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Dynamic Jahn-Teller vibronic coupling for an orbital triplet: T && v2 and T && (T2+ e)
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Numerical solutions of the vibronic problem for an electronic triplet state coupled to 7, vibrations in cubic
symmetry have been investigated in detail by Lanczos's method for the diagonalization of a sparse matrix.
Ham's reduction factors and zero-phonon intensity have been calculated and compared with the previous
results. Good agreement between our results and the previous ones has been found. Our method has been

sucessfully extended to the general problem of a T )& {r,+ e) system in which the coupling to the two modes

is assumed different. The vibronic energy scheme for the lower states of this system are obtained in the
intermediate-coupling region, The.properties of the lowest state are also investigated.

I. INTRODUCTION

Analysis of vibronic states has been one of the
important problems in the theory of the Jahn-
Teller effect. Its study was initiated by Moffitt
and co-workers" and independently by Longuet-
Higgins e~ a~.' A purely quantum-mechanical sol-
ution for an electronic doublet (E) state coupled to
a doubly degenerate vibrational e mode (E xe) has
been first obtained numerically by them. '' The
vibronic state in this system can be specified by
a quantum number J corresponding to a, fictitious
angular momentum operator commuting with a
total Hamiltonian. Existence of this operator
makes the treatment elegant. The matrix of the
vibronic Hamiltonian to be diagonalized. has a tri-
diagonal form, of which matrix elements are given
analytically, once one specifies the quantum num-
ber J.

Thorson and Moffitt' presented numerical solu-
tions of the vibronic energy levels for the dynamic
Jahn- Teller coupling of the fourfold degenerate
I', state with a triply degenerate vibration (7.,).
This problem is similar to that of the F. x& in
some points: It has a good quantum number J
and its secular equation is identical to that of the
gxq except that matrix elements in it are ex-
pr essed by a half integer inste ad of an integer
in the latter.

The vibronic system where we cannot find an
operator analogous to J is much more complicated
than the one which has it. This typical example is
an electronic triplet state (T} coupled to a triply
degenerate vibrational ~, mode in cubic symmetry
(T xr, ). Caner and Englman have first succeeded
in analyzing this problem numerically. In order
to reduce the order of the matrix to be diagonal-
ized, Caner and Englman classified vibronic basis
functions, so that they transformed as the irreduc-
ible representations of the cubic group. They set
up the matrix of the Hamiltonian in these symme-

try-adapted basis functionsr constructed from cubic
harmonics which are obtained from spherical har-
monics up to ordet 12.

Recently, the specific system in which an elec-
tronic triplet T state in cubic symmetry equally
couples to both e and 7, modes has been studied
by O' Brien' and by Romestain and D'Aubigne'
(hereafter referred to as D-mode model). The
assumption about equal frequency, equal effective
mass, and equal coupling allows the e and T, vi-
brations of the different symmetry to behave as
if they were components of a single mode (D

mode), so that a triplet state couples to a fivefold
degenerate vibration. In this special case a good
quantum number J exists. A general treatment
of the T x(r, +e) vibronic problem has not yet
been done without the assumption used in the anal-
ysis of the D-mode model, because of the complex-
ity which derives mainly from the high degenera-
cies in the vibrational states.

The objective of this work is to investigate a further
challenge from a different approach tothe fundamental
problem (T x w2) first analyzed numericallyby Caner
and Englman, ' and to extend it to a general problem
of a triplet state linearly coupled to both e and 7,
modes. Our method is a direct application of re-
cent numerical analysis for diagonalization of a
sparse matrix. We have found that the Lanczos
method' can be applied effectively to the vibronic
Hamiltonian matrix with which we are concerned,
even if the order of its matrix is very large. This
method has the advantage of easy inclusion of the
vibrational states up to the higher order, since we
have no need to construct the symmetry-adapted
basis functions. The Lanczos method consists of
the following two steps: The first step is tridi-
agonalization of the original matrix, and the sec-
ond is final diagonalization of the resulting tridi-
agonal matrix.

