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We present a detailed study of the nonlinear optical properties of one-dimensional conjugated polymers and
semiconductors. The Bloch wave functions and energies and the dipole transition-matrix elements previously
obtained within the tight-binding approximation by linear combination of atomic orbitals (Hiickel
approximation) were used to calculate the nonlinear optical susceptibilities; the expressions of the lattice
were obtained by the Genkin-Mednis approach. The effects of bond alternation and superalternation as well
as chain pairing are explicitly considered. It is found, as for the linear optical properties, that the behavior
of the nonlinear susceptibilities can be simply expressed in terms of the optical delocalization parameter N,
previously defined; in particular it is shown that the third-order susceptibility ¥ in the transparency region
of these compounds shows a sixth-power dependence on this parameter. It is further shown that chain pairing
has striking effects on the second-order susceptibility and the two-photon absorption spectrum. The case of
the polydiacetylene polymer crystals is explicitly discussed.

I. INTRODUCTION

Semiconductors with high nonlinear optical sus-
ceptibility values are of general interest. As large
single crystals of inorganic materials such as
germanium (Ge) or gallium arsenide (GaAs) are
readily available, in the past an intense study has
been carried out! to measure the optical nonlinear-
ities in inorganic semiconductors. There high
susceptibility values may be obtained owing to the
large number of saturated bonds per unit cell.
However, their low absorption threshold, usually
in the infrared, prevents one from studying non-
linear optical phenomena in the visible in these
materials. Further phase-matching conditions
may not be easily satisfied there.

With the recent solid-state polymerization® of
diacetylene monomers R—-C=C-C=C-R, R being
an appropriately chosen radical, attention had been
focused in organic one-dimensional (1D) semicon-
ductors particularly in view of their high absorp-
tion threshold,® usually in the visible, and large
optical anisotropy.* It has been observed® that in
linear conjugated molecules the third-order super-
polarizability y increases dramatically with the
molecular dimension in comparison to the ones
corresponding to saturated molecules with the
same number of valence electrons, a property at-
tributed to the highly delocalized 7 electrons along
the chain direction.® One expects that on poly-
merization there should be a further enhancement
in the values of the nonlinear susceptibilities.in
the direction along which the different molecules
orient to form a long chain. The recent measure-
ments’ of the third-order susceptibility y©’ in
polydiacetylene polymer crystals show that under
certain conditions x®’ may take values which ex-
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ceed even those generally obtained in inorganic
semiconductors.® This is particularly striking in
view of the much lower valence-electron densities
prevailing there and its origin must be sought in
the one-dimensionality of the m-electron system.

In the present paper we study the behavior of the
second- and third-order susceptibilities in such
1D semiconductors and show how various con-
straints such as heteroatomicity, bond alternation
and superalternation, and chain coupling influence
their values. In a previous paper® (hereafter re-
ferred to as I) we set up the model for the r-elec-
tron descriptionand studied the optical propertiesin
systems composed of independent chains of three
types (i) atom- andbond -alternated chains, (ii) su-
peralternated chains, and (iii) pairs of coupled
chains. We shall be making constant use of these re-
sults andall the assumptions made therein should
hold here as well.

In Sec. II we give the expressions for ¢’ and
x®’ to be used. A derivation of these expressions
based on the Genkin-Mednis approach!® will be de-
ferred until Appendix A. Sections III-V deal with
the nonlinear susceptibilities of the three classes
of organic 1D semiconductors mentioned above.
In Sec. VI we discuss the two-photon absorption
spectrum in these systems. The special case of
polydiacetylene polymer crystals is considered in
some detail in Sec. VII, where a comparison with
experiment is also presented. In Sec. VIII the
main approximations and simplifications are sum-
marized and reviewed.

[I. EXPRESSIONS OF NONLINEAR OPTICAL
SUSCEPTIBILITIES FOR 1D SEMICONDUCTORS

The structures of the organic 1D semiconductors
were briefly described in I; in the same reference
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the assumptions and simplifications underlying the
description of the 7 electrons were presented.
‘These materials are assumed to be composed of
parallel linear chains extending along the x direc-
tion which will be taken to be a crystallographic
axis as well. The chains are taken to be indepen-
dent and infinitely long and we may thus focus our
attention to the m-electron band states of a single
chain. Let o be the density of chains per unit
cross area of the yz plane. For materials with
chains not having a center of inversion, a unit
vector can be assigned along each chain; let o,
and o_ be the densities of such chains with their
unit vectors pointing in the positive and negative
directions, respectively, of the macroscopic x
axis (see Fig. 1).
'~ We shall mainly be interested in the optical pro-
perties of these materials in their transparency
region, the one extending between the main absorp-
tion peak due to band-to-band 7-electron transition,
and the vibrational modes of the chains. In con-
trast to the case of the linear optical properties
considered in I, the contribution of the o bonds and
side groups to the nonlinear susceptibilities may
be neglected with respect to that of the 7 electrons;
since the latter are confined along the chains the
only components of interest are 2} and y2).. This
is certainly justified in the case of the second-
order susceptibility x‘*’ since these bonds are iso-
tropically distributed around the chains. For
chains with large 7-electron delocalization, the
ones in which we are exclusively interested here,
it is also justified in the case of the third-order
susceptibility ¥ @’ as can be inferred by comparing
the values of the third-order polarizabilities v of
molecules with saturated bonds, where the additiv-
ity hypothesis can be used, with those of conju-
gated molecules of equal number of 7 electrons 56

The expressions of the components x,m and xm‘,
can be most conveniently obtained using the Genkin-
Mednis approach'® (see Appendix A). The sus-
ceptibilities are then expressed in terms of the
matrix elements of the position x rather than
those of the momentum p as was conventionally
done in the past.'’ The advantages of the former
representation are particularly transparent when
the limiting expressions of the susceptibilities for
vanishing frequencies (transparency region) are
needed.

