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Resonant Raman scattering in diamond
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The first- and second-order Raman scattering have been investigated in diamond below but near the
fundamental gap using a frequency doubler for the high-photon-energy region. No resonance was found for
the first-order Raman scattering up to 4.8 eV, while the second-order spectrum was clearly resonance
enhanced as the gap was approached. These facts are explained as the result of the interference of the
contributions to the first-order Raman cross section from the E'0 and E, gaps resulting in a cancellation for
the dispersion of the first-order Raman scattering, Explicit expressions for the Eo' and E2 contributions to
the first-order absolute Raman tensor (which turns out to be negative) are given. The electron —one-phonon
deformation potentials at the I and X points which appear in these expressions are evaluated in analytic
form by using pseudopotential theory. The absolute scattering cross sections so obtained are compared with

experimental values reported in the literature. An electron —two-phonon deformation potential for the Eo'

gap is determined.

I ~ INTRODUCTION

I

Diamond, perhaps the best prototype of a cova-
lent crystal, is an ideal material for Raman scat-
tering experiments. This is mainly due to the
hardness of the crystal (i.e., the high frequency
of the phonons), and to the fact that it is trans-
parent in the visible and the near-uv region. Con-
sequently a vast amount of information on diamond
has been obtained since the first -Raman experi-
ments, "the most recent work giving an exhaust-
ive assignment of the features of the first- and
second-order Raman spectra' and the Brillouin
scattering. Speculations about the possible ex-
istence of a two-phonon bound state at the cutoff
of the second-order Raman spectrum" ' and the
experimental determination of the absolute first-
order Raman cross section~' are perhaps the high-
lights of the most recent work. While the magni--
tude of this cross section is in reasonable agree-
ment with theoretical predictions""' and indirect
experimental estimates, "the sign of the first-
order Raman tensor has not yet been established
(see Sec. IVA and Table I). Swanson and Maradu-
din' made a pseudopotential calculation of the
first-order Raman tensor for Si, Ge, and die, mond,
including terms up to sixth order in the exciting
frequency and found that these frequency-dependent
terms were nearly negligible for diamond.

Resonant Raman scattering has been studied in
many tetrahedral compounds (e.g. ,

"Qe and" Si)
but not yet in diamond because its fundamental .

gap (6 eV) cannot be approached with standard
lasers. We have succeeded in measuring the de-
pendence on photon energy of the first- and second-
order Raman scattering below but near the gap
using an Ar' and a rhodamine 6Q dye laser in con-
junction with a frequency doubler. The efficiency
of the first-order Raman scattering was found to

TABLE I. Absolute first-order Raman tensors I'
of diamond (A ) as obtained experimentally (a, d, e, g)
and theoretically (b, c, f).

3.4—4.4
44

+3 5b

—3.8

—1.82

2.5 g

4.6'

' Reference 11.
b Reference 6.

Reference 10.
d Reference 8.
e Reference 4.
~ Reference 9. Note that according to Hef. 4 this cal-

culation contains errors.
g This work.

remain constant in the frequency region under in-
vestigation (2-4.8 eV) in agreement with the cal-
culations of Swanson and Maradudin. ' The second-
order scattering, however, resonates clearly as
the gap is approached. These results are explained
as due to an interference of two scattering mechan-
isms. One of them involves the lowest direct gap

(Eo) and the other corresponds to a. higher gap,
vaguely referred to as &, in the literature. ' A

simple pseudopotential calculation of the electron-
one-phonon deformation potentials of the states
forming the E', and g, gaps has been made. The
E', gap occurs at the I' point. The g, gap has been
assumed to occur at the X point of the Brillouin
zone. Expressions for these deformation potentials
are given in analytic form. The E', first-order de-
formation potentials combined with the absolute
measurements of Grimsditch and Ramdas enable
us to explain the lack of resonance in the first-
order Raman scattering. However', the deform-
ation potentials calculated at the X point are too
small to explain the magnitude of the g, contribu-
tion to the Raman cross section and to the elasto-
optical constants extracted from the experiment, a
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TABLE II. Experimental configurations used and cor-
responding Raman allowed modes. H and V refer to
'polarizations parallel (horizontal) and perpendicular
(vertical) to the scattering plane, respectively.

