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Nuclear spin-lattice relaxation from hindered rotations in dipolar solids*
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A semiclassical theory is developed for the nuclear spin-lattice relaxation in dipolar solids resulting from

hindered rotations of a general class of molecules in which the separations of the resonant nuclei in a

molecule are equal. Within the weak-collision framework of nuclear spin-lattice relaxation the nuclear-spin

coordinates are treated quantum mechanically while the spatial rotations are treated classically as

simultaneous, independent Poisson processes constituting a Markov chain. Threefold rotations of CH, and

multiple hindered rotations of NH4+ and PF6 ions are used as illustrations of the theory.

I. INTRODUCTION

An important application of nuclear magnetic
resonance (NMH) in both the physics and chemistry
of the solid state is the identification of thermally
activated molecular motions in solids along with
the determination of such associated parameters
as activation energies F, and correlation times v'.
In this respect, the main technique employed is the
measurement of the temperature dependence of the
spin-lattice relaxation time, either in the labora-
tory or rotating frame, of some nucleus belonging
to the molecular group of interest. The plot of log-
arithmic relaxation time versus inverse tempera-
ture then yields information on the motional param-
eters.

In liquids and gases the best model for molecular
reorientation is that of a rotational diffusion" in
which the molecular orientation takes on a contin-
uous range of values. This model is perfectly rea-
sonable where, as in liquids and gases, the inter-
molecular bonding, and hence the barrier to rota-
tion is low eompq, red to the available thermal en-
ergy. However, in most solids, where the inter-
molecular bonding can be quite strong, a hindered
rotational model is usual'ly deemed more appropri-
ate. ' ' In this ease, the molecular group is con-
sidered to jump discontinuously from one orienta-
tion to one of a discrete set of equivalent orienta-
tions.

Among the materials studied by NMR techniques
a large class is comprised of mhat may be called
"dipolar solids. " These are the solids in mhich the
predominant internuclear interaction between res-
onant nuclei is dipole-dipole. As a result of the in-
terest in such molecular systems as the methyl
group (CH, ) and ammonium ion (NH, +) a number of
calculations have been made of the spin-lattice re-
laxation resulting from hindered rotations of such
molecular groups in dipolar solids. The mecha-
nisms investigated include threefold rotations of the
methyl group' and combinations of twofold, three-

fold, and fourfold rotations of the ammonium ion. ~ '
For example, the tetrahedral ammonium ion has

three twofold and four threefold axes about which
hindered rotations are possible. In a tetrahedral
or higher symmetry crystal environment the two-
fold rotations would be equivalent, as mould the
threefold rotations. ' However, in a lower symme-
try environment some axial rotations will be pre-
ferred (less hindered) than others, necessitating a
consideration of other combinations of axial rota-
tions in these solids. 'The only theoretical deriva-
tions of the spin-lattice relaxation resulting from
such low-symmetry mechanisms are for the eases
of one threefold' and one twofold plus one three-
fold' rotation. Clearly, other possibilities, such
as two threefold rotations, are numerous.

As has been observed previously' the interpre-
tation of NMR relaxation-time data requires some
care when more than one degree of molecular ro-
tational freedom (i.e., more than one axis of rota-
tion) is involved. The correlation times derivable
from the data are not simply the correlation times
for the individual rotations.

%'hen the correlation times for the individual ro-
tations are very different, the various contribu-
tions are easy to separate. However, when the
correlation times are of the same order, produc-
ing relaxation time minima in the same tempera-
ture region, the various contributions to the relax-
ation are not easily separable. In these eases,
specific expressions for the temperature depen-
dence of the relaxation time must be developed for
each individual rotational mechanism. Comparison
with the data should then allow the rotational mech-
anism to be identified and the parameters esti-
mated, for example, by least squares.

Many molecular systems of interest, for example
CH3 NH4 BFQ PF, and SiF,', and their as-
sociated hindered rotations are of the same gener-
al type when viewed from the point of view of mag-
netic resonance. The internuclear vectors of the
resonant nuclei (H-H or F-F) in a given group all
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have the same length, if we neglect the usually
small molecular distortion in the solid. Further-
more, the result of the molecular rotations is to
cause each internuclear vector to be permuted
among a finite number of orientations.

The purpose of this paper is to develop a general
technique by which the relaxation times in dipolar
solids resulting from any combination of hindered
rotations of molecular groups of the above general
type ma, y be derived. The technique is illustrated
by applications to CH„NH4', and PF, .