Since the 7-electron states in the considered
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FIG. 1. Axis conventions (director vector &) for noncen-

trosymmetric chains: (a) heteroatomic-bond-alternated
chain, (b) pair of coupled chains in the 4 configuration.
These axis conventions must be specified, for instance,
when the sign of the second-order suscept1b111ty is
stated.

systems can be more or less well approximated
with two bands termed in the following valence

(v, filled) and conduction (¢, empty) bands, the
two-band approximation will be adopted. The ex-
pressions of x2)(w,,w,) and x8) (w,,w,,w,) in the
two-band approximation are given in Appendix A.
In the transparency region of the material we may
put w; ~0 in these expressions and we obtam the
Zero- frequency expressmns of x2) and x&), to be
denoted x2) and x>, respectively. They are '
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6e3A0 i '
T rE on ) [S ve Sev (Rpw = Q)
uc

3S,, 8S
_g(s,)c :k“’ a;s >]dk

(2.1)
or
Xoo = Xinter+ Xiatra
where
_3¢%A0 i 8S,, oS '
) _— cv _ “Sve
Xiatra ™ = 77— 27[_/“;(8"" 5% "ok ¢ >dk
'(2.2)
Be3Ao 1
Xi(znt)er ne _[Sw:(Q "Qcc)scvdk (2.3)

with Aoc=0, - 0. (see Fig. 1), and
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are defined by ' 2.8)

Q. (k) =?11 j cu;k(x)ﬁ"_n;;:_") dx | @.7)
where u,,(x) is the unit-cell periodic part of the
m-electron Bloch function ¢,,(x) and d is the unit-
cell (uc) length along the chain direction. In the
above expressions use was made of (A14) to re-
place summations by integrations over the Brillouin
zone (BZ) and a factor of 2 has been included to
take into account the electron spin states.

Such separation of x{*’ and x’ into inter- and
intraband contributions is absent in the m-electron
contribution to the linear susceptibility (see I);
there only interband terms contribute. It shows
that the nonlinear susceptibilities strongly depend
on the degree of flatness of the bands; fheir sign
in particular is determined by the velative impor-
tance of the two contridbutions, as will be shown
below.

The third-order susceptibility has a very rich
resonance behavior!? and a closely connected ef-
fect is the two-photon absorption whose strength
is expressed in terms of Imy®)(w,, -w,, w,) with
w, +w,=w,. For the degenerate case w,=w,=w in
general one obtains:

J

—v®)24+ 41?2 sin?0+ 4v(E - 1

where
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and 7(k) is a relaxation time; when Q_,=8,,, this
expression reduces to that of Mednis.*®

III. ATOM- AND BOND-ALTERNATED CHAINS. POLYENES

There are two atoms per unit cell along the chain
with Coulomb integrals a, and a,; the hopping in-
tegrals alternatively take the values B8, and 3, along
the chain for long and short bonds, respectively.
When a, #a, and B, #8,, the chain has no inversion
symmetry and we define the director vector as the
unit vector pointing from the atom with Coulomb
integral @, to the atom with Coulomb integral «,
along the short bond (see Fig. 1).

In the tight-binding approximation the 7-electron
states are distributed into two bands whose ener-
gies and wave functions as well as the dipole tran-
sition strengths §,,, were derived in-I. Substituting
expressions (3.4) and (4.6) of I in (2.1) one obtains

2 ’
)cosf)d6 (3.1)

o_3¢°°A0 (1 = v*) f%" 1
Xr 645 T

where 6=~Fka, a being the unit-cell length, ¢

= (u%+ 1+ 12+ 2vcos6)!’/?; the parameters u

=(a, - 0,)/2B,and v=B,/B, represent the degrees
of heteroatomicity and bond alternation, respec-
tively. Using the definitions!* of the complete
elliptic functions of the first and second kind, E (k)
and F(k), respectively, one finds

ey_v(1 =17 4(u?+12+1)
T T pctd? d?

3e3a?Ac
64B§ ’

(3.2)

E(p)~F(p))

where ¢?= p?+ (1+v)?, @®= pu2+ (1 - v)?, and p?
=4v/c?. The constants d and ¢ are related to the
smallest band gap, E,=2|8,d|, and the largest
one, E;=2|B,c|, which occur at the edge and the

A o fy

—

center of the BZ, respectively. We notice from
(3.2) that x2’=0 if either =0 (homoatomic chain)
or v=1 (no bond alternation, equidistant atoms) as
in both cases the chain possesses the inversion
symmetry.

For the extreme case of localized (saturated)
bonds, namely, v=0, there is no k dependence
(flat bands), and only the interband term contri-
butes to .2’ or

@ _ 3e3a® Ao p, 3e3a® Ao

/
Xr 832)2 a (1_'_“2572 (8B) fl 21— f;) ,

(3.3)

where f; = u%/(1+ u?) is the degree of ionicity for
the dimer; this definition of the ionicity is analo-
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FIG. 2. Second-order susceptibility x?’ vs v=81/8,
for heteroatomic-bond-alternated chains for four differ-
ent values of the heteroatomicity parameter u=Aqa/Bs;

(@) p=0.5, (b) u=0.075, (c) u=0.025, and (d) n=0.004.

x® is expressed in units of X(()Z) =3e%’A0/(88,).

gous to the one used by Phillips and van Vechten
in their dielectric description'® of the inorganic
semiconductors. Expression (3.3) has a maximum
for f;=0.2 which corresponds to 4 =0.5. Similar
behavior is also obtained for x®’ in inorganic
semiconductors using the charge transfer mode
Another extreme case is that of the highly de-
localized electrons or v—1. For u<0.5 one can
use the asymptotic expansions for E(p) and F(p)
in the limit of p ~1 and the leading term in (3.2) is

@ 3d%e3a0 _ 2(1=1¥)u
Xr TT®B,) 3[ui+ (L- v

L

(3.4)

In order to study the variation of x&’ for arbi-
trary values of y and v we computed (3.1) numeri-
cally and the results are plotted in Fig. 2. We find

that for a given u, x2’ slowly rises as v increases.

attains a maximum, and then decreasesatafast-
er rate with further increase in v. With increas-
ing values of y, the maximum value of x2’ shifts
towards lower values of v. It is evident that given
one parameter, the other can be chosen to maxi-
mize y2’. This remark is particularly useful
when the heteroatomicity is not due to actual atom
alternation but is a consequence of the attached
side group radicals, as in polyphenylacetylenes

" (see I); by a proper choice of the side groups it is
possible to achieve high values of x&’.