I

Con6guration Raman

«V

«H

'«H

«H

A gg+ T2g + Eg

T2 +E
3

g

y ~2g+ 2@g

fact which reflects the extended nature of the elec-.
tronic transitions involved in the Z, gap. "

In Sec. II we describe the experimental details
and particularly the technique used for frequency
doubling. The experimental results, together with
the corresponding theoretical fits, are displayed
in Sec. III. Section IV contains the discussion of
the experimental results in terms of the proposed
model; expressions for the E', and E, contribution
to the first-order Raman scattering are given in
Sec. IVA. The explicit expressions for the elec-
tron-one-phonon deformation potentials involved
in Sec. IV, as well as their numerical values for
diamond, are given in the Appendix.

II. EXPERIMENTAL DETAILS

All the data preserited here were obtained on a
3x3x2-mm' diamond parallelepiped of type Ila.
Right-angle scattering geometry was used. The
directions of the incident and scattered light were
(2, -3, 1), and (1, 1, 1), respectively, because the
orientation of the available sample did not allow any
simpler copf igurations. We shall denote the four con-
figurations studied as Ivv, I„, IvH, IHH, where the
superscript -stands for the polarization direction
of the incident light and the subscript for that of
the scattered light, and p and B mean perpendicu-
lar and parallel to the horizontal scattering plane,
respectively. These configurations allowed us to
observe the Raman modes listed in Table II. The
Raman-acti. ve optical phonon at 1332 cm ' has T„
symmetry. In second order, P, , E, and&,
modes exist in principle, but the g, modes have
been found to be riearly negligible. ' The T2g com-
ponent amounts to only —', of Q .'

In the spectral range from 6471 to 3250 A (1.91
to 3.82 eV) the lines of Spectra Physics Models
171 and 185 lasers (Kr+ and He-Cd, resoectively)
were used. Owing to the lack of cw-laser emission
lines at wavelengths shorter than the 3250-p line
of the He-Cd laser, we had to develop frequency-
doubling accessories for the 5145-A line of an Ar'
laser and the yellow emission of a cw rhodamine

6G dye laser. These devices allowed exten'sion of
the measurement range up to 4.2-eV (2956-A) and
4.82-eV (2574-A) excitation photon energies, re-
spectively. Efficient cw conversion of visible laser
radiation to the uv region was achieved by intra-
cavity second-harmonic generation (SHG). The
resonator configuration employed for frequency
doubling of the Ar' laser line has been described
earlier by Huber" (see Fig. 1). The output mirror.
of the laser was removed and the resonator was
extended to a folded-three-mirror cavity. The
ammonium dihydrogen phosphate (ADP) crystal
(50 mm long) was mounted at the position of the
beam waist between the two spherical mirrors.
The surfaces mere cut for Brewster's angle of in-
cidence at the fundamental frequency and highly
polished to miriimize laser cavity losses intro'-
duced by insertion of the frequency doubler. These
losses can severely limit the conversion efficiency.
90'-phase-matched SHG of the 5145-A line, which
yields optimum conversion efficiency in ADP, re-
quires a crystal temperature of -11 'C. Cooling of

. the crystal and stabilization of its temperature
within +0.02 'C was obtained by a Peltier cooler
controlled by a platinum resistance. thermometer.
Efficient extraction of the second harmonic from
the laser cavity was made possible by the spheri-
cal mirror M which was coated with special di-
electric layers highly reflecting at 5145 A (R
&99.5%) and transmitting more than 80% at2572A.
This device yields typical cw output between 20 and
40 mW. The output power was determined by means
of a calibrated Si photodiode. It should be pointed
out that this uv output was already obtainable at
relatively low ion laser current levels (=25-30 A).
Further increase of the tube current or fundamen-
tal power within the cavity yields no noticeable im-
provement. This saturation of the uv output may
be explairied by thermally induced variation of the

'

optical properties of the ADP crystal. Even small
temperature gradients within the nonlinear materi-
al prevent exact phase matching and therefore re-
duce the second-harmonic pomer. Moreover, ther-
mally induced losses in the crystal decrease the

