the
exponential curve e, = e„exp(-2T/T,). Since e, (T
=0) —= 0 for powder echoes (see Sec. III), e„is only
a measure of the echo amplitude with the damping



DYNAMIC POLARIZATION ECHOES IN PIE ZOE LECTRIC PO%DERS

factor removed and is thus a measure of the non-
linearity, albeit only in the region of r over which

T, is measured.

IV. EXPERIMENTAL RESULTS-VHF

We present here the results of an extensive ex-
perimental investigation of the dynamic polariza-
tion echo phenomenon in piezoelectric powders in
the VHF range. Measurements of the piezoelectric
ringing are presented and compared to theory in
Sec. IVA. In Sec. IV B dynamic two-pulse echo
data are presented which clearly show the trans-
ition from the small-signal to the large-signal
regimes. Measurements made in the large-signal
limit are presented in Sec. IVC. In Sec. IVD the
behavior of the damping constant I = T,' as a func-
tion of temperature, frequency, and acoustical
impedance of the surrounding medium is described.

I I I I I

{o)k=lpe LiNbOp
53-62',m

55 MHz
295K
IOro r

A. Piezoelectric Ringing

A typical ringing pattern is shown in Fig. 9 for
LiNbo, . The similarity of this pattern to the cal-
culated patterns given in Fig. 2 of Sec. II is clear.

In general, echoes are totally obscured by the
ringing in samples with a small number of particles
(&10'), whereas for large numbers of particles
(-10" in Zno at X band) the ringing is barely de-
tected due to phase cancellation. The decay con-
stant I' obtained from the ringing is consistent with
that obtained from the two-pulse echo decay. This
is consistent with the calculations in Sec. II, where
the decay constant for both the ringing and the two-
pulse echo arise from the damping of the mechan-
ical oscillations of the individual particles.

The frequency dependence of the ringing ampli-
tude r (corrected for frequency dependence of I')
is shown in Fig. 10 for LiNbO, powder. The low-
freguency cutoff frequency is given by v, vl-4b,
where 5 is the radius of the largest particles of
the sample and e the effective sound velocity.
This is consistent with the decrease in v, for lar-
ger particles as shown in Fig. 10. Because of the
many higher-frequency modes of a particle which
can contribute to the ringing (and the echoes),
there is no sharp high-frequency cutoff. In fact,
as shown in Fig, 10, there is only a slow decrease
of r with increasing frequency although the particle
size distributions are fairly narrow.

The ringing amplitude as given by E|ls. (11)-(14)
is clearly expected to be linear in the applied pulse
amplitude. The measurements shown in Fig. 11
for GaAs powder are clearly in good agreement
with this prediction based upon the linear theory.

The dependence of the ringing amplitude on
pulse width is shown in Fig. 12 for GaAs powder
and can be compared to the theoretical result in
Fig. 3. The dependence on pulse width is not lin-
ear because the width determines not only the am-
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FIG. 9. Single-pulse response of a powder sample of
LiNb03 particles 53-62 JLfm in diameter. The pulse
widths are 1 and 6 ps for the top and bottom traces,
respectively. The pulse amplitude corresponded to
250-V peak applied to the 1-mm sample.

FEG. 10. Frequency dependence of the ringing ampli-
tude in LiNb03 powders of different sizes. The data
have been corrected for differences in the decay time
Tp. Pulse amplitude corresponded to 250-V peak
across 1-rnm sample.
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FIG. 11.Ringing amplitude r in dB vs the applied
pulse amplitude g, also in dg in Gahs. Data for pulse
widths of 16, 8, 4, 2 ps are shown. The straight lines
correspond to a slope of one.
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plitude of pa, rticle excitation as given by Eq. (lib),
but also the Fourier spectrum of the pulse as given
by Eq. (llc).

We believe that these data show that the ringing
signal detected after a single applied pulse can be
easily understood as being simply the partially
phase-cancelled radiation of the finite number of
individual piezoelectric particles. Therefor e, the
ringing is not related to the free-induction decay
of a spin system. '4
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FIG. 12. Ringing amplitude r (arbitrary units) vs pulse
width fear different pulse amplitudes in Gahs powder.
0 da correspond to 800-V peak across 1-mm sample.

B. Transition to Large-signal Habit

In the small-signal limit the predictions of the
anharmonic-oscillator model are unambiguous and
are described in Sec. II C 1. In the large-signal
limit the predictions of the anharmonic-oscillator
model become model dependent. For &-function
pulses the results for a special case are discussed
in Sec.HC 2. We present here data which are in
good agreement with the small-signal theory, at
the lowest rf powers attainable consistent with a
reasonable signal to noise. However, at higher

0
0

Q
0

0 GaAs
I

I
(0

I. ~ I

-40
I

-20 0

FIG. 13. Dependence of two-pulse echo amplitude
e2(2y) on pulse amplitude with F&= E2. The straight
lines correspond to a slope of 3. Data for LiNb03,
GaAs, and Si02 powder at ~$2r - 35 MHz are shown.

powers, significant deviations from the theory
are found which indicate the onset of large-signal
behavior. In the absence, as yet, of complete
large- signal calculations no quantitative compari-
son with experiment in the la,rge-signal regime
mill be made.

On the basis of Eq. (25), when E, =E, = Ethe echo-
amplitude should vary as the third power of the ap-
plied field amplitude E. In Fig. 13 we show the
power dependence obtained in I iNbO„Sio„and
GaAs. Clearly, only in GaAs at the lowest attain-
able power level is the expected I ' behavior found.
Thus, consistent with the results described below,
only in GaAs at very lorn powers is the small-sig-
nal li'mit valid. In all other experiments described
in this paper the small-signal limit is invalid.

The decay of the two-pulse echo amplitude e, (2r)
with pulse separation 7' is shown for GaAs in Fig.
14. Also shown (dashed curve) is the expected
small-signal behavior from Eq. (25) fit to agree
with experiment at the maximum in the echo am-
pbtude. As expected from the anharmonic-oscil-
lator theory and clearly shown in the data„ the
echo amplitude builds up from zero at 7 =0 to a
maximum before decaying exponentially for large

However, the agreement is not perfect. In
general the data build up faster and/or decay slow-
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FIG. 14. Dependence of two-pulse echo amplitude
e.&(2~) on twice the pulse separation 2z in GaAs powder.
The scale of the ordinate is arbitrary. Pulse ampli-
tudes correspond to 620-V peak across the 1-mm sam-
ple. The dashed curve corresponds to Eq. (25) fitted at
the maximum by varying I =— T2 . The solid curve is
obtained by assuming a Maxwellian distribution of I"'s
as described in the text.

er than the theory predicts if a single value of the
decay constant I' is assumed to characterize the

powder sample. Assuming a Maxwellian distribution
of I's of the form

( )
(I' —I',)' 1 I'-I',)' (33)

and fitting it to the data, the solid curve in Fig.
14 is readily obtained for I', =2.1~ 10' s ' and I',
= 0.42 ~ 10' s '. As equally good fit to the data can
be obtained by a careful choice of just two equally
weighted values of I'. Although care must clearly
be taken in interpreting the fit of the solid curve
and the data in Fig. 14, the underlying assumption
that the powder sample is characterized by more
than one value of I is not unexpected physically.
There is no reason to believe that the many differ-
ent types of modes contributing to the echo have
the same I'. For small 7 the modes with the larg-
est F dominate giving a fast build up of e, (3r). For
large & the modes with small 1 dominate. Thus the
decay behavior for large ~ is a measure of the I'
of the modes which are least damped. The pre-
sumed distribution of I"s in a given powder sample
is yet another complication when attempting to
fit calculations in the large-signal, limit to experi-
ment.

