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In this paper, the low-temperature (kzT < U) frequency-dependent o(w) conductivity in a half-filled
Hubbard chain is calculated to the lowest order in the parameter t/U and in closed form to all orders in
t/w— U. Here t is the nearest-neighbor hopping integral and U the intra-atomic Coulomb interaction. The
problem is formulated in terms of the number of random walks of an electron and a hole which leave the
spin configuration unchanged, at temperatures such that kzT <t < U (where kg is- Boltzmann’s constant).
The conductivity then depends on spin configuration, and for both the antiferromagnetic (AF) (T = 0 K)
ground state and the equiprobable or random arrangement (R) (kzT > t2/U) an exact expression is found.
For the partially disordered regime (T ~ Ty) the thermodynamical averaging is expressed in terms of a
phenomenological spin-spin correlation length | which interpolates between the AF and R exact limits.
This solution is such that for | =« the AF line shape is recovered except at the center of the spectrum (i.e.,
at w = U), where the absorption always diverges logarithmically. For a ferromagnetic (! = 0) arrangement
induced by a magnetic field, the absorption then vanishes. The line shapes obtained have sharp edges at
|w| = U 44t for all temperatures. At the critical value of 4t = U the AF ground state is found to
undergo a metallic transition. A closed-form analytical expression in terms of the three elliptical integrals is
given for the absorption lines. Except for the AF case, which has a square-root edge singularity, the
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absorption is found to vanish linearly. Finally, a comparison is made with some recent calculations.

I. INTRODUCTION

The behavior of electrons localized in narrow
bands has been a matter of considerable recent
interest. The works of Hubbard,' who succeeded
in obtaining successive improved solutions to the
problem posed by himself, constitute a break-
through in this connection. As is known, in such
systems the ordinary band theory for the conduc-
tion electrons breaks down because of the very
strong Coulomb repulsion between the electrons.
“In the Hubbard model, these are considered to be
localized in Wannier cells and only the Coulomb
repulsion between electrons on the same lattice
site is retained. In this paper, we shall examine
this model in an atomic limit in which the transfer
energy ¢ is taken as much smaller than the Cou-
lomb repulsion U, and discuss the line shape of the
optical absorption due to simultaneous excitation of
one carrier and a hole in an otherwise half-filled
band chain. This atomic limit of the Hubbard mod-
el has been extensively studied. Harris and Lange®
have shown that the spectral weight function con-
sists of a series of equidistant bands separated in
energyby U. Nagaokaand then Sokoloff® have formu-
lated this limit of the Hubbard model in terms of
the number of possible random walks on a lattice.
In particular, Sokoloff® considered the thermodyn-
amics and magnetic properties of the infinite-in-
teraction one-dimensional Hubbard model. Brink-
man and Rice? later used this method to study the
mobility of a single hole (or extra carrier) in a
half-filled band. Beni, Holstein, and Pincus,® and
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also Klein,® essentially reobtained the latter’s re-
sults for the one-dimensional band case. Here the.
magnetic properties® are largely independent of the
model. :

Extensive use of this formulation was also made
in our previous work.”

In the present paper (Sec. II), we reconsider in
detail the calculation of the time-dependent vel-
ocity-velocity correlation function for the random
walks of two impenetrable particles: a doubly oc-
cupied site and a hole. At temperatures such that
kpyT<«<t<«U the thermal doubly occupied configur-
ations are negligible and we need consider only the
subspace of the 2¥ spin states. A doubly occupied -
site and a hole can then be created by the velocity
operator at a certain point, make arbitrary ex-
cursions, and be annihilated somewhere else in
the chain restoring the initial spin configuration.
Lieb and Wu® have shown that the exact T=0 K
ground state for the half-filled chain is both anti-
ferromagnetic and insulating. Here, it is found
that at the critical value of 4¢ = the system under-
goes a metallic transition; we then believe that
this should set the radius of convergence of our
expansion to the lowest order in ¢/U.

At temperatures k, T'> /U we have averaged
over all spin configurations with equal probability.
In this case, a logarithmic divergence shows up in
the line shape at w =U. In the critical ordering
region T~T, the antiferromagnetic (AF) and ran-
dom (R) exact limits are interpolated in terms of
an antiferromagnetic spin-spin correlation length
of the chain. While we do not make any claims as
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to the accuracy of this interpolation, we feel that
it should at least provide us with a qualitative rep-
resentation of the line shapes in this more com-
plicated regime. In particular, to the lowest order
in t/U the absorption edges turn out to be tempera-
ture independent.