It presently appears difficult to grow such poly-
mer crystals with A #0 and thus one expects x.2’
to be small or vanishing. The third-order suscep-
tibility ¥ ©’ on the other hand does not suffer from
such considerations; the contributions of the

chains are additive ivvespective of the divection
of the divector vectov with respect to the x-axis
dirvection. In order to get more insight into the 7-
electron behavior it is of some interest to use the
separation of x2’ into inter- and intraband contri-
butions as shown in (2.4). Substituting the ex-
pressions of ,,, and w_, in (2.5) and (2.6), one ob-
tains

1 "(4p*(1-»)P PP
Xi(?:t)ra= X(gz)?r J(; < ;ggs - gggu> ao, (3.5)
@ _ @1 [T/ 20 -v")(sin®0+vE® cosb)
Xlnter"Xo ; A ééég
1% sind
+__‘-§81§11 © > ae, (3.6)

where 3’ =2e%%0/(88,)°, P=4p*V?sin*6+ g*(1- 17),
Q=2ursinf(32+ &%) +2u’¢k cosd
+ (1= 12228+ ?)? and &,= (62— p?)*/>

One can easily compute x3'=x{3)_ +x83),, for
arbitrary values of the parameters u and v. For
v=0 (saturated bonds, two-level dimer) x3},,=0

(flat bands) and x>’ = x3, or

X;3)=Xo(3)(4}i2— 1)(1+ “2)-7/2 (3‘7)

which reverses sign as u crosses the values p
=0.5, and gives x8’=~x¢ for =0 indicating that
for a chain consisting of homoatomic dimers &’
is negative. One also finds that except for
very low values of v, nonzero values of y (hetero-
atomic chain), at any given value of v, reduce
x3; it reaches its maximum value for p=0 (homo-
atomic chains). This case can be treated exactly
and the main results were given elsewhere'”; here
we give some details concerning their derivation.
For p=0,8,,—-,=0 in (2.5) and (2.6); one ob-
tains the much simpler expressions

8ets 1 1 8S,, aS
G _ il cv ve
Xintra_ ﬁs 21’. ‘/ucw 8k 9k dk bl (38)

cv

8eir 1
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and using Q,,=ia(l - v?)/4¢} (see I), one obtains
the expressions for x3)., and x&),.; this can also
be obtained by putting ©=0 in (3.5) and (3.6). The
integration of the resulting expressions can be
performed analytically'” and expressed in terms*
of the hypergeometric function F(a,b,c,z). The
limit v—1 is of particular interest since it clearly
demonstrates the close relationship between high
values of ¥@’ and large 7m-electron delocalization.
To evaluate this limit we express the integrals
(3.5) and (3.6) for u=0 in terms of the elliptic in-
tegral of the first kind, E(m) where m=4v/(1+ V)2
Indeed from (3.5) and (3.6), putting u=0 and using
integration by parts and the appropriate recurrence
formulas,'* one has
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®) @1 7 1447(1 - 1%)? sin®0
Xintra= Xo — ZVI172
7J, (1+2vcosf+ v?)

128 1 <1+u ¥
=35, % Arop\ioy) £

do

and
G) e)lf’r -
Xinter==Xo - 7 | {1420 cosf+ P11/ 2

2128 4 1 [l+v )
T35 X0 (1+T)3<1_V>E(’”)'

ae

Using the notation N, = (1+v)/(1- v) introduced in
I one obtains for x2=x8) +x8)..

o128 E(m)

Patub (3)776
X =5 Ty vp Yo Voo

(3.10)
which for v—1, using the series expansion for
E(m), finally becomes

16

X =g5- %N g

= (3.11)

This is the result given in Ref. 17 and clearly
shows the strong dependence of x¥ ®? on the n-elec-
tron delocalization as expressed by N,. This
sixth-power dependence of y®’ on N, and the square
dependence of x’ on N, derived in I are charac-
teristic of 1D systems. It is a consequence of the
rapid variation of the dipole transition strength

., within a very narrow region near the BZ edge
where it attains its maximum value Q,,(7= 0)
=iN,a and where also the joint density of electronic
states becomes infinite. Accordingly almost the
total contribution to x2’ comes from a very nar-
row region near the BZ edge and strongly reflects
the details of the band structure and Q,, there.
Since N, measures the 7-electron delocalization
length, which in many of these organic conjugated
chains can attain very high values, the much high-
er power dependence of y&’ on N, than the one
found for x*’ justifies the neglect of the side-group
contribution to y8) while this was not the case for
XL: there the contributions of x’ and the o bonds
to x4’ are of the same order of magnitude. Thus
x3). strongly reflects m-electron delocalization
effects.

The above results were derived for the homo-
atomic bond alternated chain (u=0). Since only
the details at the BZ edge are of importance as
far as the optical transitions are concerned, one
may speculate that the sixth-power dependence of
x,f‘" on N, may persist even in the case of a hetero-
atomic chain where y#0 as long as N, is large. In

this case we have (see I)
N,=4|Q,6=m)]/a=1+v)/[A-v)?+p2}/2, (3.12)

and on plotting x.2’ vs N, for arbitrary values of

w and v we found that indeed to a very good degree
of approximation

X~ NS (3.13)

for large N,, even for a heteroatomic chain.
Using the notations E,=2(B,- B,) and 2E ;

=2(B, +B,), introduced in I, expression (3.10) can

also be written

X = (16/457)x &’ (2E ,/E,)° . (3.14)

Exactly the same dependence of x® on the optical
energy gap is also obtained within the almost-free-
electron mode!l for a one-dimensional semi-con-
ductor.'® It is of interest to consider the extent to
which this inverse sixth-power dependence of x ®’

on E, obtained in 1D semiconductors even persists

in cubic inorganic semiconductors like Ge or Si.
Such considerations were discussed in connection
with ¥’ in I where it was found that the linear
susceptibility of a cubic semiconductor within the
spherical band model introduced'® by Penn shows
the same dependence on E, as the one-dimensional
semiconductor. For this purpose we carried out
the calculation of ¥2) in the Penn band model
which with a single band gap E, is an almost-free-
electron (weak-binding) model for an isotropic
semiconductor. Because of the spherical symme-
try it is sufficient to calculate y®’ in only one di-
rection, say the x direction. Since there are only
two bands, a valence and a conduction band, ex-
pressions (3.8) and (3.9) can be used with only
slight modifications to take into account the “three-
dimensional” character of the system. Without
going into the computational details, which are
cursively discussed in Appendix C, we reproduce
here the final result

XS= (e || B QE4/E,)°,
where & and E ; are the Fermi wave vector and
energy, respectively. Van Vechten ef al.?° also
obtained this same dependence of xm onE, ina
different way. This remarkably same functional
dependence of x‘S) on the energy gap in the two
models strongly indicates that the critical point in
Penn’s model is of the same type as for a one-di-
mensional semiconductor, as is also indicated in
I from the study of y @ .