The decay behavior in GaAs and LiNbO, as a
function of applied pulse amplitude is shown in
Fig. 15. In GaAs the only effect of increasing
the pulse amplitude is an apparent slight decrease
in I' as determined from the decay at large &. In
LiNbO, the decay is much more serrsitive to ampli-
tude. At low amplitude the decay is qualitatively
similar to the small-signal theory. At higher am-
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FIG. 15. The decay behavior of e2(2&) as a function of
twice the pulse separation 27. in GaAs {a) and LiNbO3 @)
The different curves correspond to different rf pulse
amplitudes. Both pulses had equal amplitudes and
widths. In (a) and (b) 0 dB corresponds, respectively,
to 620 and 500-V peak across 1-mm samples.

plitudes the position of the maximum moves to
smaller pulse separation v' until at the highest am-
plitudes attainable the maximum is no longer de-
tected since it occurs during the receiver dead time
following the second pulse. The interpretation of
these data is that as the small-signal limit is ex-
ceeded the buildup occurs more and more rapidly
owing to the increased nonlinearity of the process.
Consequently, the maximum occurs at smaller
pulse separation. 'This behavior is confirmed by
computations based upon the results for the 5-func-
tion model presented in Sec. IIC2.

In the small-signal limit typical echo shapes ex-
pected on the basis of the anharmonic-oscil. lator
model were given in Fig. 4. 'The experimental
shapes for GaAs as a function of pulse amplitude
and pulse separation are given in Figs. 16 and 17,
respectively. For equal pulse widths (a, = &, = &

=6 p, s) and amplitudes the two bottom traces in
Fig. 16 at the lowest powers have the expected
base width of &, + 2&, = 3&. At higher powers the
shape changes continuously becoming almost rec-
tangular in shape with small side lobes, the base
of the rectangle being approximately equal to a
single-pulse width. 'The data shown in Fig. 17 in-



K. FOSS HEIM et al. 17

-6

-2

&=O.les 0.@ms

LiNb0~

1 1

50- ~7-44 @.m

~b,

40-
105-125@.m, ~ o o~

CD ~ 8 6 «I1
1 e ~

65-75pm

20 —
( / b

0 I
A) = b,e

~ 1p.s
0 —

~ o 295K
/

0 o'
0 20 40 60 80 l00

M M,

FIG. 16. Two-pulse echo shapes in GaAs powder
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at several different pulse amplitudes indicated in dB
on the figure. The pulse amplitudes and widths (b,&

= 6&= 4= 6 ps) were equal. Data taken at 295 K in a
vacuum of 10 6 Torr. 0 da corresponds to 1000 V
across the 1-mm thick powder sample.
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FIG. 17. Two-pulse echo-decay behavior and the echo
shapes in QaAs powder at different points on the decay
curve. The pulse widths were equal (hf 4g 6 ps) as
were the amphtudes which corresponded to 70-7 peak
across the 1-mm sample.

dicate that the echo shapes are in general depen-
dent upon the pulse separation w. For very large
t the shapes are those expected in the small-sig-
nal limit, whereas for small r (but not I'v' «1) the
shapes become similar to the large-amplitude
shapes shown in Fig. 16. The 7' dependence of the
echo shapes confirms the validity of the small-

FREQUENCY (u~/2m {MHz)

FIQ. 18. Frequency dependence of two-pulse echo
amplitude e&(27) ig. LiNbO3 powder for three different
size distrubitons as indicated. The data have been
corrected for changes in the decay time T&. Pulse am-
plitude corresponds to 250-V peak across 1-mm sam-
ple.
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FIG. 19. Temperature dependence of the echo ampli-
tude e&(2v) in Liwb03, SiO&, and GaAs powder. The
data have been corrected for changes in 7&.

signal. approximation as I'7'» 1 in agreement with
Eqs. (26} and (30a} above.

The frequency dependence of the echo amplitude
in LiNbO, is indicated in Fig. 18 for three different
particle sizes. The indicated behavior is similar
to that for the ringing amplitude shown in Fig. 10.
Because of the uncertain mode distribution for the
powder samples, a detailed analysis of the data
does not seem warranted. However, shown clearly
in Fig. 18 is the decrease in the low-frequency
cutoff with increasing particle size as expected.

The dependence of the echo amplitude on temper-
ature can shed some light on the source of the
anharmonicity. The temperature dependence of
the echo amplitude e, (2r) (corrected for the tem-
perature dependence of I') for GaAs, LiNbO„and
SiO, are shown in Fig. 19. Over the range 4.2& T
&375 K the maximum change in e, (2r) is about 10



DYNAMIC POLARIZATION ECHOES IN PIEZOELECTRIC POWDERS 981

dB. This contrasts with the T ' dependence re-
ported in Ref. 30. The weak dependence reported
here may well be an experimental artifact related
to the "settling" of the powder in the sample hold-
er, changes in T„and/or large-signal effects.
We believe that the small variation with tempera-
ture which can be deduced from Fig. 19 can be
assumed to arise from the anharmonic coefficient
itself and has nothing to do with the thermal popu-
lation of quantum energy levels or defect states.
The dynamic echo process in the powder considered
here is essentially independent of temperature in
the VHF range.

In concluding this subsection we note the follow-
ing: (i) the small-signal behavior is only rarely
obtained in these experiments. At the most corn-
monly used pulse amplitudes (fields greater than
10' V/cm) large-signal effects are clearly visible
in the power dependence, decay behavior, and
echo shapes. (ii} In those cases in which small-
signal behavior is attained the data is clearly in
agreement with the anharmonic-oscillator model
and not the parametric field-mode interaction. (iii)
The frequencydependence is consistent with the
excitation of mechanical modes of the individual
particles. (iv) The weak-temperature dependence
is consistent with some form of lattice anharmon-
icity and certainly does not correspond to any sort
of Curielike susceptibility. "
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C. Large-signal behavior

As discussed above, except in GaAs at the low-
est amplitudes consistent with adequate signal to
noise, the experimental data are not consistent
with the small-signal approximation. In this sub-
section we present representative data taken in
the large-signal limit. Although apparently quite
complex these data are internally consistent and
representative of the large-signal behavior. A

complete large-signal theory must be capable of
describing both the echo shapes and the echo decay
behavior presented here.