In Sec. II we briefly describe our method, taking
the case of Tx7., as an example. In Sec. III the .
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results for vibronic energy levels, Ham's reduc-
tion factors and optical absorption intensity are
presented in the case of 7'x7., The extension to
Z'x(v. , +e) is made in Sec. IV. The results of the
present calculation will be co'mpared with those
previously. studied.

II. METHOD

We 3;ssume that a 7', electronic state in cubic
symmetry is linearly coupled to a vibrational v,
mode. The effective vibronie Hamiltonian is ex-
pressed as a matrix in the electronic T, wave func-
tions

I x) I y), and
I
z &:

SC=(1/2p, ,)(P', +P'„+P q) +,'p, (u, (Q-', +Q'„+Q'q)

Qc Qq

+~, Q~ o Q~

Q (n = $, q, f) is the vibrational coordinate of r,
mode; P„.the momentum conjugate to Q; p, ,
is the effective mass of the mode and +, its angul-
ar frequency; V, is the Jahn-Teller coupling coef-
ficient. The vibronic Hamiltonian matrix H to be
diagonalized is that expressed in vibronic basis
functions, which are direct products of electronic
wave functions and harmonic o,scillator wave func-
tions in the 7., mode. The vibrational basis func-
tions are those of the isotropie harmonic oscilla-
tor, written as

[«n,n~] =x.,(Q dx. „(Q,)x. , (Q&),

where X„(Q) is a normalized harmonic oscillator
function of order pg.

The vibronie Hamiltonian matrix JI can be tri-
diagonalized by a similarity transformation ma-
trix P. The resulting transformed Hamiltonian
matrix &' has the form

H'(Z'„x)

H'(T„y)

Il'=P 'HP = 'H'(T„()

H'(T„q)

'H'(Z, e)

where the submatrix H'(I', y) (I'=A„A„E,T„T,)
is a symmetric tridiagonal one,

of the I' irreducible representation can be written
as

n, (r) p, (r) o 0. . .

p, (r) n, (r) p, (r) o. . .

e(r, y) =y„(r,y)Ix)+y, (r, y)Iy)

+y, (r, y)ls), (5a)

H'(r, y) = o p, (r) n, (r) p, (r). . .
o p, (r) n, (r). . .

The basis function of the submatrix H'(I, y) should
transform as the yth component of the I irreduc-
ible representation of the cubic group. Matrix
elements z and P depend on the coupling strength,
but are independent of y.

The eigenvalues of the original Hamiltonian are
identical with those of the submatrices of the
transformed matrix H'. The corresponding vib-
ronic wave function belonging to the yth component

y,(r, y) =g ga„",[n„j], (5b)
pt j

where [n„'j] stands for the vibrational wave func-
tion [n n„~~]n, with n, =ri &+n„+n&, j being the num-
ber labeling the degenerate vibrational states with
the energy (n, + —,')K&u, . The coefficients a are de-
termined by the eigenvector of the transformed
matrix &' and the transformation matrix P.

In actual process of the similarity transforma-
tion of (3), the I anczos algorithm' is used to con-
struct a matrix P such that the result of the sim-
ilarity transformation

'1 =P HP

is a tridiagonal matrix. A sequence of vectors
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(P„P„.. . ), as the column vectors of P, is gen-
erated by the Lanczos algorithm:

+V,

1 VY2q- 2 Q,

&2
2qe+ 2 q,

0

Therefore, the vibrational basis function has the
form

I&iii, iiciien, j =y„(q,)g„. (Q„h„,(q, )

x&„(q,)1l„(Q,),

instead of (2).
Before leaving this section, we define dimension-

less coupling constants 4, and k, by

O', = V',/g, As'„

O', = V', /p. ,hid', .
(ga)

(9b)

The Jahn- Teller stabilization energies for 7, and
c modes are expressed as

Ei & (T ) =
q lP~. 6(d ~

= S~ Ii id~, (10a)

~,. =(P„HP, ) (i=1, 2, . . . ),

d; „=HP, —a.;P, —P;,P, , (Po = 0),

p;=lid, II

i + 1 di + 1/Pi

where
fl ll indicates Euclidean norm. In order to

obtain the physically interesting solutions, the
initial vector (P,) must be chosen from a symmetry
consideration (see the Appendix for details).