In Sec. III, we use two different integral rep-
resentations of the generating function® for the
two-particle random walk. We then express in
terms of elliptic integrals the line shapes; these
are found to be characterized always by two sim-
ple curves: an AF circle, to which a parabola is
added to account for spin disorder. Finally, in
Sec. IV, we compare our well-defined results with
some recent calculations.

Il. VELOCITY-VELOCITY CORRELATION FUNCTION

In this section, we consider in detail the cal-
culation of the time-dependent velocity-velocity
correlation function (]5(7)». This quantity is ex-
plicitly® '

o) =(v(r) v(0) +v(0) v(7))

= %‘ Tr [e™ 8% pe =iy
e gemiRT)] (2.1)
with the Hubbard Hamiltonian 3¢ given by”
U
36:‘,2 tiscloci +?Znioni,-o ) (2.2)
15750 1,0

where c,-'rc (c;,) creates (destroys) a state of spin o
at site ¢, andn;, (=cf,c;,) is the number operator.
The quantity ¢;; is the transfer-matrix element be-
tween sites 7 and j and U gives the intra-atomic
Coulomb repulsion. We will consider only nearest-
neighbor hopping,. so that t;; =t, if i and j are near-
est neighbors and £;; =0, otherwise. The extension
of our method to include next-nearest neighbors is
very difficult and this matter will not be considered
here. :

The velocity operator is

v=ita Y, AClanCigs A =EL, (2.3)
i,0, A
where ¢ +1 is the lattice site next to 7 in the field
direction, and g is the lattice constant. The par-
tition function Z is .

Z =Tr(e™ ). (2.4)

We will consider only the low-temperature strongly
correlated limit of (2.2), such that kT «<i{<«<U.
Because of this, one can restrict the operation of
the trace in (2.1) and (2.4) to the 2¥ (N being the
number of electrons, or sites, in the half-filled
chain) spin states without thermal doubly occupied
configurations. In this temperature range, (2.2)
can be written®"*? as a Heisenberg spin Hamil-
tonian with antiferromagnetic constant J =2¢2//.

In one dimension, the ground state of (2.2) is then
strictly antiferromagnetic.® At the Néel tempera-
ture'® T, =24*/U (z being the coordination number
of the lattice, i.e., z =2 for our case) a transition
occurs to a paramagnetic or disordered state, so
that for T, «T «U/k, the partition function can be
written as Z ~2¥ since all the spin states are then
equiprobable (see Appendix B). For the antifer-
romagnetic region T« 7T, we can write Z ~1 where
only the antiferromagnetic state vector is included
in the thermodynamical average. Also, in order to
consider a nearly ferromagnetic (F) spin ordering
we will assume that an external magnetic field is
added to (2.2). Note, however, that such an order-
ing is inherently unstable because of the antiferro-
magnetic coupling constant J given by Anderson’s'!
kinetic exchange.

Since we consider the limit {1« U, we write the
Hubbard Hamiltonian (2.2) as V +H,, where the
transfer term [the first term in (2.2)] is treated
by a perturbation expansion to all orders. The
correlation function ¢(r) can then be written'®

¢(r) =21 Tr[S(B,i1) v(it) S(it, 0).v +S(B +i1, 0) v(~iT) S(0,i7) 0], (2.5)

where the time-ordered development operator is

S =3 (17 [ awy [ v [, [V Vi) - V], (2.6)

and we have in the interaction representation
V(x) =e*#o ye™Ho (2.7

and the analogous for v(it).

The lowest-order process in ¢/U that contributes
to (2.5) is then” that in which a hole and a doubly
occupied site are created somewhere in the chain
by the velocity operator with a certain probability
p=exp(-a/l), such that

2a%2Np =(v?) : (2.8)

~ then make arbitrary excursions with the develop-

ment operator S, without any intermediate recom-
bintation, to be finally annihilated by the second
velocity operator at some arbitrary point. In this '
paper only, these processes will be considered.
The next order process in /U, which involves
propagation and one final recombination by the
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second development operator S, will be reserved
for a future publication.