In Fig. 20 the dependence of e, (2r) on the first-
pulse amplitude E, is shown for several values
of the second-pulse ampl. itude E, in GaAs, I iNbO„
and SiO, . Since narrow pulses (&, =4, =1 ps) were
used, distortions of the echo shape with amplitude
were unimportant. In all cases e, (2r) is propor-
tional to E, as long as E, &E,. For E, ~ „E(e)2r
exhibits a maximum before decreasing slowly
with increasing E, for E, &E,. In Fig. 21 the de-
pendence upon the second-pulse amplitude E, for
different E, is shown. For E,&E„e,(2v') ~E', ,
whereas for E,&E„e,(2&) is relatively indepen-
dent of E,. Although the small-signal limit [Eq.
(25)] yields e,(2v}~E,E', , it does not suggest the
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FIG. 20. Two-pulse echo amplitude e&(2q-) vs ampli-
tude E& of the first pulse for several values of the sec-
ond-pulse amplitude E~.. (a) GaAs; (b) LiNb03, (c) SiO~.

interdependence of E, and E, as indicated in Figs.
20 and 21. This interdependence can only be ex-
plained by a theory valid for large signals.

The data in Fig. 22 show the decay behavior of
the two-pulse echo in SiQ, as a function of pulse
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FIG. 21. Two-pulse echo amplitude e&(2z) vs ampli-
tude E& of the second pulse for several values of the
first-pulse amplitude E: (a) GaAs; (b) LiwbO (c)
SiO~.

amplitude for two identical input pulses of ampl. i-
tudes E, =E, and widths &y &p 6 &s At the low-
est power (-20 dB) the simple buildup and decay
as discussed in See. IV 8 is seen. At the highest
power (0 dB) only the decrease in e, (2r) for in-

creasing & is detected. At intermediate power lev-
els (-3, -6, and -10 dB) the amplitude initially
decreases reaching a minimum and then increases
to a, maximum before decaying for large T. Any

buildup of the echo amplitude from zero for & = O

is obscured by the receiver dead time. The am-
plitude is measured at the center of the detected
echo. In the region of the minimum, the echo shape
is quite complex as discussed below.

Decay curves taken with constant value of the
first-pulse amplitude E„butwith three different
values of E, corresponding to E,= E„E,5 dB be-
low E„andE, 12 dB below E„areshown in Fig.
23. Again the pulse widths &, and &, are both
6 p.s. Note that the depth and the position of the
minimum are a function of the ratio E, :E„'the
minimum is deeper and occurs at smaller pulse
separations & as this ratio increases.

In Fig. 24 the decay behavior for a constant ra-
tio of E, to E, (with E, greater than E, by 3 dB)
are shown for different absolute amplitudes of E,
and E,. The depth of the minimum is relatively
unchanged for the different curves although the
position of the minimum moves to smal, ler values
of the pulse separation & as the absolute power,
decreases. At sufficiently low power the data ex-
hibit only the simple buildup and decay (not shown

here).
Again in SiO„Fig.25 shows the decay behavior

at high power for E, =E„E,greater than E, by
3 dB, and E, less than E, by 3 dB. The echo
shapes are also shown for several values of & for
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FIG. 24. Decay of two-pulse echo amplitude e2(27)
vs twice the pulse separation 27 in Si02 powder. All
data with 4&

——42 ——6 ps and with the first-pulse ampli-
tude Et 3 dB greater than the second-pulse amplitude

E2, as indicated for the four curves. The echo ampli-
tude is measured at the center of the echo.

each of the three curves. 'The striking feature of
the data is that for E, less than or equal to E, the

data show a simple decay with relatively little
structure to the echo shape (especiatly for E,
&E,). However for E, &E, the echo shape shows
a very compl. icated ~-dependent structure and the
echo amplitude measured at the center of the echo
shows the sharp minimum described above. This
property, that the structure in the shape of the
echo and the minimum in the decay curve are most
pronounced for any give~ power level when E, &E„
is a general result in all. our experiments at high

power. %e believe that this fact may provide a
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FIG. 25. Two-pulse echo amplitude e&(2~) and shapes
vs twice the pulse separation 2y in Si02 powder. All
data with 5&= 62 ——6 ps and for the values of pulse am-
plitudes as indicated (0 da corresponds to 760-V peak
across the 1-~m sample). The letters above the echo
shapes correspond to those on the decay curves. The
echo amplitude is measured at the center of the echo.

key to the understanding of the large-signal experi-
ments.

Four typical echo shapes observed in SiO, at
high powers are shown in Fig. 26. In each case
the first-pulse amplitude E, is 3 dB greater than
the second, E,. The different shapes correspond
to different pulse widths &, and &, as indicated.
The exceedingly structured echo shapes are typical
of the large-signal behavior. "

Echo shapes in GaAs for very different values
of the pulse widths &, and ~, at high power are
shown in Fig. 27. For short pulses (&, =&, =1 p, s)
the echo is a simple peaked structure about which
little detail can be determined because of the band
pass of the receiver. For both puises wide (n,
= &, =10 p, s) the echo has a rectangular shape
whose width is equal to the pulse width &, = &,.
%hen the first pulse width ~, is ten times the
second pulse width &, the echo has a multiple
double-peaked shape with the double peaks separat-
ed by the width &, of the first pulse. Similarly,
when 4, = 104, a different multiple peaked structure
is observed with the single peaks separated by

These shapes should be compared with the
shapes shown in Fig. 4 calculated in the small
signal limit. 'The experimental shapes shown here
are observed in all materials studied under simi-
lar conditions of pulse amplitude and widths.

A related high-power coherent effect occurs when
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FIG. 27. Boxcar tracing of the two-pulse shapes in
GaAs for E&——E2 (corresponding to 800-V peak across
the 1-mm sample) and for the pulse widths 6& and 42
indicated beside the four shapes. Compare to theoreti-
cal shapes in Fig. 4.
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FIG. 26. Two pulse echo shapes in Si02 for various
combinations of the pulse widths 4& and 62. The first-
pulse amplitude E, corresponds to 800-V peak across
the 1-mm sample and E2 is 3 dB less. The pulse widths
are indicated by the schematic representation of the
two-pulse sequence used in each case. The pulse separ-
ation 7, was 400 ps.

not the result of the 2& echo acting as a pulse which

together with the pulse applied at t = & would pro-
duce the 3& echo. This explanation, which may be
valid in a spin system and has been suggested to
explain the multiple echoes in piezoelectric pow-
ders, "does not explain the multiple echoes in
powders, as one can easily see simply from a
consideration of the amplitudes of the echoes in-

a single long pulse of width & is applied to the
sample. The oscillations started by the leading
part of the applied pulse interact anharmonically
with those excited by later portions of the same
pulse to produce a coherent "edge" echo at times
spaced by the pulse width &. This edge echo ef-
fect is shown in Fig. 28 for ~=10 and 20 p, s. Such
edge echoes were discussed by Bloom" for the
case of long pulses applied to a resonant spin sys-
tem. 'The precise relation between the edge echoes
shown here and those reported by Bloom is not yet
clear and awaits the evaluation of an anharmonic-
oscillator theory valid for large signals with pul-
ses of finite width. All materials we have studied
exhibit edge echoes of the type described here
and shown in Fig. 28.