Q factor of the resonator.
Intracavity SHG of the rhodamine 6G dye laser

radiation was performed in a 90'-phase-matched
ammomium dihydrogen arsenate (ADA) crystal
(30 mm long). The flat out put mirror of the
usual folded-three-mirror cavity was replaced by
an antireflectance (AR) coated lens (f = 50 mm)
and a spherical mirror of 100mm radius of cur va-
ture. The nonlinear crystal mounted in a tempera-
ture-stabilized oven was located at the beam waist
position between these two elements. The spherical
mirror, which was transparent in the uv and highly
reflecting in the visible range, served as the out-
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FIQ. l. Experimental
setup for light scattering
measurements with the
frequency doubler. The
solid line indicates the
pumping beam, while the
dashed line stands for the
doubled beam.

put coupler. The bandwidth of the dye laser was
narrowed by a three-element birefringent filter
and an additional Fabry Perot etalon (0.1-mm
thick quartz plate, coated with dielectric mirrors
R =65%) to about 10 6Hz. For X =2956 A, typical
uv outputs of 5-10 mW were obtained at a crystal
temperature of 45 'C. The conversion rate was
severely limited by thermal instabilities of the
nonlinear material. However, as Frbhlich et al.
have demonstrated, "an improvement of the uv

output at least by a factor of 5 is obtainable with
less absorbant nonlinear crystals and a resonator
configuration which carefully minimizes the total
cavity losses.

We used Babinet compensators before and after
the sample to obtain all the configurations of Eq.
(1) keeping the polarization of the light entering
into the monochromator parallel to the ruling of
the gratings. In this way, the sensitivity of our
detection system (a —', -m SPEX double monochrom-
ator with 1800 g jmm holographic gratings and a
RCA C31034 A photomultiplier) was maximum for
the near-uv (3000 A) region. Because of the wide
range of the recorded Raman spectra. (up to 3000-
cm ' shift) and of the fact that the sensitivity of our
equipment (photomultiplier, grating efficiency)
decreased rapidly with increasing photon energy in
the region where the frequency doubler was used,
special care was required for the determination of
scattering efficiencies. It was necessary to know
as accurately as possible the throughput function of
the system as a function of frequency, even for
measurements made relative to a CaF, crystal
(the Raman shifts of CaF, and diamond are vastly
different). With this in mind, a calibration of the
whole monochromator and detection system was
made using a deuterium lamp previously calibrated
by the Max Planck Institute for Astronomy at

Deutsches Elektronen-Synchrotron (DES+), Ham-

burg, using synchrotron radiation. The sensitivity
of our system for Stokes shifts between 0 and 3000
cm ' changed by factors of 7.5 and 2.7.for 2572-
and 2956-A excitation wavelength, respectively.
The first-order Raman peak (1332-cm ' Stokes
shift) was first measured relative to the CaF,
peak (320-cm ' shift) in the whole spectral range
for all the configurations of Eq. (1) and then (see
Sec. III) the second-order spectra, were measured
relative to the first-order peak. In all the cases
the data were corrected for the throughput of the
monochromator detection system, the absorption
of the sample, the ~' factor, and the laser power.
Typical slit widths were 200 p, . The effects of the
variation of the resolution with wavelength were
corrected for. All measurements were carried
out at room temperature.

III. RESULTS

The spectra obtained in this work are basically
the same as those of Fig. 3(a) in Ref. 3, the only

differences being those imposed by the selection
rules of Table II. In Fig. 2 we present three sec-
ond-order Baman spectra recorded for different
excitation wavelengths in the I~~ configuration. Al-
thbugh a clear increase in the scattered intensity
with increasing excitation energy appears, no sig-
nificant changes in the shape of the spectrum are
observed except for the small peak at 2290 cm ',
which could be ascribed to a 1,(X,) + TO(X~) com-
bination. "" This peak could be understood as a
resonance effect~' since the lowest indirect gap in
diamond occurs at the X point. " No resonance en-
hancement of the 2TO(Z') peak similar to that seen
near the &, gap of' Ge and' Si was observed. It
would be very interesting to extend our photon en-
ergies to =6 eV in order to see whether such reso-
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FIG. 2. Second-order Raman spectra for several ex-
citing frequencies in I ~ configuration. The ordinate is
in arbitrary units, which, however, are the same for
all the spectrg, . The zero of curves (a) and (b) has been
shifted for the sake of clarity. The exciting frequencies
are (a) 2572 A, (b) 2250 A, and (c) 5682 g.

nance also occurs near the E', gap of diamond or
whether it is characteristic of E, gaps.