We remark at this point from (2.8), that in the
ground state for the AF ordering p =1, while far
above the Néel temperature, for the (R) ordering,
£ =0.5. In general, however, (2.8) defines a cer-
tain temperature dependence (for k,T<«U) of the
parameter p, where in (2.8) the thermodynamic
average is of course taken with respect to the
equivalent Heisenberg Hamiltonian'? .

=_ZZsi.sj, (2.9)

In the present work we introduce this parameter
p{T) only to have a simple phenomenological inter-
polation for the line shapes between the AF and R
exact limits. The temperature dependence of p(T)
remains to be found. We remark also that if an
external magnetic field is added to (2.9) then p(T,H)
<3. For T=0K and a sufficiently strong magnetic
field, the ferromagnetic (F) arrangement results
with p =0.

Since the second term in (2.5) is the complex
conjugate of the first one, we then write

(1) =2Re(v(it) ST, 0) v ;

substituting v as given by (2.3) one obtains

(2.10)

$(1) =4a*t*Re ‘E (el 1, 5168 GT, 0 cfir, 5rCior
s
o,a’

‘C;ru,acias'(i’" O)C;u,c'cfc') ’
(2.11)
where
© S'GT,0)=e"tH07S(iT,0).

The factor of 2 in (2.11) and (2.8) arises because
the doubly occupied site can be created on either
side of the hole. We notice that since S(it, 0) de-
scribes the propagation of two impenetrable parti-
cles, the second term in (2.11) does not contribute
to ¢(r) in our case. In higher dimensions, how-
ever, this term may obviously contribute even to
the lowest order in ¢{/U. In this respect, the one-
dimensional band chain is quite unique and our cal-
culation will be hereafter restricted to it.

We then write

(1) =4a’t*Re Z <ciT_1,Gcl.OS’(iT,O)CJ-T“,GCJ-G) .
i,i»0

(2.12)
This expression can be easily interpreted, as

mentioned above, in the following way: we sup-
pose that the operator C;r+1,cc,-o creates the elec-
tron—(i.e., double occupancy) hole pair at some
point in the lattice, say |0, 1), with probability p.
The development operator S’, because it contains
an arbitrary number of transfer operations, allows
the electron-hole pair to move an arbitrary number
of steps to some site |q,,¢,). The second operator,
ciT_l'Oc,-o, then makes somewhere a final recom-
bination, restoring the initial spin configuration.
Note that for recombination to be possible, a nec~
essary condition is that ¢,=¢, +1. Under these
conditions V(x) in the integrals (2.6) is independent
of x, and one finds that

ser,0lo,n=% 3 =

n=0 ¢1,q9
XPE'D(ql, CI2) ]CIU Q2> )
(2.13)

where PV (¢,,¢,) is the number of ways two im-
penetrable particles can walk from, say, |0, 1), to
a position |¢,| and |g,| steps away from the origin,
after taking a total of n steps. In general, for two
such particles starting from, say, |0,Q), one can
caleulate' P9 (g, ¢,); when @=1 and ¢,=¢q, +1,
one then finds,” as shown in our previous work,”

pl» , 1) _ n____ !
n (4,4 +1) ’([(%n)!]z [Ltn +2)]![%(n—2)]!>

X nl
[30 +29)]1[3(n = 29)]1 °

(2.14)

Interestingly enough, one can think of (2.14) as de-
composing the correlated motion of the two parti-
cles into the independent motion of two fictitious
particles: the first factor gives the motion of a
particle constrained to a half line,® while the sec-
ond gives that of a free particle in one dimension,
that ends up 2¢ steps away from the origin. Re-
combination on a state |q,q +1) will contribute to
(2.12), however, only if there exists an antifer-
romagnetic domain up to |¢q| steps away from the
creation point. The spin configuration outside this
domain is irrelevant insofar as recombination on
lg,q +1) is concerned. We will simply assume that
the probability of such a domain is given by p"",
with p as given by (2.8). As this obviously does
not account for short-range antiferromagnetic spin
correlations, it is exact only when p =0, 0.5, 1.
Finally from (2.8), (2.12), and (2.13) one finds

n!