In the case of T x(~, +e), we must solve the ef-
fective Hamiltonian which consists of Eq. (1) and
the following one for the Jahn- Teller coupling to
e mode:

:~0 = (I/2 g, ) (P 8+P ', ) + -', p, , (o', (q', + q', )

+

3
LLJ

FIG. 1. Vibronic energy levels for T x y2 vs coupling
constant k . The levels are labeled according to the
irreducible representation of the cubic group.

in Fig. 1 as a function of k,. The energy unit is
A COT.

In order to demonstrate the validity of our meth-
od, we have checked whether our results give cor-
rect ones in limiting cases. In very weak coupling
(&,(0.2), we can compare the results with the
perturbation calculation of Moffitt and Thorson, '
and at other extreme limit (k, —~), with asymp-
totic expression given by them (on the extreme
right in Fig. 1). Our results are in reasonably
good accord with those in two limiting cases, and
also in very good agreement with those of Caner
and Englman. ' Our results have been obtained by
taking into account up to vibr'ational states cor-
responding to the phonon number g, =20 at max-
imum. The convergence of the calculation for the
lower vibronic levels shown in Fig. 1 was checked
by taking the energy difference (hE) between the
energy obtained from the calculation taken up to
the phonon number N, and that from the one up to
&, +1. Roughly speaking, the lower vibronic levels
originating in yg, =0 or n, =1 converge within an ac-
curacy of the order of lhE/A~, l

=10 ', if we con-
sider the vibrational states up to the phonon num-
ber g, =5 for g, = 1.0, &,=10 for P =2.0, and &„
=18 for P =3.0.

Ezr (&) = 2k, her, =S,Iield, . (10b)
B. Reduction factors

These equations define the Huang-Rhys factors
S, and s, .

III. RESULTS FOR T X v2

A. Energy level

Using our vibronic wave functions, +(T„x)
and 4 (T„y) in Eq. (5), we calculate reduction
factors EC(E), K(T,), and If(T,) first introduced
by Ham. From the definition of the reduction
factor, they are expressed as

We obtain the vibronic energy levels solving
secular equations for the symmetric tridiagonal
matrices such as Eq. (4). The results of the vi-
bronic energy levels for the lower ones are shown

ff(Z) =1 —&f(z, z),

Z(T, ) =f(x, y) -f(y, x),

Z(T, ) =f(x, 1) +f(y, x),

(11a)

(11b)

(11c)
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where

and

The P„(T„y) and P,(T„y) are obtained from

$,(T„x) and Q„(T„x), respectively, by a sym-
metry consider ation.

I,eung and Kleiner" have derived the expres-
sions for these reduction factors from a group-
theoretical analysis, and pointed out that they are
related by

ff'(F) + —,'[Jf'(T, ) —Jf(T,)] = 1 3f(T,—)' (12)

The f(T,) measures the contribution of T, vibra-
tional. part to the vibronic ground state. In our no-
tations, it is given by f(z, z) f(y, x)-.

The numerical result of the reduction factors-of
the vibronic ground state has been already given
by Caner and Englman. ' Our result agrees with
theirs very well. Instead of showing respective
result for three reduction factors, we have plotted
Sf(T,) as a function of k, in Fig. 2. Leung and
Kleiner argued that this factor was probably small
and that f(T,) is zero both for weak coupling and
in the strong coupling, limit. " Our result in Fig.
2 confirms the smallness of f(T,), but does not
show that it passes through a maximum at some

We are now doing calculations which are ac-
curate enough to predict the correct behavior of
f(T,) in the strong coupling limit.

10

10

1Q
1Q

I

2.0 3.0

FIG. 2. Factor 3f(T~) is plotted as a function of k, .

C. Absorption intensity

The intensity of the zero-phonon line of a trans-
ition from a S-like ground state is given by

I s *.,(T„~)I

' =
I ~.",(T„y) I,

' =
I s;,(T„z)I

'
parameter $', which is plotted against k', in Fig.

FIG. 3. Plot of S' against k, . The upper curve shIows
$' for small values of k, on an expanded scale. The
dotted curve is.$' =k„(1-k /8)/(1+kT/4) .