Qualitatively speaking describing a cubic semi-
conductor by Penn’s model amounts to replacing
the actual three-dimensional electronic structure
by one of an assembly of hypothetical chains in the
four [111] directions in these crystals. The E,
Van Hove singularity in the joint density of states
of the cubic semiconductors probably originates®:
from this one-dimensional character of the valence
electrons. We compare the order of magnitude of

x3) in two cases, a hypothetical one-dimensional
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polymer cry‘stal with polyene-type chains and a
hypothetical Ge crystal whose structure is reduced
to an assembly of independent chains in the four

[111] directions (£ direction) with the valence elec- -

trons not allowed to hop from one chain to the
other. For a polyene chain one characteristically
has* B,=4 eV, 8,/8,=0.75, a=2.5 A, and 0'=10"
em™ (which corresponds to the chains being 10 A
apart). HenceE,=2 eV and N,~17.5; from (3.14),
one then has x8) =2.5x107° esu. For the hypo-
thetical Ge crystal E,=5 eV, corresponding to the
position of the E, peak in the absorption curve, and
the value of the valence electron density N ~64/a3
(@ is the lattice constant) one obtains® x3}, ~107
esu. This value, however, substantially under-
estimates the actual value of x®” for Ge as the
main contribution to x,3), comes from the critical
point E,, characterized as three dimensional®® and
situated at ~0.5 eV, the absorption threshold.
Including the contribution from the E, critical
point one finally obtains® x3), ~10™° esu which is
close to the experimental value. In contrast to
x® it should be noted that x’ for Ge can be well
accounted for?*?2 by only considering the E,-peak
contribution (Penn’s model); the contribution from
the E, peak is negligible. "This is due to the fact
that ¥’ only contains an interband contribution
while x®’ has both intra- and interband contribu-
tions, the former being the most important.

As can be seen from the above discussion, high
susceptibility values can be obtained in one-di-
mensional conjugated polymer crystals comparable
to the one measured in Ge, the highest known val-
ue for x‘”, but with a high absorption threshold,
much higher than in Ge. This advantage along
with the optical anisotropy and the low refractive
index make these materials very appropriate can-
didates as nonlinear optical components.’® Poly-
ene-type polymer crystals have not been obtained
yet, but the same features can be obtained with
superalternated chains like the polydiacetylenes.

IV. SUPERALTERNATED CHAINS. POLYDIACETYLENES

The superalternated chain whose band structure
was derived in I is homoatomic and possesses a
center of inversion; consequently, y?’=0. How-
ever, if there are two different side groups per
unit cell, R, and R,, the chain may not possess a
center of inversion; this is because the carbon
atoms to which the side groups are attached be-
have differently because of the inductive effect.®
This introduces an effective heteroatomicity and
a nonzero value of x® is possible. The calcula-
tions for such a chain are quite involved and will
not be given here. Nonetheless it is possible to
treat this case in an approximate way by replacing
the actual heteroatomic superalternated chain by

“the optically equivalent associated heteroatomic
polyene chain” defined as the one having the same
smallest and largest band gaps and the same de-
gree of heteroatomicity as the superalternated
chain; this allows one then to calculate the hopping
energies 51,3-2 and the difference of Coulomb in-
tegrals. a, — @, for the polyene chain, and to pro-
ceed to the estimation of y®’ as previously. Or-
der- of-magnitude calculations of this type show
that x@ is not very large even when o,~0 and
therefore the use of these systems for second har-
monic is of limited practical interest. As a mat-
ter of fact it is more likely that o,=0_ in these
systems or that the chains polymerize in a cen-
trosymmetric configuration of the side groups
along the chain, so that x®’=0 by symmetry.

The case of x®’, on the other hand, is of con-
siderable interest in particular in chains with the
same radical in both positions in the unit cell, as
it corresponds to the whole class of polydiacety-
lene polymer crystals which are now available as
large defect-free samples on which preliminary
measurements of X®’ have already been performed,
and our results can be directly compared.

The band structure of a homoatomic superalter-
nated chain was derived-in I. As was found there,
there are four bands since all £,,, between two
bands do not vanish in general. Strictly speaking
Eq. (4.1) cannot be used to calculate x® as it is
valid for a two-band system. For not too high val-
ues of v/, however, it turns-out that the dipole
transition strength for the transitions 2 -4 and
1 -3 are much smaller in comparison to those of
the transitions 1 -4 and 2 -3 and can be neglected.
If the bands are depicted in the Jones zone, this
amounts to keeping only vertical transitions there
and neglecting transitions between different halves
of the Jones zone. The four-band system can be
treated as a two-band system with a discontinuity
in the middle of the Jones zone and hence Eq. (2.4)

- can still be used with the understanding that the in-
- tegration must be performed over the Jones zone.

In Ref. 17 we depicted the dependence of x &’ of
a superalternated chain as a function of (1+v)/
(1 - v) for four different values of v’'=8,/8,. We
see that superalternation can substantially reduce
x® for large values of (1+v)/(1-v) from its value
with no superalternation (v/=1). The main contri-
bution to ¥’ comes from the edge of the Jones
zone (=) where the dipole transition strength
Q,, attains its maximum value, namely, ,,(7).
If one plots the quantity x&’ as a function, of
of N,=4|9,,(6=7)|/a, the optical 7-electron de-

localization parameter, one finds that, for large
3)

‘values of N, (>>1), x;*’ is solely a funection of this

parameter and that
XW(3 I~ Ng 5
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namely, the dependence is.the same as for a sim-

ple bond-alternated chain. No such simple relation
in terms of the band gaps was found as in the case

of the polyene chain [compare Eq. (3.11)].