In the large-signal limit multiple two-pulse
echoes e, (mr) are detected at times t = 2&, 4r,
5&, . . . in addition to the echo e, (2r) at t=2r An.
example of these is shown in Fig. 29 for m=2,
3, 4, 5, and 6 in GaAs. These echoes arise
naturally from the anharmonic-osciQator theory
as described in Sec. IIC2 explicitly in the 5-
function pulse limit. These multiple echoes are

GaAS
53-62 p.m
40 MH

(a) 5= IO~

(b) 6= 20@.s

X) 40
I

0
I

IO
I

20
TIME (P.S)

FIG. 28. Boxcar tracing of the single-pulse response
for a long, high-amplitude pulse (shaded area) applied
to GaAs powder. The "edge" echoes appear as sharp
dips with spacing equal to the pulse width A. The pulse
amplitude of 0 dB corresponds to 800-V peak applied
across the 1-mrn sample. The receiver is saturated
during the applied pulse.
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FIG. 29. Boxcar tracing of the mv echoes (m=2, 3,
4, 5, and 6) from GaAs powder with gf = 6& —-2 ps,
Ef=E&= 0 dB (corresponding to 800-V peak across the
1-mm sample) and with v=20 ps. The two applied
pulses are indicated at t = 0 ps and g = 20 ps (receiver
saturated).

volved.
The decay behavior of the multiple echoes is

shown in Fig. 30 for echoes occuring at t = 2&, 3v',

4v', and 5& in GaAs. Note that the data is plotted
as a function of t —w, where I; is the time at which
the echo occurs (i.e. , t= mr). As expected from
the large-signal 5-function analysis presented in
Sec. II C2 [Eq. (32)], the mr echo decays as
exp[ —2F(t —r)] for 2I'(t —r)»1, where t=mr and
1" is the same for all. m.

The pulse amplitude dependence of the 3w echo in
GaAs is shown in Fig. 31. As described earlier
for the 2& echo, there is a clear interdependence
of the pulse amplitudes E, and E,. For E,&E„

60 ls I I

GaAs
55-62', m

50— 40MHz

EI =EP=OdB

oo 295K
lO ~ Torr

o, ~e&(4r) x~

e2(5r} ~~
IO—

0 I

l00
I

200
t-~(~s)

I

300 400

FIG. 30. Decay of the m w echoes (m = 2, 3,4, 5) in
GaAs powder plotted vs t —v (where t = m~, m = 2, 3,4, 5).
6f A~ ——2 ps, Ef = Ep = 0 dB {corresponding to 800-V
peak applied across the 1-mm sample).

4Q I I I I
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53-62 p.m
40 MHz Ep=OdB
295 K

lO Torr
r= 25',s

H

—.2O- (g &
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/
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FIG. 31. Dependence of the amplitude of the 37
two-pulse echo e&(3y) in GaAs on the pulse amplitudes
Ef and E~ . The solid lines on the left and right side s
correspond to slopes of 2 and 3, respectively. On the
left and right sides 0 dB corresponds to 740 and 650 V
across the 1-mm sample, respectively.

e, (37') ~E'„and for E,&E„e,(3r) o-E,'. The pre-
dicted small-signal behavior from Eq. (32) is e, (3r)
c(.8283

D. Measurement of the decay constant V=T&

'The analysis presented in Sec. II has completely
neglected particle-particle interactions and con-
sequently there is assumed to be no irreversible
dephasing of the particles due to such interactions.
Therefore, the decay constant F = T,' of the two-
pulse echo is associated with decay of the ampli-
tude of an individual oscillator whose energy de-
cays as 2X'. The independent particle assumption
of the models considered to date is thus equivalent
to the lifetime-limited regime of conventional
spin echoes (T, =2T, ), To within our experimental
accuracy we always find that for dynamic echoes
the decay time T, of the three-pulse echo is equal
to aT» thus confirming the validity of this con-
jecture. This relationship (T, = eT, ) has been found

previously by others. "
Since the decay time &T, determines the rate of

loss of energy from a given mode of an individual
particle, it is of some interest to determine its
origin. In the following discussion of various ex-
perimental conditions which influence T, we have
determined T, from the decay of the two-pulse
echo e,(2r) for large r where e,(2r) -e " &. Al-
though this result can be rigorously justified only
in the small-signal limit or, equivalently, at very
large 7, we believe that these determinations of
T, are probably valid as long as the decay of the
two-pulse echo is exponential over a range in time
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FIG. 32. Two-pulse echo e2(2&) decay vs twice the
pulse separation 2y in GaAs powder. The different
curves correspond to the powder immersed in each of
the five gases indicated at one atmosphere pressure and
also in vacuum of 10 2 Torr. The pulse amplitudes of
0 dB correspond to 620-g peak across the 1-mm sam-
ple.

of at least I', in length. "
A mode of oscillation can lose energy through

processes internal to the particle or through pro-
cesses in which energy is transmitted through the
surface of the particle to the surrounding medium.
In general, the internal loss mechanisms are those
responsible for ultrasonic attenuation and include
mode conversion, phonon scattering, interaction
with crystalline defects or impurities, etc. How-
ever, one should note that the particle surface can
play an important role in these internal losses.
An example of the role of surfaces in determining
energy loss (i.e., T,) was given in Sec. III when
we showed that careful removal of surface damage,
which was incurred during grinding of QaAs into
powder form, increased T, by some two orders of
magnitude.

Immersing the particles in a gaseous medium
will in general decrease the measured T, because
of the loss of energy through the surface to the
gas. This effect is shown in Fig. 32, where we
plot the echo amplitude vs 27' in GaAs for the pow-
der immersed in several different gases. The
data show quite clearly that the measured T, is a
sensitive function of the type of gas present. The
energy loss through the surface of the oscillating
particle per unit time is defined by

1 ~U =-2F =-2T
U Qg 2 (33)

The data in Fig. 33 show the behavior of T, ' as a
function of Z» for the gases used in Fig. 32. The
linear behavior is in agreement with the above
analysis. The intercept on the ordinate is a mea-
sure of the intrinsic loss rate T,&'. The slope of
the straight line can be used to calculate the ef-
fective acoustical impedance of the solid particle
Z,(=pe). From Fig. 33 we find Z,=2.3 x 10' g/
cm2s for GaAs. Using6' p=5.3 g/cm' this corre-
sponds to an effective sound velocity &=4.2& 10'
cm/s. This velocity is in good agreement with the
known sound velocities in GaAs."