¢(7) =4a®*pN Re {fmfi i (_ZT)" plq{[%(n +2q)]

n=0 g=—w

Y_m n! )
=29 LNt P ™ 3o +2)11 36 - 2)]1 /
(2.15)
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where the sum over ¢ can be extended to infinity since the random-walk function (2.14) is null for |g| >%#,
with » even. One can evaluate (2.15) in several different manners, we will present two different ones.

III. INTEGRAL REPRESENTATIONS

One can write an integral representation® for the factor in large square brackets in (2.15) as

_ 2 o 1 ra 1 £ ql__g_ﬁll/iz!ql
9;1(17)= Epl | [é(n +zq)]![§(n—2q)]! = o Z,,+1|:(1_4Z2)1 & Z pl I< o > :I, | (3.1)

g==co ==

where the counterclockwise contour need only enclose the origin with |z]| <4. Note that the factor in large

square brackets is nonanalytic only on the real axis for ]z |> 3; we use this property to transform (3.1)
into a real integral. We obtain first by summing the geometric series in g, that '

1 dz 1 <4zz+p[1—(1-4zz)1/2]2 >

@n(P)z'Ej[‘T'i— P (1-4z%)17 422_[)[1_(1_422)1/2]2

(3.2)

Note also that the geometric series converges for all values of z, since the equation [1—(1-42z2)'/2]?p
=4z has no solution for p<1, even when p—~1. One now follows a standard procedure” and deforms the con-
tour in (3.2) to reduce the integration to a real integral. One finds

Sl (" dz . 1 4z2+p[1-(1-42%)122
en(p)" 2,”2 (27')2_[/2 Zn+1lm[(1_422)1 2 <4zz_p[1_(1_422)1/2]2 >:| (3-3)

for n even, and zero otherwise. To find the imaginary part in (3.3) one must calculate the real part of the
factor in large parentheses. One finds after some algebra

4224 p[1=(1=422)"2 = 2%(1-p%) (3.4)

R G p[I-(1 =42V 2+ p)-p °

so that

2 [ dz 1 2%(1 = p?) > '
=— . .5
0.0 -+ [, T e (P (39
In Appendix A, we show that for p =1, (3.5) reduces to ©,(p =1) =27, in agreement with (3.1). Substituting
(3.5) into (2.15), one obtains

0

- 1 o1
¢(T)i4a2t2pf\]Re[e—zUTZ(—il-T)"en(p)<[(_§_n)!]2 - [%(n +2)]![é(n_2)]!>]- ) (3.6)

n=0

Then using the series expansion of the Bessel functions,® namely,

o N B .
; (L0 +oz)]![:%(n-oz)]!=lI 'y (200) . (3.7)

where J, is the Bessel function of order o , one obtains with X =—i¢7/z, and interchanging integration with
summation

¢(1) =4a*>N Re [e'“” % f; 5125 (422_1 NEd (Zzz(zl(iz)jf_)p >[Jo(2i7t) +J2(2i7\)]] , (3.8)
but since )

JIo(200) + 5(2i0) = (=i /N) T 1(26)) , (3.9)
one obtains finally for ¢(r), the following representation:

o =4aton (<252 [ i () ()] @10
In particular for p =1, we get the following results:

Oap () = (4a?*N /t7)(2/7) (cosUT) (m/4) 6(z = ) J,(2t7 /z) (3.11)

= (2a%tN/7)(cosUT) J (4 17) . ‘ (3.12)

This is then the correlation function of a propagating particle and hole that move in opposite directions.”
In general, from (3.10) one can easily find the real part of the conductivity as given by the symmetrized
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(3.13)

where e, 2, w are the electronic charge, the volume of the system and the external frequency, respectively.
Inserting (3.10) into (3.13) and interchanging the order of integrations, one obtains

dlw)= f_m dre' T ¢(7)

=4a2tpN<%> f; (42262;2 iE <z§(21(1;)j;2—)p >f0°° %Jﬁa)[cos((w -U) %;) +cos((w +U)9§>] (3.14)

4a%pN (* dz 231 =p? .,
= ﬂp » (zz_k,z)ﬂz (22(1 +(p)2£4)pk’2 > (1 —22)1/2+(k ~k'*), (3.15)
where &’ =|(w - U)/4t| <1 [Eq. (3.15)], and we have used*®
f' %‘iJl(a)cos(Zkrza)=(1--4k'232)1/2 (3.16)
()

for 2k’z <1, and zero otherwise. The second term in (3.15) is obtained from the first upon interchange of

k' by k'*=|(w +U)/4¢|, so that one has ¢(w) = p(-w).