V. TWO COUPLED CHAINS. POLYACENES

As discussed in I, two bond-alternated chains
may get coupled either in the centrosymmetric
configuration (S configuration) or in the noncentro-
symmetric configuration (A configuration). Both
configurations have the same four-band structure
but markedly different band wave functions and
dipole transition elements. A nonzero value of
x &’ will exist only for the later configuration.
Since the selection rules for the dipole transition
strengths §,,, in the A configuration are such that
the system rigorously behaves as two uncoupled
“heteroatomic”-bond-alternated chains with an
effective heteroatomicity 6’=’/8,, where 28’ is
the interchain hopping energy for a 7 electron, the
results of Sec. III apply here. In particular y®’
has two contributions each of the form (2.1) for
each pair of bands, (1,3) and (2,4). Since, how-
ever, §,, - Q4= —(Q,, - Q,,), the interband contri-
butions cancel and the total contribution to y @’
comes from the intraband terms only or

@ 0/(1-1?)A f” V2 sin?@ + v¢ cosd
Xra = p- | a7 dae , (5.1)
where A =3¢%a*A0/(88,)%, £°=¢5+ 6%, and &)
=1+v%+2vcosf, and Ao=0, - 0., where o, (0.) is
the density of pairs with the director vector par-
allel (antiparallel) to the positive x axis of the
medium (see Fig. 1). The values of y{*’ calculated
from (5.1), unless Ac=0, canbe measured (see Fig.
3). Thisisaquite remarkableresult since the iso-
lated chains before they get coupled in pairs possess
inversion symmetry and hence x®’=0.

The third-order susceptibility &, on the other
hand, is nonzero for both configurations. As for
x2’, in the A configuration, &’ has two contribu-
tions each of the form (2.4) for each pair of bands,
(1,3) and (2,4), and the results of Sec. III for bond-
alternated chains can be used here, too. In partic-
ular

Xea~ Nia
for large N,,, where N,,=4|Q,,(r=0)|/a.

For the S configuration strictly speaking a four-
band expression for x®’ must be used. Since, how-
ever, Q,,=8,,=0, the total expression of x°’ con-
tains two two-band contributions of the form (2.4)
for the pairs of bands (1,4) and (2, 3) and an addi-
tional interband term which for very delocalized

m-electron systems may be neglected as long as
B’/B,, the coupling parameter, is small compared

(2)
X

0.0 0.5 10

FIG. 3. Second-order susceptibility vs v=g4/8, for
pairs of coupled chains in the A configuration, for four
different values of the coupling parameter 6=8"/8,; (a)
5=0.5, (b) 6=0.075, (c) §=0.025, and (d) 6=0.004. x?
is expressed in units of x{¥’ =3e3a?A0/(88,)%.

to B,/B,. Thus the results obtained in Sec. III for
the bond-alternated chain, a two-band system, can
be used here too. In particular

()~ A76
Xr ~Nas

for large N, where N,g=4|2,,(6=1)|/a. 1t is
easy to see that, since N;,q>N,>N,, (or equiva-
lently D,>D>D,, see I) the following relation will
hold for the third-order susceptibilities

3) Q) 3) .
Xus>X|r >erA'

Thus x® may decrease or increase depending upon
which configuration will be preferred.

VI. TWO-PHOTON ABSORPTION

Two-photon absorption may occur whenever
w, +w,=w,, (k) where 7w, and 7w, are the incident
photon energies. The corresponding absorption
cross section is determined by Imy ®(w,, ~w,, w,)
whose expression is given by (2.8); we shall
only consider the degenerate case w,=w,=w.
Further, it is sufficient to limit the discussion to
the atom- and bond-alternated chains and the cou-
pled bond-alternated chains in the S configuration;
the other cases can be reduced to these two.

The two-photon transition strength M in the de-
generate case (w,=w,=w) is given by (2.9); for
w,,— w>1/7(k) one has

- QCU(QCC qu) a QC'}
Moy (k) = W, — W MFY Wy— @ *

QCC'QO'U
GaPew— @ ’

(4.1)
which inserted in (2.8) allqws one to calculate the
two-photon absorption cross section.
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",

0.25 030 035

FIG. 4. Two-photon absorption intensity, Imxm(w,
—w, w), vs frequency for heteroatomic bond-alternated
chains for ¥ =0.75 and two different values of the hetero~
atomicity parameter p=Aa/By: (@) p=0.0 and (b) pu=0.5;
Imy® is expressed in units of x§ =2¢%%/(86,)°. The
relaxation time (see text) was assumed constant over the
Brillouin zone and had the same value for both cases,

7/ 1By =0.005. The arvows indicate the positions of the
one-photon optical gaps; notice the shift in the peaks.

The results for the two ctases mentioned above
are depicted in Figs. 4 and 5; the same value for
B,/B, was chosen for all cases. For the case of
the atom- and bond-alternated chains the calcula-
tion was performed for two different values of the
heteroatomicity parameter u, namely, p=0 (ho-
moatomic-bond-alternated chain, e.g., polyene) and
1=0.075, while for the coupled chains in the S
configuration the calculation was done for three
different values of the coupling coefficient 6=p8’/8,,
namely, 5=0 (homoatomic-bond-alternated chain)
6=0.025, and 6=0.05. The relaxation time 7(%)

0.20 0.25 0.30 035

FIG. 5. Two-photon absorption intensity, Imyx® (w,
—w, w), vs frequency for pairs of coupled chains in the
S configuration for »=0.75 and three different values of
the coupling strength 6 = B7/B;. (a) 6=0.0, (b) 6=0.025,
and (c) 6=0.05. Imy‘® is expressed in units of x®

= 2e4a3a/(8ﬁ2)3. The relaxation time (see text) was taken ..

constant over the Brillouin zone and had the value %/ 78,
=0.005 for all three cases. The arrows indicate the
positions of the one-photon optical gaps.

was taken constant over the BZ, %/78,~0.0053 for
all cases.