The frequency dependence of T, ' over the range

8 I I I I I I I I

0

CI2F2

0 VACUUM

GoAs
55-62 pm
40 MHz

El =E2=0 dB

h, l=h, 2= lp.s
295K

0 I I I I I I I I I

0 20 40 60 80 l00

Z (g/cm2s)
9

FIG. 33. Damping constant I'= 7'2 vs acoustical im-
pedance g» of the gas in which the sample is immersed
at one atmosphere pressure. Pulse amplitude of 0 dB
corresponds to 620-V peak across the 1-mm sample.

where U is the energy of the mode considered.
The relaxation rate T, ' can be written as the sum
of an intrinsic loss term T, and a loss term
which corresponds to energy transmission through
the surface to the gas T,,', so that T, ' = T,~'+ T,»'.
The transmission of sound through the surface is
governed by the acoustical impedances Z, and Z,
of the solid and gas, respectively. The transmis-
sion coefficient f' for sound passing through the
surface is related to T,,' through

2r =g-" -=" =' '. (Z-Z).4Z Z
2v (Z, +Z,)' 2w v Z

(34)
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FIG. 34. Damping constant I = T2
' vs frequency in

LiNb03 (0), GaAs {X), and Si02 (e). (a) Sample held in
vacuum of 10 6 Torr. (b) Sample in air at one atmos-
phere pressure. In (a) the solid lines have a slope of
two, whereas in (b) the solid lines have a slope of one.

have a slope of one indicating that the surface
losses dominate the decay in the frequency range
considered when the particles are immersed in
air at one atmosphere.

The temperature dependence of T, ' in GaAs,
LiNbO„and SiO, is indicated in Fig. 35. In mak-
ing these measurements care was taken to ensure
thermal equilibrium of the sample and to prevent
condensation of gas molecules onto the powder
particles. This latter problem was most easily
avoided by doing the measurement in vacuum. The
data are rather unremarkable except for some
weak temperature dependence which may be asso-
ciated with unintentional residual gas condensation
or with absorbtion due to defects in the particles.
Because of the wide variety of particle geometries
and modes, thp measurement of &, ' is a good way
to determine mechanical losses in a powdered ma-
terial only when all standard techniques are not
applicable.

10& e,/2v & 300 MHE is shown in Fig. 34 for
LiNbO„GaAs, and SiO„both in vacuum and in
air at a pressure of one atmosphere. Since the
losses to the gas vary linearly with frequency and
the intrinsic loss can be expected to vary quadrati-
cally with frequency, T, ' can be expected to vary
with frequency as

T, ' = (Zg/Z, )((a,/w) + c(u'„ (35)

~
xlo (sio~)
x lO~{LiNbO~)l

6xlO~

LiNb0&

2
o ~53-62'.m

"„GOAs
53-62',m

I

~bi
X
X

~0

op
65-75 p.m

40 MHz

IO Torr

'0 IOO
l i l

200 300
XEMPERW URE (K)

FIG. 35. Temperature dependence of the damping
constant I'=T2 for GaAs (X), LiNb03 (0), and Sio&(+)
powder.

where & is a measure of the intrinsic loss mechan-
ism. The straight lines in Fig. 34(a) correspond
to a slope of two indicating that the intrinsic loss
mechanism dominates as expected in a vacuum.
(For I.iNbO„ there appears to remain some con-
tribution to the loss at low-frequency varying lin-
early with &o,). In Fig. 34(b) the straight lines

V. EXPERIMENTAL RESULTS: MICROWAVE

FREQUENCIES

Experiments on polarization echoes in single
crystals, at microwave frequencies, generally re-
quire high-input pulse powers and high-Q resonant
cavities in order to obtain fields of order 100
V/cm. However, in powders the echoes are or-
ders of magnitude stronger, undoubtedly because
the particles themselves are high-Q resonators
(Q= 10' in some of our experiments). In ZnO, at
our lowest temperature, 1.25 K, echo signals 10
dB above noise could be observed in a shorted
waveguide using 100-ns pulses of peak power,
P= 10 mW (i.e., 50 dB& 1 kW), corresponding to
E= I V/cm.

In all of the following, unless otherwise noted,
input powers and fields will be stated in dB below
1 kW. Also, unless otherwi. se noted, 6, =b, , =100
ns. The oscilloscope photographs of echo decays
were all made with the time of E, fixed and Ywas
varied by changing the timing of E,. Therefore,
the time scale is v, not 2v. Also, since the photo-
graphs only illustrate qualitative behaviors, the
receiver gain was adjusted to fill the picture area
as nearly as possible.

A. Low temperatures

l. Power dependence

Figure 36 illustrates the dependence of the echo
decay envelope on E„keeping E, fixed. When E,
is greater than E, the decay envelope of the 2v

echo has the simple behavior predicted by small-
signal theory, and the Sr echoes are very small.
When &, is reduced below E, a sharp minimum
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E1=-22 dB. ZnO: 8.6 QHz, 1.25 K, 61=5,2=100 ns.

followed by a broad second nmximum appears in

the 2r decay, and the 37 echoes become relatively
much larger. As E, is reduced further the mini-

mum, e4, deepens, and its position T„moves to-
ward smaller ~. The second maximum e» becomes
relatively larger compared with the first maximum

e». Its position T» remains stationary (note that
this differs from Fig. 23) as does that of the first

20
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z
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X

Zno
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E, = —22dB
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k ld+))

FIQ. 36, Echo decay envelopes for various E2 with
E&-—-24 dB. 37 echoes are easily distinguished on the
second and third pictures. Time scale is q= 2p, s/cm
(not 27). Top to bottom: E2-—-42, -33, -26; and
—20 dB. ZnO: 8.6 6Hz, 1.25 K, Q&=52=100 ns.
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FIQ. 38. 7'2, 7'p2s ~4& 7'p1 vs E2 or Eg=-22 dB.
ZnO: 8.6 QHz, 1.25 K, b,&=&2=100 ns.
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peak r». The amplitude of the 3r echoes again
becomes relatively small at small E,.

Quantitative results are shown in Figs. 37 and
36. Figure 31 shows eo [the value of e(3r) extra-
polated to v=0; see Sec. III], e», e», and e, vs
E» for E, = -24 dB. The principal feature is that
at low &, all four amplitudes vary as E,', although
e» and e~ start out more slowly. At large E,(E,
& E,), e, and e» level off; e» folds over, and tends
toward coa1,escence with e& at E, =E,. Figure 38
shows T2, Tp2, TA and 'Tp~ vs E2. While, as stated
above, r~ and r» are relatively constant, with
increasing E„r&is constant at first, but then in-
creases toward r» before they become indistin-
guishable at E, E,. The most striking feature of
Fig. 38, however, is the rapid decrease in T, as
E, increases through E,. This is probably an
artifact of the measurement method, since for
this power range T, is measured at smaller r than
it was when E, & E, and the second maximum was
observable.