From (3.13) and (3.15) one sees that for 4¢/U<1 one has ¢(0) =0, while at T=0K, ¢(0) =« for 4¢/U=1.
The insulator to metal transition found here by extrapolation corresponds to the point at which the upper
and lower Hubbard' pseudobands would first touch each other as ¢ is turned on. This is then also similar
to an analogous transition found by Bari'” for the classical (infinite spin) limit of (2.2). In our case, how-
ever, there should be no transition; as Lieb and Wu® have shown the ground state of (2.2) to be always in-
sulating for U#0. To the extent that (3.15) is exact only to the lowest order in ¢/U<«1 we think that higher-

order terms ought to remove this divergence.

From (3.15), one can calculate ¢(w) numerically for any value of p(T,H); we remark, however, that be-
cause of the peculiar manner the integrand behaves for p—1, it is convenient to undo the singular charac-
ter of the integral in this region. This can be easily accomplished with the introduction of Heuman’s lamb-
da function.”® It is straightforward, though rather lengthy, to show that (3.15) can be written

p(w) = (4a%pN/m)[(1 = k'2sin®8) cosB K (k) +5 7 sinB (1 —k'2sin®8)*/2A (B, k) — cosB E (k)] + (k' ~k'*), (3.17)

where'® g = (1 - £’2)'/2, p.=tan?(4B) with 0 <B <k,
and K (k), E (k) are, respectively, the complete el-
liptic integrals of the first and second kind; finally,
Ao(B,k) is Heuman’s lambda function.®

For the AF case, one has Ay (37,k) =1 from Le-
gendre’s relation,'® so that

Sap(w) = (4a*tN/m) (3 m) (1 = k') 1/2. (3.18)
For the ferromagnetic case, p—~0, one has
2
lim 22@) _ i"ﬂﬂ [K() -E®)]. (3.19)

p—0
In general, one has 0<A,(B,%) <1 and (3.17) ex-’
presses in a remarkable manner the line shapes in
terms of a circle of radius &’ sinf and of a corre-
sponding parabola. From (3.18) one can associate
the circle with the perfectly ordered AF configur-
ation, while the parabola (being out of phase with
it) can be associated with the randomized spin con-
figuration.

From (3.17) one obtains the edge derivative as

4 2
aagk(iu) - Lfl’ﬂ_ <?77> secB (3.20)
Rr'=1

r
and except for the AF case with a square-root

edge singularity, the spectrum is seen to rise lin- -
early. Also, from (3.17) one easily obtains

plw—~U)=(4a’tpN/m)
x[(cosB) In(4/k'),:_, , +B sing ~ cosp]
(3.21)

from the corresponding values'® of the elliptic in-
tegrals. Since cosf=(1-p)/(1+p) from (3.17) one
recovers the AF spectrum (3.18) except at w =U.
One may speculate here as to whether the inclusion
in (2.16) of short range AF correlations would pro-
vide a smooth transition from (3.17) to (3.18) at the -
center of the spectrum, where the logarithmic
divergence occurs. ]

Let us turn now to the generating function® G (w)
for the two-particle random walk. One has as de-
finition N

lo=U16P @) =3 < L >"Zp"" PP (q,q+1),

m \w-U

(3.22)
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where P (g, ¢ +1) is given by (2.15).
p(w) =4a®*N ImG® (w —40) .

Note that this follows from (2.15), since one has

1 e i(w t\l)‘r < 1 >"+1
- Y] - = -
Zf.w ar (=ir)"e R vy ry B

Then for w >0 (see Appendix B), we obtain ¢(w) from

- (3.23)

(3.24)

and in (3.23) the analytical continuation of G (w), as defined by the series expansion (3.22), is of course

understood. According to (2.14) one can then write

n!