3, is such that e is the fraction of the total in-
tensity in the zero-phonon line. An analytical
expression for 5' has been derived by Nasu" in
a weak coupling approximation. Our result coin-
cides with the value of his expression, S'=k', (1
—';k', )/(1+-', k',)', if k', s0.3.i

IV. RESULTS FOR T X (r2 + c)

We have extended our calculation to the problem
for a triplet state linearly coupled to both v, and
e modes. We assume that frequencies of the 7,
and e modes are equal, throughout the present
calculatioh. The assumption of equal frequencies
for both modes is not essential in our method, but
only helpful to making the treatment simple.

A. Energy level

The vibronic energy levels for the lower states
are presented for three values fo the Huang-Rhys
factor ratio (S,/S, ) as a function of k, or k, in Fig.
4. When &, = w„ the ordinary perturbation theory
is applicable only to energies for the T, state or-
iginating from n, = n, = o, and A„E states from
n, = 1 and n, = 0.' To second order, the energy cor-
rections for these states are given by the sum of
Eqs. (12) and (14) in Ref. 2. Our results agree
with them, when 4, and 0, are smaller than about
0.2.

The convergency of the calculation has been
checked by the same method as that used for the
case df the 7'x7, . Unfortunately, we could not
carry out the accurate calculation for large coup-
ling, because extending the order of the Hamilton-
ian matrix to too large a matrix introduces numer-
ical errors into a's and P's in Eq. (4). It is due
to that the Hamiltonian matrix in this case is less
sparse than that for the 7 x7,. These errors
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LLI

3

(c)

S~/S, = 0.6

T1

T2

k„

A2

T1

kg

FIG. 4. Qibronic energy
levels for 7'x (y2+q) vs
k, or k, for (a) $, /$, =1.0,
(b) $, /$, = 0.6, and (c)
$, /$, =1.65. In the case
of L)-mode model, spec-
troscopic symbols are
used to label the energy
levels.

The agreement is very good up to k, =1.8. In the
strong coupling limit, the vibronic states associ-
ated with the lower potential energy surface are
P, F,II, . .. states with odd values of quantum num-
ber (I.)."'" Their eriergies are given by"~

[-S+2+ ,', L(L—+1)S ']K(u+O(s '),
where $=—$, =S, and &=-(d, =(d, . The P, I, and
H levels in Fig. 4(a) should approach these values.
Indeed, they proceed in those directions. The vi-
bronic states in the strong coupling limit are
studied sufficiently by Judd and Pogel."

From Figs. 4(b) and 4(c), we can see how the
energy levels split, as the effective Hamiltonian
has the lower symmetry, that is, cubic one. They
split 'in the same way as atomic levels in the cubic
cr'ystal field. Qur result, is physically reasonable,
according with the fact pointed out by O'@rien:
Trigonal distortions are favored if the sign of the

- fourth-order cubic fie].d term is positive and the
negative sign favors tetragonal distortions. ' The
magnitude of the level splitting is not so sensitive
to ihe deviation of S,/S, from unity, being at most
about —,

' of the vibrational energy h&. However, the

energy scheme for the Tx(z, +e) is different from
that for the T &~„even apart from new vibronic
levels introduced by the effect of the & mode inter-
action.

O' Brien'" concludes that the ground state is a
T, state originating from pz, =g, =0 throughout, as.
long as +, and td, are not largely different from
each other. Without removing the assumption of
equal frequencies, we cannot completely rule out
the possibility that in a certain vibronic coupling,
other state is the ground state rather than the 7,
state, but it also seems improbable to us.

spoil the orthogonality of the column vectors of
P and bring about poor results. This is a weak
point in the Lanczos method. If we want to remove
this weakness, we must take steps of reorthogon-
alization of the column vectors. In this paper, we
are content to confine ourselves to the intermedi-
ate coupling region, where the calculation taken up
to the phonon number N(=N, +N, ) ='I gives reason-
able results to the lower states.

S,/S, =1 corresponds to the D-mode model. In
this special case, the effective Hamiltonian is in-
variant under the three-dimensional rotation group
R3 The vibro nic wave func tio ns transf or m under

Q3 ac cording to an irr educ ibl e representation
j9~~), I.=0, 1, . . . . O' Brien has analyzed numer-
ically P vibronic states, which are of interest in
comparison of the theory to experiment. The
available data for comparison between our result
and hers is the energy level of the lowest P state.