II. THEORY

A. Relaxation formalism

We consider a collection of N nuclei of spin I and
gyromagnetie ratio y, whose spin-lattice relaxa-
tion is determined by thermally induced modulation
of their mutual dipolar coupling. In the weak col-
lision theory of Bloembergen, Purcell, and Pound
(BPP theory)' the spin-lattice reiaxation times
along the static magnetic field H, and rotating mag-
netic field H, for a pair of nuclei separated by a
distance r have been shown to be' "

T ,' y'It'=I (--I +1)[JO'(~,) +J"'(2~,)J,
T(,' = ~y'O'I(I+ 1)[—,'Jt" {2(u() + —'",J(' ((u, )

+ yJ (2(d(&)]

{aa)

(1b)

the brackets () denoting an ensemble average.
The geometrical factors F~' for the dipolar inter-
action are given by

F"'[R(t)J
= (1 —3 cos'8) r '

F~"[R(t)J=sin8cos8e '"r ',
F&'&[R(t)] = sin 8e 2('r

r, 8, {II) being the polar coordinates of the internu-
clear vector R(t) at time t in a coordinate system
in which H, lies along the z axis. In Eq. {3), I

+(.) ~

In a collection of interacting nuclei, the cross
correlations between nuclear pairs introduce a
nonexponentiality into the spin-lattice relaxa-
tion. ' "'4 However, it has been shomn that this
departure from exponentiality is a small effect and

Here +, =yH„&, =yH„and J~"{~)are the spec-
tral densities of the fluctuating dipolar interaction,
given by.

J "4»~ —f (,~~(t(e '" dt

where g('(t) are the eovariance functions

"(t}=(F "(t,+t)F "'(t,))

can be neglected for most practical purposes. "' '
The spin-lattice relaxation rates for the collection
of N equivalent nuclei are then given by" "

N

I = ', y'-I'I(I+1) g[Ja,'(~, ) +J';,"(2~,)J,
jpj

+-,'J((',. '(2(g, )] .

For molecular groups of the general type consid-
ered in this paper, the nuclear pairs are equiva-
lent so that the spectral densities for the (ij)th pair
JI,.~((d) are independent of i and j and so can be
written J~' (&u).

The relaxation rates for molecular groups of this
type can be written

T ' = ;'.i'It'I(I +1}(II-1)[J"'((d,)+J "(2(d,)],
(5a)

T, ' = ~y It'I {I+1)(I(t-l)[-,'Jt '{2(g,) + 2I '~((uo)

+-,'J('~(2((( )], (5b)

the spectral densities for any nuclear pair J(ro)
still being given by Eq. (2).

Note that since the geometrical factors at greatly
different times are essentially uncorrelated, the
covariance functions g'{f)-0 as t-~. This fact
is essential for the existence of the spectral den-
sities in Eq. (2). The existence of the spectral
densities is a crucial property which will be uti-
lized later.

8. Stochastic description of the rotation

We suppose that as a result of the hindered ther-
mal rotations of the molecular group to which the
nuclear pair belongs, the internuclear vector R(t)
stochastically occupies the u internuclear positions
rl r2, . . . , r„, e .g. , for the methyl group CH, the re
are n =3, while for the ammonium ion NH, ' there
are n =6 vector positions available for each proton
pair.

At any time t, the probability that the internu-
clear vector occupies the position r;, P{R(t,) = r, ),
is ji ' since any of the n positions is equally likely
to be occupied. We can then write Eq. (3) as

n n

g"'(t) =n ' PPF,'F, '[P,, (t) —n '], .

t=l j=l

where P, , (t)=P{R{t,+t}=r~ ~R(t, ) =r;) is the condi-
tional probability that the internuclea, r vector is
rj at time l, +t, given that it was r, at time t, . For
notational convenience we have written Ft'(r;) as
y {q)

We make the fundamental assumption that P&j(t),
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the probability of transition from r& to rj over the
time interval (t„ t, +t), does not depend on the vec-
tor positions occupied prior to t„ i.e., the sto-
chastic reorientation process has the Markov prop-
erty. " Furthermore, it is implicit in our notation
that the process is stationary in that the transition
probabilities P, , (t) depend only on the length of the
time interval (t„t, +t) and not on t„ its location in
time. In the language of the theory of stochastic
processes we have assumed that the collection of
random variables [R(t); —~ & t & ~}forms a homo-
geneous Markov chain over the states [r;; i
=1, 2, . . . , n}. The stationary transition probability
matrix with elements P;, (t) we denote by P(t).