1 dz’ 2
(1) ___
P (q,q+1) fzmu <1+(1_4Z/2)1/2> (S0 +29) 11 [0z —

where only the walks on a half line are written in integral representation.®

2g9)]1 ’ (3.25)

Inserting (3.25) into (3.22), one

can easily evaluate the sums over » and ¢ in terms of (3.1). One has

|w = U|G(1)(w)——(2)f dz, Im< 4

1+(1-4z12)42

where z =¢/(w - U)z’; or finally

>(1 127)7 q_Zmp"”GLM)ziﬂ (3.26)

oW
G ( ) ,”t (krz 1)1/2

From the above and using (3.23) one finds of course
. (8.15). For both the AF and F cases, (3.27) is par-
ticularly interesting. Whenp =1 one sees that from
(3.22) one obtains only the quantity 3 , P,{*(g, g + 1)

as ageneralized “moment” inthe expans ion of
G™(w). Inthis case, G4 (w) becomes a renormalized
one—particle Green’s function corresponding to
walks on a half line,® namely,

Gi(w)= @) [R7+ (R 1)/ 7T (3.28)

For the F case, only the walks that return to the
origin (i.e., g= 0‘) matter; hence for p=0 one finds

Cuw)=L (T4 (& -1/

i ‘ zZ (222 -1)7% (3.29)
=% {E(%) _ <1 _k%>K<%>} SRCEY)

The analytical continuation of (3.22) and (3.30) for
k' <1 can be expressed as'®

(3.31)

G = LB +i[K(E) - BB},

from which (3.19) follows.

IV. SUMMARY AND CONCLUSION

As we have seen, the low-temperature (k57 < U)
conductivity line shape of the strongly correlated
half-filled Hubbard chain, can be obtained exactly
to all orders in #/w — U, for the antiferromagnetic
ground state, and also for the random (kz7 > 2/U)
spin arrangement. This, to our knowledge, is

1 dz (22_1)1/2 <1+p[zk’—(zzk'2—1)1/2]2>'

1 —Z)[Zk' _ (sz,z _ 1)1/2]2

k(3.27)

r

quite remarkable, as it implies that a line shape
of absorption (or emission) in a many-body prob-
lem has been calculated exactly to a well-defined
order of accuracy, i.e., to lowest order in ¢/U.
Calculations based on partial moment expan-
sions, as well as decoupling schemes'®?° some-
times lead to incorrect predictions. In particular,
it has recently been pointed out by Lawson and
Smith? that Kubo’s'® use of Hubbard’s decoupling®

. is in error to the extent that it leads to a spurious

dc conductivity. Also, as Lyo® has recently
shown, Kubo’s'® calculation of the optical conduc-
tivity would be asymptotically correct only for the
almost empty band. As we have already re-
marked,” it is then not surprising that even his'®
optical line shapes should also differ from what is
found here. ’

On the other hand from (3.17) and Appendix C,
for ¢~ 0, it follows that the optical conductivity
(for kzT < U) is given by

. _2me’a’’pN
lim o{w) ==——pa—
X[3(w -0 +8(w+0)]. (4.1)

In this case the strength of the antiferromagnetic
coupling constant, #2/U, vanishes, and the spin
states become degenerate. As seen from (2.8),
however, if k,T <{*/U then p=1, while for T> T,
»=0.5. As emphasized by Bari and Kaplan® it is
then only to this latter temperature range that
their calculation® applies; otherwise the limit
(4.1) is clearly undefined.

As follows from (3.17) for both the AF and R
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cases the absorption edges are at w=U+4¢; this
seems to be a feature of our calculation, and,
while it is not claimed that the true line shapes
(even to this order in ¢t/U) interpolate according to
(3.17), it is plausible, nevertheless, to conjecture
that the absovption edges are indeed temperature
independent as predicted by (3.17).

As concerns Eq. (2.14) we should say that al-
though it is presented within the context of random
walk theory, and this may be thought of as more
of a-“mean-field theory,” it is, as shown in our
previous work’, rigorously exact. As already
stated, our calculation is then exac? to lowest or-
der in the parameter /U for the AF, F, and R
cases considered.

Also, we must remark that a greatly simplify-
ing characteristic of the one-dimensional band
case presented in this paper lies on the fact that
motion of the electron (i.e., double occupancy) and
hole does not introduce disorder into the spin con-
figuration of the chain. In fact, as we have seen,
recombination of the electron-hole pair can occur
on all ‘'states of the form ]q, q+1) (irrespective of
the previous motion) restoring the initial antifer-
romagnetic spin ordering in the chain. Further-
more, if the configuration is initially random, re-
combination at a certain site does not contribute
only if there is a break in the antiferromagnetic
ordering between the point of creation of the elec-
tron-hole excitation and the given site.