The general features of the curves can be easily
explained by considering (4.1). This quantity con-
tains two “two-band” terms, the first and the
second term, and a “three-band term,” the third
one in (4.1). The three-band term does not contri-

_ bute in any of the cases considered (.. =0 for all

k for the coupled chain system). Thus (4.1) re-
duces to

M (k)zﬂcv(ncc— Qvu)_*_i( ‘ch >
cv :

Wey— W - R\w,, —w

In the case of the homoatomic-bond-alternated
chain, the first term is zero throughout the BZ
and only the second term contributes. This van-
ishes at the edge of the BZ (#=7), where the den-
sity of states is infinite; thus the two-photon
transitions are forbidden there, while the one-
photon transitions are allowed. Hence the peak of
the two-absorption strength does not occur at the
edge of the BZ as in one-photon absorption, but is
shifted to higher frequencies and is much broader
than the latter. This shift is determined by the
degree of the flatness of the two bands and the
variation of £, as we move away from edge of the
BZ.

In the case of the heteroatomic-bond-alternated
chains (p#0) ,,— 2., #0 throughout the BZ and
at the edge in particular. Hence two-photon tran-
sition is allowed in this case at the edge of the
BZ, where the one-photon absorption peak also
occurs.

For the coupled chains in the centrosymmetric
‘configuration, the transitions 1-4,2 -3 are for-
bidden at the edge of the BZ but allowed inside the
zone where they overlap to a large extent. On the
other hand, the transitions 1-+3 and 2—~4 are al- -
lowed at the edge of the BZ. However, their
strength is proportional to 6/=8’/8, and for weak
coupling (8’ < 1) this transition is completely
masked by the transitions 1-4 and 2—~3. For
large values of 6/(>0.1) a narrow peak due to the
transitions 1-3 and 2 —4 appears between the two
broad peaks due to the 1—~4 and 2 -3 two-photon
transitions.

VII. POLYDIACETYLENE POLYMER CRYSTALS

This class of polymers can be obtained in the
form of large defect-free crystals and is presently
the only class of materials where the previous
considerations can be applied and compared with
experimental results. Their structure is de-
scribed in I. Polydiacetylene chains with two dif-
ferent side groups can adopt either of the following
two configurations
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R, R,

R, >c- R, >c—
\C—CEC—C/ or \C—CEC—C/
V4 N\ V4 AN

-C . R, -C R,
\ AN

" R, R,

The former has inversion symmetry and ¥ ?’=0,
while the latter has not and one may expect x @’
#0. However, it presently seems difficult to grow
large crystals with all chains directed the same
way; it is more probable that o,=0. so that x @
agdin vanishes. If o0,> 0., the order-of-magnitude
calculations indicate that, with the prevailing
values for the hopping and Coulomb energies in -
these chains, one expects at best x,2’~ 108 esu.

In contrast, the third-order susceptibility in
these materials may show high values when the
two side groupsR,andR,are identical (R,=R,=R).
In Table I we give the values of x®’ for the poly-
diacetylenes whose linear properties were con-
sidered in I

The calculated values of x’ for the PTS and
TDCU diacetylénes are in satisfactory agreement
with the measured ones. They are of the same
order of magnitude as the values of 3}, in Ge and
GaAs which are ~107'° and ~10"! esu, respective-
ly, & being one of the [111] crystal directions.
Further the optical gap in the polydiacetylene oc-
curs around 2 eV compared to only 0.5 and1.3eV
in Ge and GaAs, respectively, allowing one to
study nonlinearities in a dispersion-free region in
the visible with favorable phase-matching condi-
tions.. The high values of X(S) are due to the high
delocalization of the 7 electrons, a consequence
of the large conjugation that is established upon
polymerization. This is clearly seen when one

TABLE I. Values of the third-order susceptibility xg&,
for different polydiacetylenes; the experimental values of
bis-poly(toluene sulfonate) (PTS) and bis-(phenylurethane)
of 5,7-dodecadyine-1, 2-diol (TCDU) diacetylenes were

taken from Ref. 7.

x,(,ilx in units

of 10710 esu

Poly-R;-diacetylene Calc. Measured
CH,~O~CO—-C¢Hj 0.84
CHy—O-CO-NH-¢ 0.77
CH,0-80,—¢—~CH; (PTS) 0.70 1.6 +1.0
(CH;)3~O—CO-NE—¢ 0.27
(CH,);~O—-CO-NH-¢ (TCDU) 0.25 0.37+0.14
CHy—O-CO-NH-¢—-C,Hjy 0.62
(CHp)3—~O—CO—~NH—¢—C,Hj 0.21
Monomers <10 <1073

compares the value of ¥’ in the polymer with
that of the monomer; in the latter case y.®’ has
values less than 1072 esu. The same is true for
the values of @’ across the chains in the polymer
crystal; these are less than 10™2 esu. These low
values can be well accounted for by using hyper-
polarizability additivity arguments similar to the
ones used in I for the calculation of the linear sus-
ceptibility. This dramatic increase of x2), over
the other components because of the 7-electron
conjugation is particularly striking when con-
trasted with the facts that (a) the density of the
localized electrons, which are the only ones con-
tributing to the other components, is much higher
than that of the 7 electrons (~1 out of 40 electrons
per unit cell is a 7 electron) and (b) their contri-
bution to x®’ across the chain direction is further
enhanced by local-field corrections (see I). Be-
cause of the much milder dependence of Y&’ on N,,
the linear susceptibility does not show such
marked anisotropy. The above values of .2’ were
measured at room temperature. At lower temper-
atures, below 160 °K, the optical properties of
some of these polymers, like the PTS-diacetylene,
undergo some dramatic changes (absorption peak
splitting, etc.) and the conjecture® was made that
the chains get coupled in pairs in an S configura-
tion at low temperature. The mechanism of the
pairing is probably a rearrangement of the side
groups allowing the 7 electrons of one chain of the
pair to jump over to its partner.chain. If this is
the case and the equivalent associated polyene is
used to replace the actual polydiacetylene, the
considerations of Sec. V indicate that x©’ may in-
crease by an amount outside the experimental
error.