We did not find any resonance enhancement in the
first-order Raman cross section in the frequency
range studied, as can be seen in Fig. 3(a). In this
figure, we have plotted laser frequency (full cir-
cles) versus the first-order Raman-integrated in-
tensity divided by that of the CaF,. The gap of
CaF, is approximately 11 eV and therefore this
material is not expected to have any resonance in
the region of our measurements. The solid line is
the least-squares fit to the experimental points
with the results of the calculation of Bwanson and
Maradudin" for the first-order Raman efficiency:

I ' =C(P, +P, &u')',

where P„ the independent component of the Baman
tensor at + = 0, equals 1.78 A' and P, = -0.008
AeV, ~ is the laser frequency in eV, and+ an
adjustable parameter determined by the ratio of the
absolute cross section of diamond to that of CaF,.
The least-squares-fitting procedure yields C = 5.3.
In Fig. 3(b) the integrated intensity of the second-
order structure shown in Fig. 2, relative to the
first-order one, both in I~ configuration, is plotted
versus exciting frequency. The solid line is the

~least-squares fit to the experimental data (open
circles) with the equation appropriate to the I',

FIG. 3. {a) First-order Raman-integrated intensity,
normalized to Ca F2, versus exciting frequency. The
solid line is the least-squares fit to the experimental
points with Eq. (1). (b) Second-order Raman-integrated
intensity, normalized to the first-order one, versus
exciting frequency. The solid line is the least-squares
fit to the points with Eq. (3). ]3oth (a) and (b) have been
taken in I~ configuration.

component of the Raman efficiency, "
I

I('& =At g(x) +3f(x) +a]',
where

g(x) =x '[2 —(1-x) ' ' —(1+x) ' '],
f (x) =x '[2 —(1-x)' ' —(1+x)' '],

(2)

and x =e/&u„e, being the lowest direct gap (E',
=6 eV'~). The adjustable parameters' and B are
1.5 and -0.4, respectively, for the Least-squares
fit.

IV. DISCUSSION

A. First-order Raman scattering

As shown in Fig. 3(a), the lack of resonance ob-
served for the first-order Raman scattering agrees
well with the computer calculations of Swanson and
Maradudin" based on the pseudopotential band
structure of diamond. This behavior is contrary to
the observations for the lowest direct gap of other
zinc-blende-type semiconductors. " This gap,
however, is usually F., (I'» -I'„)while that of
diamond is F. ', (I'», -I'„). One may therefore be
inclined to compare diamond with silicon which
has an E~ lowest direct gap with a strong reso-
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nance of the first-order Raman scattering. " For
silicon, however, the Fo' gap is nearly degenerate
with E, ,

"a fact which does not obtain for dia-
mond. ' Taro possible explanations of the lack of
first-order resonance found in diamond can be
given: either the contribution of the E', gap is
fortuitously small (small deformation potentials)
or its dispersion is canceled, to the order in u2

relevant to our experimental region, by the con-
tribution of higher gaps (which are usually loosely
labeled&9 &2 and locatedxs at around 12 eV for dia-
mond). In the latter case, an antiresonance would
be expected as the laser frequency is increased
beyond our experimental limit (4.8 eV) towards Eo
=6 eV. Unfortunately, in the computer calculations
of Ref. 10 no attempt was made to separate the Qp
contributions from the background and thus to solve
theoretically the present dilemma. We shall pre-
sent here a simple microscopic model to calculate
the E', contribution and to estimate that of g2. Ac-
cording to this model the Eo contribution is not
negligible and an antiresonance in the first-order
Raman cross section would be expected as ~o is
increased beyond 4.8 eV. The lack of antireso-
nance shown in Fig. 3 is then interpreted as due to
a cancelation of the &' terms in the expansion of
the g'o and E2 contributions to the Raman tensor.