B. Properties of the lowest state

In the 0-mode model, properties of the lowest
state such as reduction factors and absorption zero
zero-phonon intensity have been already studied

by O' Brien. ' She also qualitatively discussed how

the reduction factors changed in the strong coup-
ling limit, as S,/S, deviated from unity. "

Here we can calculate the reduction factors and

zero-phonon intensity for an arbitrary value of

S,/S„except in the strong coupling. The expres-
sions for the reduction factors have the same forms
as those of Eqs. (11) except that p~(I', y) is ex-
pressed in terms of the vibrational basis function
in (8). Examples of the numerical calculation of
reduction factors for three values of the Huang-
Rhys factor ratio: S,/S, =0.6, 1.0, and 1.65 are
shown &n Fig. 5. The results show physi. cally
reasonable behavior:
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10I V. CONCLUSION

0.6

0.2

0

10

k~ 2

0.2

,
I (b)

0

1.0

I

k~
2

0.6

0.2

FIG. 5. Reduction factors K(T~), K(T2), and K(g) in

T x(7. 2+g) for three values of S, /S, : S', /S, =1.65,
1.0, and 0.6.

We have studied vibronic systems for a triplet
state in cubic symmetry that is more complicated
than the others. Firstly, the fundamental problem,
7'xv, is solved numerically in detail from a rather
different approach from that used by Caner and

Englman. ' We have considered vibrational states
up to the phonon number 20. Our results for the
vibronic energy levels and reduction factors agree
very well with those of Caner and Englman.

It is shown that our method is successfully ap-
plied to a more complicated system where a trip-
let state linearly couples to both & and 7, vibra-
tions of different symmetry. We have first solved
this problem without the assumption of equal coup-
ling, and obtained the energy scheme for the lower
states in the intermediate coupling region. This
energy scheme is different from that for the coup-
ling of the ~, mode alone.

We should like to emphasize that the method can
be applied to other systems, even when one cannot
find a good quantum number. A doublet state in tet-

ragonal symmetry that involves competing modes
of different symmetry is such an example. Al-
though this system is much simpler than T x(z, +e),
it has properties similar to those of the latter. "

The calculation without the assumption of equal
frequency (Id, =~,) and application of our calcula-
tion to experiment" are left for the future.

The K(T,) hardly depends on S, /S„, while the
other two factors have strong dep, endence. As
discussed by O' Brien, the K(E) and K(T,) get
close to the values appropriate to S, =0 or S,=0
in moderately strong coupling, even when S, and
S„are not largely different.

Figure 6 is a plot of the parameter S' for fixed
values of total Huang-Rhys factor (=S,+S,) against
6 = (S,-S,)/(S, +S, ). This figure shows that the
zero-phonon intensity has the greatest value when

S, and S, are nearly equal.
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APPENDIX: USE OF THE LANCZOS ALGORITHM

FOR VIBRONIC PROBLEMS

Our approach to the fundamental problems of the
dynamic Jahn-Teller effect is to find an algorithm
for solving the vibronic Hamiltonian matrix with-
out any assumption about values of parameters
involved. The vibronic Hamiltonian matrix is iri-
finite, so that exact solutions cannot be obtained, .

05-
—.5 0

FIG. 6. Parameter S'
for fixed values of total
Huang- Rhys factor against
s= (s, -s, )/(s, +s, ).

(T1x Tz() IN1

N1
I

I

(T1

I

I

y Tz]) 'N1
I

I

I

N1 1

' (T1z TZ&) IN1

I
I

N1

'(41,A2,E) Nz

N2

FIG. 7. Block form re-
duced by row and column
permutations from the ori-
ginal matrix.