We now model the molecular reorientations as a
number of simultaneous, independent Poisson pro-
cesses in which (i) disjoint time intervals are inde-
pendent, and (ii) the transition probability between
distinct states is proportional to the time interval
t for small t, i.e.,

P;q(t) =Aot+o(t), tej
where o(t)/t 0 as t-0. Of course this then means
that

The parameters A.;,. for itj, the transition prob-
abilities per unit time from r, to r, , are referred
to as the intensities of transition from r& to rj.

Now, considering the transitions over the time
interval (t„ t, +t+h }, which can be broken up into
the disjoint intervals (t~, t~+t) and (t, +t, t, +t+h),
and conditioning on events in the first interval al-
lows us to write the Kolmogorov equations for the
transition probabilities"

P„(t+tt ) =g P,,(t)P„(tt )

exists, where

x [(P~(,.((())+(P(y(- (()}

-2((un) ' sin(()T],

Multiplying Eq. (8}by e '"', integrating over
(0, T), and using the initial condition P, , (0) = 5„„we
find

e ' Pr, ,(T)-6„+i&ed'( ((ru) =+6'„((o)l).. .

which reduces in matrix notation to

6' ((()) =[e ' *P(T)-I](A —i(i)I) ',
where 6' and A are the matrices with elements
6'&& and A&j, respectively, and I is the identity ma-
trix with elements 5&&.

Hence,

(pr((()) +0'r(- (()) = -2A(A'+ (LPI ) '+2P(T)

x (A cos&uT+&oI sin &T)(A'+HOPI) ' .
Since the limit in Eq. (9}exists, the terms oscil-

lating in 1'must cancel giving

„P„(t)=g P,,(t)~„.

Now, as mentioned previously, gt'(t)-0 as t-~
and since its Fourier transform exists we know
that

(l P+ )= Qi( P) hii

+P„(i)(( —Q i„a}+0 8 )

This then leids to the forward Kolmogorov dif
ferential equabon for the Markov chain'6

i P„())=$(P (i)i„P;,(ih„„] iO-.
for any choice of Aj,

A convenient choice is

since Eq. (6) can then be written

= -2s 'Tr[A(A'+4&'I) 'Ã'],
where the matrices g~" have elements P'~,'

= E~, 'E~& '~ whteb depend only on the geometry of
the molecular gx'oup and its orientation relative to
80.

Equations (5) and (10) then constitute general ex-
pressions fox the spin-lattice relaxation times of
a collection of N resonant spina undergoing hinder-
ed rotations in a dipolar solid. Since the process
is thermally activated, the intensities of transition
{l),,&) will be given by the Arrhenius expression

x(t =l(() exp (-Eo/ttT) )

where E,~ is the activation energy for the hindered
rotation which takes R(t} from r, to r„ the preex-
pomential factor Ao&j is the trinsition intensity from
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r, to r& "at infinite temperature" and 4 is the usual
Boltzman constant.

C. Relaxation in a powder

The preceding derivation describes the rate at
which the magnetization in a single crystal decays
to its thermal equilibrium value. The magnetiza-
tion observed in a powder sample composed of a
large number of randomly oriented crystallites
will be the polyerystalline average of the magnet-
ization for a single crystal, e.g. ,

(M(f)). = M(0)(1- (e -").},
Q being the relaxation rate for a single-crysta1.
orientation and ( ), denoting a polycrystalline av-
erage. In this expression M(t) is the magnetization
for a single crystal orientation and Q depends on
the orientation.

It has been shorn' that for the case of the am-
monium ion, E(I. (11}can be written to an excel-
lent approximation as

(M (f}),= M(0)[1 —exp(- (Q),t}],
so that the departure from exponential decay of the
magnetization resulting from the anisotropy of Q is
negligibly small. This, together with fhe fact that
exponential relaxation is usually observed experi-
mentally in powder samples, leads us to adopt the
procedure of taking the polycrystalline average of
the relaxation rates in E(I. (5}. We then find that
E(ls. (5) and (10) still hold except that 5(" is re-
placed by P", , the polycrystalline average of 7'
with elements given by

(~(e) ) y (c)~(-c))

If a, , is the angle between the vectors r; and r~
it is easy to show that'

(5')) .(&"') (&'")