The variations of amplitudes and times at low

powers are all indicative of small-signal behavior.
However, the overall envelope behavior is, of
course, at variance with small-signal theory, as
is also the sudden decrease (Fig. 36) in the ratio
e,(3r)/e, (3r) as E, increases through E,.

2. Amplitudes

In Fig. 39 we show the qualitative behavior of
the echo decay envelope for E, maintained at 5

dB below E„varying both E, and E, together. A

strong similarity to Fig. 36 is obvious. However,
in the present ease the envelope has a single max-
imum at low powers; as the powers are increased
the minimum moves out from r =0 and continues
toward larger v~, the original maximum also
moves toward larger r, while a new first maxi-
mum moves out from r = 0 and its amplitude in-
creases relative to that of the second maximum.

Referring to Fig. 40, it is seen that at low pow-
ers e, and e» increase approximately linearly with

E, with E, maintained at 5 dB below E,. e~, and e&

fold over and eventuaOy disappear in the noise as
E, is further increased, while 8» increases as
E,' in this region. The dependence of T» r»,
and r~ are shown in Fig. 41. They all increase
monotonically with increasing E,. r~, remains
constant once this peak becomes distinguishable.
After e~ and e» vanish there is an apparent de-
crease in T, (not shown), but this is really the
fast decay of e».

Unlike the previous data (E, =const), the low-
power behavior for this case does not indicate
small-signal behavior, even though both fields
(E, and E,) are smaller at the low end than pre-

FIG. 39. Decay envelopes for various E& with E2
maintained 5 dB below E&. 37 echoes are also obser-
able. Time scale: y=2 ps/cm. Top to bottom: E&
=-40, -25, -22, and -19 dg. gnO: 8.6 OHz, 1.25 K,
4&-—&2

——100 ns.

viously. Small-signal theory predicts e, ~ E,E',
~ E', rather than e, E, as observed. Also small-
signal theory cannot predict the monotoniq in-
crease in T, or v~, .

3. Phuse ngeusurements

Relative phase measurements were made on the
echo signals by the method outlined in Sec. III.
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The principal results of these ineasurements are:
(i) whenever a minimum occurs in the decay enve-
lope the phases on either side of the minimum dif-
fer by approximately m as shown in Fig. 42. This
result holds regardless of the relative depth of
the minimum. In the temperature range 3-5 K at
X band, minima were observed with E, & E, as
well as 8, & F, (b, = h, ), but the former only with

E2 and 8, both so small that the signal-to-noise
ratio was very poor. However, in this case also
phase reversal occurred. (ii) At the minimum the

FIG. 42. e2vs &with E1 5 dB greater than E2. ZnO:
1.25 K, 9.0 6Hz, 6

&

——4 2
= 50 ns. Top: amplitude de-

tection. Bottom: phase-sensitive detection adjusted
for zero phase on the second-envelope maximum.

echo phase is in quadrature with the phases at the
maxima as may be seen in Fig. 43. (iii) In the
absence of a minimum the phase varied very little
throughout the decay envelope. (iv) The phase
variation across an individual echo signal is only
slight (at least when n, = n, ,) even in the neighbor-
hood of the minimum where the echo shape is
changing rapidly (see Fig. 43 and below). (v) For
the experimental conditions used, the 3T echo is
in quadrature with the 27. echo, as shown in Fig.
43.

4. Echo shapes

Unlike the VHF data the X-band results in ZnO

show only slight evidence of multiple peaks and
never a central minimum as long as &, = ~,, (see
Fig. 43). This result was established over the
range 4, =4, =20-300 ns, although comply decay
behavior was observed over this whole range.
Complex echo shapes were, however, observed
with &j + &2. Some examples are shown in Fi.'.
44 for b,, =300 ns and various ~ «4, . In eneral,
however, the decay envelopes were unaffected in

any way which could not be accounted for, at least
qualitatively, on the ba.sis of the areas l I+y and

E26 2.
Referring again to Fig. 43, it is seen that the

echo shape changes from roughly triangular with
shoulders to a more flat-topped configuration as
the minimum is traversed. It is also interesting
that the shape changes observed with in-phase de-
tection are roughly opposite to those observed with
quadrature detection, e.g. , in the former case
shoulders appear for 7& r, and flat-topped shapes
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FIG. 43. e2 vs 7 for E& 6 dB greater than E2 in the
neighborhood of the envelope minimum ZnO: 1.25 K,
9.06 GHz, 4&= 4&=300 ns. Top: amplitude detection.
Middle: phase-sensitive detection adjusted for zero
phase on the second-envelope maximum. Bottom; phase-
sensitive detection with reference 90 out of phase with

that above. 3y echoes are distinguishable by their
larger interecho spacing.

for v'& v~, while in quadrature detection the in-
verse occurs.

B. Temperature dependences

80th eo and T, dec rease with increasing temp-
erature. Figure 45 is a log-log plot of e, and T, '
vs T for 8.66 0Hz from T=1.25 to 21 K; 17-0Hz
data in T, ' are also shown from T=1.25 to
4.2 K. The data were taken with E, 1 dB & E, in
order to avoid the complex decay envelopes asso-
ciated with E, = F-,. The latter are extremely tem-
perature dependent as seen in Fig. 46. Also, rela-
tively high-input fields were utilized in order to
minimize the power dependence of T, and still have
a measurable echo at the higher temperatures.

FIG. 44. Representative echo shapes for 4, = 300 ns
and various Q2. 7 slightly greater than y„(42=300ns).
E& 3 dB greater than E2. ZnO: 8.8 GHz, 1.25 K. Top
to bottom: A2 —-300, 200, 100, and 50 ns.

Referring to Figs. 46 and 47, for which EyAy is
8 dB greater than E,4„the decgy envelope exhi-
bits the usual (under this condition) minimum with

two maxima. However, e& is barely less than e»
at 1.25'K. All four amplitudes e„e»,e~„and
e& increase as T is increased from 1.25 K to be-
tween 2 and 3 K and then decrease upon further
increasing T The ratio e»/.e» increases, as does
e»/e„, causing the minimum to be more pro-
nounced. The general behavior is somewhat simi-
lar to the power dependences discussed earlier.
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However, in contrast to the latter, Td and r» are
nearly independent of T, while T, decreases mono-
tonically as may be seen in Fig. 48.

Figures 49 and 50 show the dependences of the
amplitudes and times on temperature when 4, = 4,
and E, is 1 dB greater than E,. Under this condi-
tion the envelope decay exhibits the simple single-
peaked behavior. eo and e~ decrease rapidly with
temperature above 2.5 K; T, q,nd v~ decrease mon-
otonically over the whole range of T.