N. SAKAMOTO AN D S. M URAMATS U

in a strict sense. In order to obtain the accurate
approximate solutions which are of interest to us,
we must do a calculation with such large basis
that the effect of truncation of the matrix is neg-
ligible. For the 7'xv, problem, if one includes
vibrational. states up to the phonon number g, =20,
the order of the truncated matrix is 5313. The
matrix is very large but sparse. It is well known
that the principal technique employed in handling

a large sparse matrix is permutation of rows and
columns to transform it to some proper form so
that the problem is reduced to the determination
of eigenvalues of several matrices of small di-
mensions. For the vibronic Hamiltonian matrix
in cubic symmetry, it is possible to transform
the matrix to four diagonal blocks by row and
column permutation, as shown in Fig. 7. One of
the diagonal blocks, 'which we call (T,x, T,$), is

0

0

I000] l~& l001] ly& I010] lz& l101] lz& l002] lx& I020] Ix& ~ ~

3/2 a, /W2 a,/W2 0 0

k,A%2 5/2 . u /vs u, 0

u, /W2 0 5/2 0 0 ~ ~ ~

0 a, /W2

0

0

0

7/2

0

0 0

where matrix elements are in units of 5~„.
It is not difficult to write the positions and values

of the matrix elements in a FORTRAN function
statement. The next step is to decompose (T,x,
T, $) matrix into (T,x) and (T,$) matrices using the
Lanczos algorithm with tridiagonalization. This
process is an essential part of our method.

In computing the eigenvalues and corresponding
eigenvectors which transform as the T, irreducible
representation of the cubic group, we can find,
from a symmetry consideration, that the, initial
vector for the Lanczos process should be chosen
as P; = (1,0, 0. . . ), where w denotes the trans-
pose. If the Lanczos process is carried out by
using Eq. (6), the process breaks down at some
stage, since the number of the generated ortho-
gonal vectors which couple to the 7, vector can-
not exceed the number of eigenvectors (0) belong-
ing to the g, representation. In principle, once
the initial vector is taken as P," =(1, 0, 0. . . ),
the Lanczos process proceeds until P~ =0, and
al) solutions belonging to the 7", are obtained. How-
ever, in an actual computation a loss of significant
bits in finite precision causes destruction of or-
thogonality- of the generated vectors. This is an
instability in the Lanczos algorithm. We can over-
come this difficulty in the actual process by re-
orthogonaliz ation of the generated vectors.

To compute the eigenvalues belonging to the T,
representation, it is necessary to find a new in-

Bg+ Bg
3 ~l ~& g 0 0 v

IN I I I
I I I

I I

(b)

2 —,

F-' D F

F&G. 8. Coupling scheme for (a) a general case (only
T, state) and (b) L&-mode model. The dotted line joins a
pair of coupling levels.

itial vector which is orthogonal to all the-previ-
ously generated vectors. This vector is P;=(0,
-1/v2, 1/W2, 0, 0. . . ). The components of this
vector are just the Clebsch-Qordan coefficients
(T~y, T2y2 l T2(&, for vibrational basis functions,
l001] and [010] transform as & and q rows of the

T, representation, respectively. The initial vec-
tors for (A„A„F) matrix are obtained in the same
way.

For solving the T x(T, +e) vibronic problem, we

use the same technique. It is important to arrange
the additional matrix elements in appropriate posi-
tions. When we apply our method to the problem
of the l)-mode model, some symmetry considera-
tions are necessary. As pointed out by O' Brien'
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and by Romestain and D'Aubigne, ' the character of
the ground state in this model is P like rather
than T, like, and the first excited states are P, D,
and F like r ather than T„E,T„A2 Ty, and T, like.
If wechoosetheinitialvectoras done for the T 0&7,
problem, we can obtain from (T,x, T,$) matrix
only eigenvalues of I'- and 0-like states. In order
to determine the eigenvalues of F, G, H, I, . . .
states, new initial vectors must b6 chosen step
by step from symmetry considerations of the vi-
bronic basis states. Very similar situation occurs

in E x(P, +P, ) vibronic problem in tetragonal sym-
metry. " Yo show the difference of the Lanczos
process between a general case and the l)-mode
model, coupling schemes for some of the lowest
levels are illustrated in Fig. 8.

%e think that the Lanczos algorithm is one of
the effective methods for solutions of the vibronic
problem if we handle with care for the reason
mentioned before. A progressive understanding for
usefulness of the Lanczos algorithm in other prob-
lems will be emerging.
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