Finally, when 4¢="U the density of states obtained
in (3.23) from the generalized two-particle Green’s
function G ??(w) extends down to w=0. Because of
this the dc conductivity behaves as 1/Vw or Vw/T
for T—0. It has been asked®* whether a finite
bandwidth could possible give rise to a nonzero dc
conductivity under these conditions. It is possible,
however, that ¢/U <i may indeed be the region of
convergence of our expansion (in powers of t/U),
and that consequently the transition found here
simply arises as a consequence of extrapolating
an approximate result outside of its range of val-
idity. To the extent that Lieb and Wu® have shown
the exact ground state to be insulating (for U#0),
one should think that this is indeed the case.
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APPENDIX A
We show that one has ©,(1)=2" from (3.5). To
show this we prove that
1 2(1 -p%)
lim
o @2 =1)F 221 +p)-p

for z= 4. One has

1 2%(1 - p%)
},1.,1? zl_}fr/lg (4z>-1)'7% ,22(1+p)2 -

“lra(z-b) (A1)

1

=lim
p—1 (1 1))7 z—»l/z (4Z

L =%,
(A2)

and als/o

» dz z5(1 -p°%)

077 Z@+p’ b

lim >
p—o1 J1/2 (42" -

1-p
,1,‘31‘ f(z 1)”2 2(1+p) - 2Vp

xii,n? (z+ 1)”2[2(1+p)+2\/5]

i 1 (1-p%
=lim M v VP

2 Wep)e-1Y2 \ 1 .
X tan <[<1+p)(1 R T @

which ends the proof.

APPENDIX B

In this Appendix we show (3.23) in the text. Fol-
lowing Brinkman and Rice* we can write for w

=0,
?
UR(“’)“ZQ ffdede (w+ €’ —¢€)

-B€ -Be
X e_,—_e_ F(e, €), (B1)
€ —¢€

where
F(e', €)=F (e’ +i6, €+i0)+TF (e’ —id, € - i)
' —F (€' +ib, € —id) — F (e’ —ib, € +i0)
(B2)

and

1 1
4 — ————
iF(e,e)-Tr(—————€,_,_JCv€_JC v). (B3)

But to our order of accuracy we can write (B3)
as

F(e’, €)==(1/¢") Tr{v[1/(c -50) v}, (B4)

whereupon using (B2) and substituting in (B1) one
finds
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"ez ’ ’
Tffdede (w+e€ —¢€)

X((fi’—_e'fj>6(€,)(2 22 N))
o ¢ a’t"pN).
X ImG @ (€ —45), (B5)
or finally
2 2 2,2 1- -Bw
oplw)=2C At PN 17" 1 60 (w—i5), (B6)

Q w

where we must remark that to obtain (B5) we
have written in the partition function

_1 -Be < 1 )
== fdee Im Tr T (B")

that

1
Im (—(—_m) = 7T5(€) ’

so that Z =1 for T<Ty and Z =2¥ for T>T,, to
the lowest order in ¢/U.

APPENDIX C

In this Appendix we show that (3.17) satisfies
the general condition

—,l;j: d(w)dw= (T =0) = 2(?), (c1)

where (v%) =2a°t°Np. To show this one proves that

a 1
ggjo (s Bk’ =0, (C2)

where
¢ (w)= (4a’tpN/mI(k’; B) for w>0.

In fact,
9 1 '
5 f 1(’; B)dke (c3)

2

= —E—[—sinﬁ(l - 3 sin®B) —cos®B sinf]
T 9 dG cos®6 A (B [1 _(s_%_ni)jll?)‘
NPT sinf

Upon substitution of the derivatives of A (B, &) by
their values'® and use of A,(B, 0)=gsinB, one finds
for (C3),

2 o L 2
5 fo I(r'; B)dR =3 sinB cos®B

x <1_E]01 i’i' [K(k)-E(k)]):O. (c4)

m

But then with 8= 37, one finally obtains

——(8¢)

1
X f I<k';
0

f ¢(w)dw 4q° tN

—g—> dr’ =4a?t°N . (C5)

*Some parts of this work based on a thesis submitted in
partial fulfillment of the requirements for the Ph.D. degree
at the University of California at Los Angeles, 1976.
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