The two-photon spectrum has not been measured
yet in polydiacetylenes. In principle it should al-
low one to obtain additional evidence about the ap-
plicability of the band picture for the 7-electron
system. We use the Jones zone to discuss this ef-
fect. At room temperature the two-photon absorp-
tion is not allowed at the edge of the Jones zone
because of symmetry arguments; it is, however,
allowed inside the zone and in the band picture
adopted here it appears as a broad peak at an en-
ergy higher than the band gap E, (see Fig. 4). Its
actual appearance should be much more compli-
cated than this because of vibration-assisted tran-
sitions which are altogether neglected here. At a
lower temperature, <160 °K, the spectrum should
change as shown in Fig. 5, this spectrum consists
of two superposed broad peaks corresponding to
the 2—-3 and 1 -4 band transitions in the coupled
chain band scheme. On these broad peaks an add-
itional weaker peak should be present correspond-
ing to the transition 1 -3 (and 2 - 4) which is
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weakly allowed at the BZ edge. The strength of
this peak being proportional to the square of the
chain coupling strength for polydiacetylenes should
not be observable. Two-photon absorption ex-
periments inpolydiacetylenes will greatly clarify
the electronic states inthese materials.

In the above discussion of the two-photon absorp-
tion a relaxation time is introduced, Eq. (2.9),
and assumed to be constant over the Brillouin
zone, or 7(k)=T=constant; its value was taken the
same as the one used to calculate the one-photon
absorption spectrum and the frequency dispersion
of the linear susceptibility (see I). This is a dras-
tic simplification, however, and 7(k) is in general
expected to rapidly vary over the Brillouin zone
(strong dependence on k). Since the two-photon and
one-photon absorption peaks for an homoatomic
(centrosymmetric) chain do not occur at the same
point of the Brillouin zone, the two-photon absorp-
tion peak occurs at higher energies (or ka<m) than
the one-photon absorption peak which is situated
at the BZ edge (ka =), this can drastically alter
the appearance of the two-photon absorption spec-
trum with respect to the one calculated here using
7=const. Experimental work is needed to clarify
this point and the meaning to be given to the relax-
ation time.

VIII. DISCUSSION

The different points arised in Ref. 9 concerning
the applicability of the one-electron picture pre-
vail even when the nonlinear properties are con-
sidered. At present the main argument in favor of
our picture is that it allows one to give a unified
and quantitative description of all the optical pro-
perties in these materials. On the other hand, the
exciton picture (essentially the “molecules-in-
molecules” picture) is hampered by enormous dif-
ficulties.?> The observed high values of x®’
are more compatible with the band picture
than the excitonic one; electron correlation in gen-
eral leads to a reduction of the electron delocal-
ization. A quantitative evaluation of this influence
is difficult since it requires, in its simplest as-
pect, introducing an on-site electron repulsion
energy y and using the Hubbard Hamiltonian. When
the Hartree- Fock approximation is used, the so-
lution of the eigenvalue problem leads to states
again distributed in bands but different for differ-
ent spin directions and supplemented with a self-
consistency condition; with these bands one can
again calculate the dipole transition strengths
Q,,. and compute the susceptibilities taking into
account electron correlation. Preliminary calcu-
lations for the linear susceptibility show that as
long as y/2B8,<<1 the results are only slightly dif-
ferent from those obtained in the one-electron the-

ory. On the other hand, for y/2B,~1 reduction of
the linear susceptibility occurs, but at the same
time the Hartree- Fock approximation breaks down.

Another question that may arise is to what ex-
tent the behavior of the third-order susceptibility
discussed in the previous sections persists down
to finite chains. Indeed the chains are seldom in-
finitely long and interruptions by impurities or
other defects may occur. The relevant quantity is
now the third-order polarizability v,..,=vy, Where
N is the number of unit cells in the finite chain;
for finite bond- aLternated chains (polyenes) with
2N atoms as is shown in Ref. 17, as long as N;<N,
one has y,~N¢, namely, the same functional de-
pendence on N, as for an infinite chain. Similar
calculations with superalternated as well as cou-
pled finite chains show that the same conclusions
apply even there, namely, y,~Nj, as long as
N,<N. This strongly suggests that the dielectric
and optical properties of infinite one-dimensional
chains are determined by the electron behavior
within a region N,d where d is the unit-cell length
and the chain end effects are irrelevant. However,
with N, approaching N these become important and
a destructive interference occurs because of the
n-electron reflection at the chain ends; for a given
N, vy attains a maximum around N,~ N and starts
decreasing afterwards. For the limiting case of
complete delocalization (equal hopping energies
for all bonds), as is shown in Appendix D, one ob-
tains y~ N®, the same result previously obtained
by Rustagi and Ducuing within the free-electron
model.® :

From the previous sections it can be inferred
that the measurement of the nonlinear coefficients
constitutes a quite powerful tool to study modifi-
cations of the m-electron behavior and 7-electron
delocalization in particular. This is because of the

" highly nonlinear dependence of these coefficients

on m-electron delocalization which totally sup-
presses the o-electron contribution; this is not

the case for the linear properties where the latter
make a substantial contribution. Further nonlinear
optical spectroscopy like two-photon absorption
and the Franz-Keldysh effect provide powerful
means to ascertain many features of the n-electron
states in these materials. °
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APPENDIX A: THE GENKIN-MEDNIS APPROACH

In this approach the solution of the Schrédinger
equation
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o

with
H=(1/2m)[p+ (e/c)Et)E+ V)

is sought in the form of the expansion
V=3 e, () , (a2)
nk

where k=k+ (e/ric)K(t) and 9,3 =e**%u ;(T) are the
Bloch states of the unperturbed Hamiltonian H,
=p?/2m+ V(r) and & is the vector potential. Sub-
stituting (A2) into (Al) and taking into account that
the ¢,z constitute an orthonormal basis, one has

ac,(kt)

hat

=% [€(®)8,, +ieQ,, (DED e, (K1), (A3)

where E(f)=(1/c)(8A(t)/3¢t) and §,,.(k) is the dipole
transition strength

D@ =7 [ URETeU(F) dF (a4)

v is the unit-cell (uc) volume. Equation (A3) can
also be written in matrix form

The solution of (A5) in powers of E is obtained by
carrying out a unitary transformation S(kf) on the
c’s
c &t)=3" S,m,(rct)é (k)
n’
such that
H' (kt) = ST(kt) [H, () + H (it) ]S (kt)

+ieST (k) V,SEDE() - inSt(xt) (A8)

aS(xt)
at
‘has only diagonal terms, or
H!, . (kt)=0 for n+n’;

one obtains

8¢ (ke .
in g(tk )=H,',,1(Kt)an(it) . (A7)
The perturbation solution of (A7) is obtained by
putting ‘

S(kt)=1+ Z S (kt) (A8)

in (A6) where S is of order # in the field inten-
sity. This only determines the nondiagonal ele-
ments of S; the diagonal ones are determined by

ac(kt) the additional condition S,,=S],.
g ot [H (’)+H(’t)]c(kt) (a5) The polarization is then determined by
J N
P=e) <F>=__. S Y Fa®)SE @) [$E s () + 6,0 V]S (k1) (A9)
el n.n' n" g .

where f,,(E) is the distribution function over the
band states. By inserting (A8) in (A9) one obtains
the polarization in powers of the electric field.