We assume that the go gap corresponds to tran-
sitions between a threefold degenerate valence
band (I'», ) and a, threefold degenerate conduction
band, all parabolic. The first-order Raman scat-
tering is then produced by the electron-phonon in-
teraction of the T, (=I"»,) phonons with the I'», and

p» bands, . This electron-phonon interaction is
characterized by the deformation potential Qo and

d,", defined in Ref. 19. Explicit expressions for
d, and d,"as a function of the pseudopotential form
factors are given in the Appendix. The values cal-
culated for diamond are given in Table IV. The
contribution to the Raman tensor pu (E', ) is ob-
tained as the effect of a sublattice displacement
(7, phonon) —,'ao($, 0, 0) on the electric suscepti-
bility tensor y (a, is the lattice constant). A sim-
ple calculation" yields

P (E' ) = lim (a /5) X „„(&u)

14— ——Experiment

10—

2 8

0 '
12 16 20 24 28 32

ENERGY (eV)

FIG. 4. Imaginary part of the dielectric constant for
diamond versus frequency. The Eo and E2 gaps are in-
dicated by arrows. (From Ref. 14).

(5)

The E, contribution to y can be approximated (see
Fig. 4) by a harmonic oscillator of frequency ~, =12
eV:

4~X(&, ) =D/(~', —~') . (6a)

From the low-frequency value of the dielectric
constant" "q(0) = 5.6 and Eqs. (4a) and (6a) we ob-
tain for D the value 454 eV'. Thus we can write,
to terms of second order in &u/~, :

with f(x) and g(x) defined in Eq. (2). By fitting the
region between 6 and 8 eV of Fig. 4 with the im-
aginary part of Eq. (4a) we obtain co=6.

For the E2 transitions we use essentially the
Penn model' related, in the framework of pseudo-
potential theory, to the X4-X, gap. " Within this
model the E, contribution P~'~ (E, ) arises from the
phonon-induced splitting of the X, conduction-band
degeneracy, the corresponding splitting of the X4
valence band being zero (see the Appendix). In
terms of the phonon deformation potential g 2*o for
X, (see Appendix and Ref. 22) the Raman-tensor
contribution P ' (E,) can be written as

2

d(d 2

dX'(d" d)16 0 ' d~, ' (3) (6b)

y
= (co/4w)f(x),

d&o 8+o

(4a)

(4b)

where &o stands for the frequency of the Ep gap.
It is customary to use for y and dy/d~, the analytic
expressions for parabolic bands extending to in-
finity:

Using the values of the deformation potentials
given in Table IV and Eqs. (4b) and (6b), we can
evaluate Eqs. (3) and (5). [It is actually sufficient
to use the Taylor expansion of g(x) up to quadratic
terms in x except very near the gap. ] We obtain
(in A')

P ~'~ (BIO) = 5.5+0.11u'
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P'" (E, )=-2.3 —0.032(g) 2. (7b)

B. Second-order Raman scattering

The second-order Baman cross section is clearly
resonance enhanced when the exciting frequency
approaches the Eo gap [see Fig. 3(b)]. This en-
hancement is well described by Eq. (2), in which

g(g) +3f(g) represents the derivative of the electric
susceptibility with respect to a cubic. perturbation
of A„symmetry (note thatg+3f =0 for x =0) cor-
responding to the symmetry of the second-order
Raman effect, which is mostly I',.3 The fit param-
eter B=-0.4 stands for the nondispersive contribu-

Equation (7b) has been obtained under the as-
sumption that the structure of the electron-phonon
interaction of the E, transitions corresponds ex-
clusively to transitions at the X point. As already
mentioned, the E, transitions occur over a wide
region of the Brillouin zone where other deforma-
tion potentials are bound to be operative. Hence
Eq. (7a) is expected to be considerably more ac-
curate than Eq. (Vb}. Nevertheless, the coefficient
of the u&' term in Eq. (Vb) already suggests the pos-
sibility of a dispersion cancelation between Eqs.
(7a) and (7b). In order that this cancelation takes
place we multiply Eq. (7b) by an ad Roc factor of
3.4. While this factor is large, we r'emind the
reader that the phonon deformation potential at J4
is accidentally zero, and. that $20 is relatively
small (compare it with do in Table IV). Upon mul-
tiplication of P')(E, ) by 3.4 in Eq. (7b) we find:

P(&) —P(&)(EI)+P(&)(E )
— 24 j2 (8)

The magnitude of P ' given in Eq. (8) agrees rea-
sonably with experimental determinations (see
Table I); The sign of p') has not been previously
determined experimentally arid, if the theoretical
manipulations given here are trusted, the result
of Eq. (8) can be construed as an experimental
determination of the sign of p' . The negative sign
agrees with the calculations of Refs. 9 and 10 but
not with those of Bef. 6. %e have therefore re-
examined the origin of the "+" sign in P ' in the
work of Bef. 6 and found it to be based on the
strength of the extremely weak E (I'») component
of the second-order Baman tensor'(10' times smal-
ler than the T„and the A„:components).