Similar behaviors mere observed at X band.
However, at Kx band we could never find a set of
values for E, and F-, which mould produce a deep
minimum with distinct maxima at temperatures
under 2.5 K. In general, to obtain qualitatively
similar echo-decay envelopes the power had to be
lower and the temperature higher at Ku band.

C. Results at 9 K

The parameter l. of Eg. (26), which is a measure
of the small-signal to large-signal transition, is
inversely proportional to I' if I"r» 1. Thus, we
might expect to observe the small-signal regime at
at higher temperatures in measurements of e'0

(which, as explained in Sec. IV is extrapolated
from data at 1 7& 1). Furthermore, above T~ 6
K in ZnO at X- and Ku-band frequencies, we have
never observed complex decay behavior regardless
of the relative values of E, and E,. Two represen-
tative decay envelopes are shomn in Fig. 51.

The dependences of e, on power at 8.6 GHE for
both E, 5 dB less than E„andF-, 1 dB greater than
E, (E, and 8, varied together} are presented in

FIG. 46. Decay envelopes with F.
&

8 c18 reater than

E2 and 6&= 52 —-100 ns, for various teniper~tures. Top
to bottom: 7'=1.25, 2.5, 3, and 3.5 K. ZnO: 17 GHz,

2 ps/cm.

Fig. 52. In both cases e, ~E' at low powers, as
expected for small signals. However, it should be
noted that e, (8, 5 dB & 8,) is larger than e, (8, l
dB & E,) for equal values of E„whereas an E,E,-
dependence mould predict the former to be 12 dB
smaller than the latter. This suggests that the
strength of the nonlinearity is itself dependent in
a complicated may on E, and E,.

Figure 53 shows that T, is power dependent (see
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Fig. 51 also), and the variation is greatest at low

powers under either condition of the ratio F-,/F-, .
This is, of course, at variance with small-signal
theory. In addition, comparison with the 1.25-K
data shows that although T, is smaller at 9 K,
1.25-K measurements which did not exhibit small-
signal behavior were made at power levels as much
as 30 dB smaller than those at 9 K. This is suffi-
icently smaller that I. (9 K) & f, (1.2 K).

D. Results on diluted samples

All of the data presented above were made on
samp)es of the type described in Sec. III B, con-
taining only ZnO powder. In order to test the
possibility that some of the complex results might
be due to interparticle interactions involving all
(or a large number of) the particles, some samples
were diluted with AI,O, powder (average particle
size less than 1 p). It was first ascertained that
echoes were not observed in pure Al, O, samples,
as expected since Al, O, is not piezoelectric. Dilu-
tion ratios ZnO/AI, O, equal to 3, 1, —,', —„,—„were
all tried. No effects of dilution, other than the ex-
pected reduction in signal amplitude, were found.
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E. Discussion of resu)ts at microwave frequencies

For ZnO, the data of Fig. 45 show that at the
lowest temperatures T,', which is presumed to be
proportional to the ultrasonic mode damping, be-
comes temperature independent. This suggests
(as is often the case in bulk microwave ultrasonic
experiments) the presence of a temperature-inde-
pendent component of the damping, such as might
arise from geometrical effects or surface scatter-
ing. In Fig. 54 we have subtracted off the 1.25-K
damping, and presented the 8.6-GHE results on an
Arrhenius plot. The reduced data indicate an acti-
vated damping mechanism with an activation energy
e/ks = 11 K. This kind of damping would be ex-
pected from a relaxation mechanism, T, ' ~1/r„
in the region &uv„» 1, with r„'0-exp(-e/keT).
This damping mechanism also agrees with the near
independence of T, on frequency (Fig. 45). It would

also explain, for the same reason, the decrease
of e, with increasing T. At this time, however, it
is not known to what extent the power dependence
of 7, would influence the temperature dependence.

The fact that T, is power dependent can indicate
either power-dependent damping, or be merely a
reflection of a complicated dependence of the non-
linearity upon the particle oscillation amplitudes,
e.g. , the more rapid increase with applied field at
large v than at small T (thereby increasing the

10

ZnO

10—

Cl'I 30-
CD

20—

I.nO
8.6 GHz
9K

F. /F, =+ ldB

0
-30 -25 -20

F., (dB'}
-l0

16 I I ( 1 1 I

0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70
T ' (K)-'

FIG. 52. eo vs E& for E2//E&-—-5 dB and E2/El=+1 dB.
ZnO: 8.6 GHz, 9 K, &l= &2=100 ns.

FIG. 54. T2 vs T after subtracting off the 1.25 K
value. solid line is 7
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apparent T, ) could be due to the fact that the oscil-
lation amplitude is smaller at large 7 and the field
dependence is greater for small fields (and there-
fore for small oscillation amplitudes). At any
rate, it is worth noting that power-dependent
damping is a nonlinear process which can itself
give rise to echoes (see Sec. III). Computations" for
amodel saturable absorber of the relaxation type,
using g-function pulses, are in agreement with
many of the results, including the observed com-
plex behavior of the decay envelopes, as well as
the temperature and power deyendences of T» but
not the lack of agreement with very-small-signal
theory.

VI. CONCLUSIONS

In Sec. ID the differences between anharmonic-
oscillator models and parametric field-mode in-
teraction models were pointed out. All of our ex-
perimental data clearly show that the echoes are
caused by an anharmonic-oscillator mechanism.
However, many examples of anharmonic oscil-
lators can be given which are indistinguishable in
the small-signal limit. These are in parhal agree-
ment with experiment in that limit, but only at the
lowest applied pulse amplitudes consistent with
adequate signal to noise. A limited number of cal-
culations were carried out in the large-signal
limit using 5-function pulses (see Ref. 61). Al-
though these yredict such effects as the natural
occurrence of multiple two-pulse echoes and their
decay properties, as well as complex echo shapes,
and complicated decay behavior, they do not agree
with many of the observed properties of the echoes
at high or even moderate powers. It is not yet
clear whether the observed discrepancies arise
because of the approximations made in evaluation
of the model (i.e., 5-function pulses, small-signal
limit, neglect of nonlinearity under the pulse, ne-
glect of the distribution of I = T, ', neglect of the
distribution of particle orientations, . . . ) or be-
cause of basic inadequacies in the model itself.
As discussed in Sec. V E, the temperature and

power dependences observed in ZnO powder at
Xband bear some similarity to those expected on
the basis of an anharmonic osciQator of the satur-
able relaxation absorber type.