(P(,")„=(3cos'a„—I)/15r'

Combining these results with Eqs. (10) and (11}
gives for the intramolecular contribution to the
spin-lattice relaxation rates in a powder sample

~l
y'ff'I (r +1)(N -1)

[M((u, ) +2M(2', )], (12a)Sr'~,n

y'ff'f(f +1)(f)(-1)
~r'+,n

and X,A are the dimensionless matrices defined by

X =A/&L), A)) = I 3 cos Q))

Note thatA is determined by the geometry of the
molecule while X is determined by the particular
reorientation mechanism under consideration. The
spin-lattice relaxation times in a powder are given

by E(I. (12) on computation of M(&u) from E(I. (13).
Since A and, hence, X is defined so that the rows

sum to zero, then X and X' are singular matrices.
Therefore, at high temperatures where some of the

Xi,. 's are large enough for I to be negligible com-
pared to X', (X'+I} ' is the inverse of an almost
singular matrix and so subject to large errors in
computation.

A generally more satisfactory procedure for the
evaluation of M(~} is to find the matrix T which
diagonalizes X,

rxT-' =X, ,

where (Xr),, = ):;5;,, the [x,] being the eigenvalues
of X. Of course, since X is singular one of these
eigenvalues is always zero.

Then defining TAT ' as A~ we can write Eq. (13)
as

n

iM((y} = Q 1
'~ (Ar);;

i~1 + i

This procedure can either be carried out by hand
to produce an analytic expression for M(&u) or, in
the more complicated cases, computed numerical-
ly by any one of a number of algorithms for the di-
agonalization of matrices.

III. EXAMPLES

A. CH3 group in threefold rotation

For the methyl group we have /=3, n=3, and

l ~ ~

1T j 2

0, i=j

The dimensionless-transition matrix X can be
written X = zB, where x = )) /&d, X being the intensity
of transition for threefold rotations. The matrix
B has elements given by

1, 2ej

2 2

Evaluation of E(I. (14) then gives

M((d) = ,'f (u)~), —

x ' M(2(d, ) + —,'M((g, ) + —,'M(2(g, )
4/Pl

(12b)
where the correlation time r is defined to be (3)).)

'
and f(z) is given by

where f(z) =z/(1+z') . (15)

M(~}= Tr[X(I +X') '4] Substitution of this M(u) into Eq. (12) yields the
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FIG. 1. Tetrahedral configuration of protons on the
NH4' ion. One possible numbering scheme for the in-
terproton vectors is shown.

agonalized by the same unitary transformation ma-
trix T.

Evaluation of M(&u) from Eq. (14) then gives

&(~) = 3[5(~~, ) + &f(~r )],
where the correlation times T, and v are defined by

r, = (6x, ) ', r, = (3g)-',
r = 1.5(T, '+r, ') ',

and f(z) is given by Eq. (15}.
Substituting this expression for M(&u) into Eq. (12)

yields the spin-lattice relaxation times for the

NH, + ion undergoing hindered twofold and threefold
rotations in a tetrahedral or higher-symmetry en-
vironment. "

spin-lattice relaxation times for threefold hindered
rotations of the methyl group. '

1. 3 X C2 + 4 X C& mechanism

An ammonium ion in a tetrahedral crystal envi-
ronment would be expected to undergo three equi-
valent twofold and four equivalent threefold rota-
tions. The dimensionless transition matrix X, in
this case, can be written

X =x,B, +x38, , (16)

where x =X /&g, A, and A being the intensities of
transition for twofold and threefold rotations, re-
spectively. The matrices 8 have components

1 if r, is related to r,. by the

m-fold rotation, i aj
0 if r; is not related to r, by

B.), =

the m-fold rotation, i Ij

(B 4 ~
= —Q(B-) ~; .

In this case, the matrices B, and B, commute
with each other and so can be simultaneously di-

8. Ammonium ion

For the tetrahedral NH, ' ion, %=4 and n =6. The
scheme chosen for numbering the internuclear vec-
tors is shown in Fig. 1. With this choice we have

E) 8+3

However, for the NH4' ion there are a number of
reorientational mechanisms possible involving the
three twofold and four threefold axes. A mecha-
nism involving rotations about p twofold and q
threefold axes will be denoted by p xC, +q xC, , We
will consider just three of the many examples of
this type.