Under these conditions, the experimental deter'-
mination of the E, component is not reliable (what
one observes is likely to be due to misalignments).
If one assumes in the analysis of Ref. 6 that the E~
component vanishes, one obtains a negative value
of P ", in agreement with all other sign determin-
ations. We thus conclude that the sign of the Baman
tensor P'(~ =0) of diamond, unlike that of germ-
anium' and silicon, "' is negative.

tion of gaps higher than p', . Due to the relatively
small value of B we can conclude that most of the
resonant behavior of the second-order Baman scat-
tering must be ascribed to the Ep gap. Higher gaps
have only a small and nondispersive contribution,
in contrast to the situation for first-order scatter-
ing. The only resonance effect which could be
ascribed to the E, gap (X point) is the appearance
of the small peak at the I, (X) + TO(X) position with
2572-A exciting wavelength (see Fig. 2).

. The functional dependence of Eq. (2) enables us
to conclude that the two-phonon scattering takes
place mainly via a renormalized electron-two-
phonon interaction. An enhancement of two-I'-
phonon structure due to resonant iterated electron-
one-phonon processes, of the type observed in" Ge
and'3 Si, is not seen. This emphasizes the fact
that the peak observed at the frequency of two O(I')
phonons in Fig. 2 (high-frequency cutoff) is not
due to double resonance. Once the possibility of a
bvo-phonon bound state has been ruled out,"the
effects of density of states' and energy-dependent
matrix elements' remain as the only possible ex-
planation.

The spectrum of Fig. 2 is due almost exclusively
to scattering by the LO and TO branches which are
extremely flat. 3 16 Since the Alg component ls
dominant we assume that, as in the case of germ-
anium" and silicon, "the two-phonon spectrum of
Fig. 2 consists mainly of overtones. Under these
conditioris it is possible to obtain from the data of
Fig. 3(b) and the electron-one-phonon deformation
potentials d, and d,"of Table IV the electron-two-
phonon average deformation potential D, (Eo) for
the gp gap which determines the integrated scatter-
ing efficiency for two-optical-phonon scattering"
through the Baman-tensor component a (in Lou-
don's notation ):

12Qp(d p&

x (g+3f)(2')'~',
where q is the degeneracy factor, equal to 3 if LO
and TO phonons are involved, "u, is the displace-
ment of the appropriate phonon, g, is the corre-
sponding occupation number (at room temperature,
n, =0), and N is the number of unit cells partici-
pating in the scattering. The efficiency for T„
first-order scattering is determined by the Lou-
don-tensor component d ":
d(E'. ) = .P'"(E'.)(n. +llu. ln. &

(.)
0 0

If

(d,"-d,)g(x)(n, +Ilu, ln, ) .

16ap(dpi'
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According to Table II, in the I~~configuration of
Fig. 3 the ratio of second-order to first-order ef-
ficiencies is given by (a/d) . Using Eqs. (7a) and
(7b) we thus find from the fit of Fig. 3

lu(&'. )/d(&'. )I =0 53(-g —3f),

Combining Eq. (11) with Eqs. (9) and (10), and
using the expression

(n +l~u~n) = (1/4MNn) (12)

where M is the atomic mass, pf is the number of
unit cells for unit volume, and Q is the phonon fre-
quency, we find

D (E')/(d, —d,")=: 38, (13)

and using the deformation potentials dp and d,"of
Table IV

D,(E', ) =4800 eV. (14)

The ratio of second- to first-order deformation
potentials given in Eq. (12) is similar to that found
in many semiconductors. ~2 "' ' The absolute value
of (E', ) given in Eq. (14), however', is much larger
than usual (typically -2000 eV) for tetrahedral
semiconductors). This reflects the fact that the
first-order deformation potentials of diamond are
also larger than usual (see Table IV and Refs. 2,
13, and 25). As can be seen in the Appendix, this
is a result of the large pseudopotential form fac-
tors of diamond.