The most significant conclusions to be drawn
from this study can be summarized as follows:
(i) the irregular ringing signal radiated by a pow-
der sample after a single pulse excitation is the
consequence of incomplete phase cancellation of
the linear mechanical oscillations of the piezo-
electric particles. This ringing is not related to
the coherent free-induction decay radiated by a
spin system after a single pulse excitation. (ii}

The decay behavior of the echoes caused by a pa-
rametric field-mode interaction is distinctly dif-
ferent from that for echoes generated by an an-
harmonic-oscillator system. (iii) The experimen-
tal data presented here on dynamic echoes in SiO„
GaAs, LiNbO„and ZnO are clearly caused by an
anharmonic-oscillator mechanism and not by a
parametric field-mode interaction. (iv) A specific
anharmonic-oscillator model was described in de-
tail in the small-signal limit with pulses of finite
width and in the large-signal limit for 5-function
pulses. Agreement between the small-signal the-
ory and experiment is achieved only in QaAs pow-
der in the VHF band at the lowest powers attainable
consistent with adequate signal to noise. Discrep-
ancies found between- experiment and small-signal
theory in other yowders indicates that the small-
signal limit was not reached in those materials or
that the particular type of anharmonic-oscillator
model chosen was incorrect. In the large-signal
limit no anharmonic-oscillator model has yet been
fully analyzed. Consequently, it is not yet known

to what extent the rather complex large-signal
behavior can be understood on the basis of the
particular model described in Sec. IIC or any
other. (See, however, Ref. 61.) (v) Results at X
band on samples of ZnO diluted-with Al,O, powder
showed that interparticle interactions do not p)ay
a role in echo behavior. (vi) Single pulse "edge
echoes" are detected when using high amplitude,
wide pulses. (vii} The decay time T, is found to
be a sensitive function of particle surface prep-
aration. On etching GaAs powder, T, was found to
increase two orders of magnitude. (viii) Both the
decay time T, and the echo amplitude were found
to be relatively independent of temperature for
4.2& T &400 K in the VHF band. However, in ZnO
at microwave frequencies, T, shows a marked
dependence upon temperature which agrees with
the supposition of a relaxation type damping with
activation energy jka = 11 K. (ix} When contained
in vacuum the decay constant 1 -=T, ' was found to
increase quadratically with frequency in the VHF
band indicating a volume loss mechanism. (x) When
immersed in air at one atmosphere I' cc & in the
VHF band indicating a surface transmission loss
mechanism. Measurements made in gases of dif-
ferent acoustical impedance in the VHF band are in
reasonable quantitative agreement with a calcula-
tion of the loss associated with the transmission
of the mechanical energy to the gas through the
particle surface.
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The simplest phenomenological parametric field-
mode interaction of interest4' is of the form
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where the nonlinear constant y~ is a component of
a sixth-rank tensor. The wave equation for the
displacement in the presence of the field g„is

Cg P6 2 1u+21'u ——u„,——Z',„u„,=-— (E ).
(A2)

Assuming a solution of the form given by Eq. (4a)
and the applied field given by Eq. (10), the follow-
ing first-order equation for the amplitude a(t) is
valid in the slowly varying envelope approximation.
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and 0, is given by Eq. (7b). The right-hand side
of Eq. (AS) corresponds to linear surface piezo-
electric excitation of the particle. For parametric
field-mode interactions the linear excitations
caused by the second pulse are of no interest and
can be neglected. The solution to Eq. (AS} with the
right-hand side set equal to zero is

02-
.L,L

0 l0 20 30 40 50
t-r (p.s)

FIG. 55. Two-pulse echo shapes and positions com-
puted for the parametric field-lnode interaction frons

Eq. {A&0) in a small-signal limit. Amplitude plotted ~.s
t-7'with 7=25, ps, T2=1000 ps and {a) 4, =A'=1 I.a~;

{b) 6&= 62=10 ps; {c)4&=10 ps, Q2=1 ps; {d) &I
42=10 ps.

a(t) = (a(t, ) cosh(yp„-&')'" (t —t, ) +in, [a(t, )~ +a (t, )yFu'] [sinh(yp'„-&')'" (t - to)/(yr'u —& )"-'~
I l &

(A(~ ~

g (~) -u e-(1"+in 0) &
QI (A't)

with + given by Eq. (11e).
The initial condition a(t, ) for Eq. (A6) is deter-

mined by the linear excitation g~, caused by the
first pulse. Setting t, =7 we have

where a~1 is given by Eq. (lib}. Using Eq. (Ab}

evaluated at t = 1- +b, 2 (i.e., at the end of the second
pulse) as the initial condition for the solution to
the free linear oscillator [Eq. (lla)], the amplitude

for & & 7 + g2 is given by

a(t) =(a~1cosh(y1)u —(a) )' am+it) ~(ada~1+ yFuagj e '"'0')

x [sinh(y, ',.„—ru')'t't), j(y,',„-ru')' 'n, J]exp[-I't —iA, (t n. 2}+i&a,(t —T 2a,)—], (A8)
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where the amplitude a~„linearly excited by the second pulse, has been neglected since it cannot contribute
to the two-pulse echo. Inserting Eq. (A8) into Eq. (16) we obtain the following expression for the coherent
response of the powder:

+(t)
4 1 If2 f() (()o 3 2 E gE2n gA2 exp [ 2FT —I(do(t —2t)]

G ( )G ( )f aea' ecos'e(,",'(()[sinn(y, *„—*)'i'a, /(y„'„-~')"*a,]e'"" *' *",
0

(A9)

where G,(]) is given by Eq. (11c), E has been re-
placed by Eq. (8), and y(„is given by Eq. (A5).
V(t) is nonsero only for t =27.

From Eq. (A9) the following conclusions concern-
ing this parametric field-mode interaction can be
reached: (i) Only an echo at I =2g is obtained,
echoes at t =my-, m =37, 4y, .. . , cannot arise from
an interaction of the form given by Eq. (Al). (ii)
The 2& echo amplitude decays monotonically with
the pulse separation g as exp(-2Tq). (iii) In the
small-signal limit the integrals are easily evalu-
ated to give the echo shapes which are shown in

Fig. 55. Note the difference between these shapes
and those in Fig. 4 calculated for the anharmonic
oscillator. (iv) In the high-amplitude limit [y(„
»(Tf) ', where (Tf) ' is the half-width of the

distribution of natural frequencies Q ((d)] the echo
amplitude increases with the second-pulse amp-
litude as sinhy~M&2. Thus for yr„~,&1 the echo
increases exponentially with E', [see Eq. (A5)].
(v) An analysis for a three-pulse sequence reveals
that a stimulated three-pulse echo at t =7+ 7 can-
not arise from an interaction of the form of Eq.
(Al). (vi) An "image"' three-pulse echo at t =2T
—2v does follow from Eq. (Al).

The existence of both mr two-pulse echoes (m &2)
and stimulated three-pulse echoes is an acknow-
ledged property of dynamic echoes in powders.
Therefore, we conclude that a parametric field-
mode interaction of the type given by Eq. (A1) can-
not even qualitatively explain the existence of dyn-
amic polarization echoes in powders.
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