2. 1 X C2 + 1 X Cs mechanism

In a crystal environment of less than tetrahedral
symmetry some twofold and threefold rotations
may be energetically more favorable than others.
Here we consider the case where only one twofold

and one threefold rotation are effective.
The dimensionless transition matrix X is still

given by Eq. (16) with the B matrices specified as
in Eq. (17). However, B, and B, no longer com-
mute and can no longer be simultaneously diagonal-
ized. As a consequence, the diagonalizing trans-
formation matrix T depends on x, and x„a fact
which only serves to make the computations a little
more laborious. The resulting M(&g) is given by

M((u) = 3[f((ur, ) +f ((ur) +f((vv, ) + f((ur )],
where the correlation times v„z, 7, are defined by

r, =(2g) ', r, =(3a, ) ', r =r, '+v, '

and

r, =-,'[3(7, +r, ) + (9r,' —6r,v, + v9' )'3~'],

and f(z) is given by Eq. (15).
Substitution into Eq. (12) then yields the spin lat-

tice relaxation times for the 1xC, +1xC, hindered
rotation of the NH4' ion. '

3. C + C& mechanism

In materials where the ammonium ion protons
are involved in hydrogen bonds, threefold rotations
seem more likely to oeeur than twofold rotations
since, in the former case, only three hydrogen
bonds need to be broken to allow the rotation,
whereas, in the latter case, all four hydrogen
bonds need to be broken.

In the ease where only two threefold rotations
are effective, the dimensionless transition matrix
is given by

X =x,B, +x3B,',
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FIG. 2. Temperature dependence of the spin-lattice
relaxation times for the 1"3+ g3 hindered rotation of
NII4'. The relevant parameters are given in the text.

FIG. 4. Temperature dependence of the spin-lattice
relaxation times for the C4+ C& hindered rotation of
PF6 . The relevant parameters are given in the text.

where x, (g,') = X,(A,')/~, X„and X,' being the intensi-
ties of transition for the two threefold rotations.
The elements of the matrices B„B,' are defined by
an obvious extension to Eq. (1 I).

Since this particular mechanism has apparently
not been investigated theoretically before we show

the temperature dependence of the spin-lattice re-
laxation times computed from Eqs. (12}and (14}in

Fig. 2. The calculation performed is for a Larmor
frequency of 20 MHz, a spin-locking field JI, of 10
6 and a proton-proton separation of 1.68 A. The
activation energies chosen for the threefold rota-
tions were 2.0 and 4.0 kcal/mole, with both pre
exponential factors 3.33x10" sec '.

C. C4+C4 mechanism of PF6 group

This example is included because it illustrates
very well the ease with which quite complex sys-
tems can be handled by the formalism contained in

Eq. (14).
The scheme chosen for numbering the interfluo-

rine vectors in the octahedral PF, group is shown

in Fig. 3. In this case, X=6 and for hindered rota-
tions which simply permute fluorine nuclei n =12.

For the hindered rotational model in which only
two inequivalent fourfold rotations are effective
(C, +C4) we can write the dimensionless transition
matrix as

X = x,B4+x4B~

where x,(x4) = X, (X4)/~, ~„and A4 being the inten-
sities of transition for the two fourfold rotations.
The matrices B, and 84 are defined as in Eq. (1'l).

Figure 4 shows the computed temperature depen-
dence of the spin-lattice relaxation times for this
particular mechanism. The Larmor frequency,
spin-locking field+y activation energies, and pre-
exponential factors chosen were as in case 83
above. The fluorine-fluorine separation was taken
as 2.23 A, which is typical for PF, groups.

IV. CONCLUSION

FIG. 3. Octahedral configuration of fluorines on the
PF6 ion. One possible numbering scheme for the in-
terQuorine vectors is shown.

A semiclassical theory has been developed for
the spin-lattice relaxation times resulting from
hindered rotations of a broad class of molecular
groups in dipolar solids. The nuclear-spin system
has been treated quantum mechanically whereas
the molecular rotation has been modeled classi-
cally as a stochastic process describable in terms
of a Mar, kov chain.
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The theory allows computations to be made of the
spin-lattice relaxation times for quite complex mo-
lecular systems involving many degrees of motion-
al freedom. Illustrative examples are given for
the CH„NH4', and PF, groups.

The convenient computation of the temperature

dependence of the spin-lattice relaxation times, as
outlined in this paper, could be a very valuable
tool for the identification of molecular motions,
and constitutes a vital first step in the least
squares estimation of the associated motional pa-
rameters.
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