V. CONCLUSIONS

The dependence on laser frequency of the efficiency
of diamond for scattering by one and two phonons
has been studied in the region from 2 to 4.8 eV. In
agreement with earlier pseudopotential calculations
of the first-order Raman tensor, the correspond-
ing scattering efficiency is found to be nonresonant
in the experimental region. This fact is attributed
to a cancelation of the resonant contributions of the

g~ and g2 gaps. An evaluation of these contribu-
tions, and some manipulations to bring the g, con-
tribution into agreement with the experimental
observations, lead to a. negative value for the long-
wavelength Raman tensor. The observed second-
order resonance is interpreted in terms of an
electron-two-phonon deformation potential D,(E'o)
=4800 eV. An indication of an "indirect" reso-
nance at the 1'-X indirect gap, for the L(X) + TO(X')

phonon combination has been observed.

[ (1/~2)([011]+[011])
X~x

] (1/W2)([011] —[011]).
(A2)

The two X, conduction bands can be written as lin-
ear combinations of the symmetrized (011) and

(100) waves with coefficients P„and y„which are
obtained as the eigenvectors of Eq. (34) of Ref. 19.
For diamond, we find with the v,, and v,'. of Table III
(Ref. 27) p„=0.81 and y„=-0.58. The splitting of

the X, states due to a I », phonon is given by the

g,*p deformation potential, . whose expression in

terms of the pseudo wave functions given above is

TABLE III. Pseudopotential form factors v (G) and
their logarithmic derivatives v'(G) for diamond {Ry).
The values have been obtained by drawing a smooth
curve through the experimental points given in Ref. 27.

v (G) v' (G)

APPENDIX
'

It has been shown, ~ that in materials with
zinc-blende structure the I"» conduction pseudo
wave function can be expressed as appropriate
symmetrized linear combinations of (111)-plane
waves with coefficients P and y, respectively,
which are obtained as the eigenvectors of a 2&&2

matrix [see Eq. (43) of Ref. 19]. With. the pseudo-
potential form factors v,. of Table III we find

p =0.84 and y =0.54. The splitting of the 1'», and

bands for a I'», phonon is represented by the
deformation potentials dp and dp respectively.
Details about the application of the pseudopotential
method to calculating deformation potentials, in-
cluding tables of symmetrized wave functions and

deformation potentials, are given in Ref. 22 (note
that the corresponding deformation potentials of
this reference are defined to be a factor of 3 larg-
er). We find":

d, = -(4&/~) [0'(t, —u„) + ~&Pr(~. u„)—1

d,"= (4m/W)(v, —v„),
where 0 = (2w/a, )' with a, , the lattice constant,
expressed in bohrs, ( is the internal stress param-
eter (=0.22 for diamond"), and v,'. are the deriva-
tives of u,. with respect to inG' (G is a, reciprocal-
lattice vector, ene'rgies in Ry). At the X(100) point
the X~ valence band can be written in the simplest
possible model as a symmetrized combination of
(100) waves
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V3

v4
V8

vis
vga

—0.81
—0.40

0.34
0,13
0.04

2.93
2.74
0.00

—2.03
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TABLE IV. Deformation potentials (eV) for an optical
phonon t. dp(l"p5 ) do (I'g5), and S~&p(&&)] calculated with
the v; and v of Table GI and Eqs. (A1) and (A3),

dp

90.1

20
—34.5

d"
0

—43.4

gf, =-2v(&2P„y„v, +y„v») . (AS)

The corresponding splitting of the X~ valence bands
of Eq. (A2) is proportional to the v,' pseudopotential

coefficient, which is zero for diamond (see Table
III). Thus the X» bands remain degenerate (the
corresponding deformation potential is zero). The
deformation potentials obtained with Eqs. (Al) and

(AS) using the v,. and v,'. of Table III are listed in

, Table IV. The explicit expressions for the de-
formation potentials given in this Appendix can al-
so be used for Ge and Si and, to a good approxima-
tion, for III-V semiconductors. Equation (AS)
with P„=0.89 and y, = -0.46, and the pseudopotential
form factors of Ref. 19, yields for Si g,*,=-8.2 eV.
This number agrees with experimental data. '
The value g,*,=2 eV given in Ref. 30, calculated
with the same technique as used here, is the re-
sult of a computational error.
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