P(0)+Zp(n) : (A].O)
n=1 '
)

Z Zf"(i)cz'm'?w g,,,,:g w)

mn’¥n k

Koy, @) =2 S S A0

nyn’yn”#En k

X (@) = — h’V

r

and hence the expressions of the susceptibiliﬁes.

For the one-dimensional systems we are inter-
ested in the text one has for the linear and second-
order susceptibilities in the chain direction (x di-
rection)

(A11)

n*n

(wn nt wl)( nemt @y + wz)

X Z{ nn' n'n' "anén'n"

1[ Q,. 8
T3 (@, + w;) Ok \(@

where Z}O,stands for summation over terms ob-
tained by all permutations of w,,w, and —w, — w,;
V is the crystal volume which for one-dimensional

system is V=Nd/o with d being the unit-cell length,

n'n

Qi 8 sz) e }{, (A12)
wnt @ +W,) ) R\ W, +w, (w","+,wl+w2) §

r

N the number of unit cells along a chain, and ¢ the
density of chains per unit cross area. This ex-
pression for y2) is equal to ie3(¢%+ ¢*+ ¢%)/
PV(w,+w,), where ¢, ¢* and ¢° are the quanti-



ties defined in Ref. 25.

The expression of the third-order susceptibility
is quite involved for a system with an arbitrary
number of bands and different frequencies. In the

present work we are mainly interested in the non-
J
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linear optical properties of one-dimensional semi-
conductors with an effectively two-band structure.
For such a system the xxxx-component of the
third-order susceptibility, x®’(w,,w,,w,), has the
following expression

(Q ) - chch]ch 1

@)
w,,w O) +
Xzex (D1, D, 7[3Vz Z[ (Wt w; +w +w )(w ot Wot W) (W, + W) (Wyy+ W, + W, + W)

L2 e 8
3k \(w,,+ W, +wy)/ ok
Qvu - Qcc 9

2., >
(wcu+ “’3)

+ J—
(Wgp+ W, + W, + W) BF

where E@ stands for summation over terms ob-
tained by all different permutations of w,, w,, w,
and —w, - w, - w,. From (1.13) one can easily de-
rive the expressions of y,,..(w,,w,w) required for
third harmonic generation and y,,..(w,, -w,,w,);
the imaginary part of the latter, when w, +w,
~w,,, describes the two-photon absorption; its
expression for the degenerate case, w,=w,=w,

is given in the text [Eq. (2.9)], where a relaxation
time has been introduced phenomenologically.

If in the above expressions we introduce V=Nd/, .

we may replace

%Z-—fdk - (A14)
k

for an infinite chain; this will always be the case
in the following.

APPENDIX B: PENN’S MODEL

In Penn’s spherical band model'® for a cubic in-

organic semiconductor, i.e., Ge or Si, the Bloch
energies and wave functions are given by

+= 2B+ EQ. £ [(EY— ES.)? + E2]H/ 2}

iki‘é
Ye=eNug

TR (14 ate! FET) /114 (a)?]/2
where
kr=k-2k.k, at=E,/2(E:-EQ),
E%=7p?k?/2m , E° =mRK'¥Y2m,
kp is the Fermi-level momentum and E, is the

band gap there; (+) and (+-) refer to valence (v)
and conduction (c¢) band. One can write

ar=c/[K+ (K*+c?)'/?],

where K= (k- kz)/k, and ¢ = mE,/21°k%=E /AE .
The expressions of the dipole transition-matrix

elements ,,.(k) = (1/v) [, u:*V;uidT, where v is

the unit-cell (uc) volume andn=+,n’=+, are as

e > o Q,, K} < 2, )}
Wopt Wyt Wy ) (W +w,) (W, + w,+w,) Ok (Wt wy)/ 7’

(A13)
follows
Q,,=02..=0,
and
Q.=-Q. =t S =g
= -+_2kFK2+CZ ~“Yye -

One can calculate the mean-square spread of the
electron position coordinate D? defined by D?
={A7?) (see I).

Similarly one can calculate the linear and third-
order susceptibility components x2’ and x&), for
frequencies in the transparency region (w << Eg/h');
because of the spherical symmetry, it is suffi-
cient to only consider the components in only one
direction Us’mg the two-band expressions for
%3 and x2). one has

W 20% (IO - Ne? 1 1

ve “cv k__

1/2
Xex = ﬁV T—' ZE kz [(1+C) C]
which for ¢ <1 becomes
XY= (Ne®/2E k%) (4E z/E,)*.

N is the number of electrons per unit volume.
The inter- and intraband contributions to x&),
are

3) 484. X QX Q¥ QX
Xinter = _ETI} vacscv Svc Scudk
c2(1+x)?
== “’f de
and
@ _det (1 85 a8 o
XXntra ﬁ3V w ak ak
036x2(1+x)%dx

Xo A _‘(x2+62;1172‘

respectively and x&’ =Ne*/(4E3)k
obtains

Xi(?:t)ra.= _%xgt)er = 2—: [Ne4/k3"(4E%)](4EF/EA’)6

4.
# for ¢ «<1 one
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or APPENDIX D: HYPERPOLARIZABILITIES
FOR A FINITE CONJUGATED CHAIN
Xavax = Xistra+ Xintor = o [N€*/RE(4ES) J(4E 5/E,)° . WITHOUT BOND ALTERNATION
This same dependence was ol?tameq in Ref. 18, in For a finite conjugated chain of 2N identical
the case of the strictly one-dimensional Penn’s atoms without bond alternation, 8,=8,=8, in the
model. ' presence of a static electric field E,, the coeffi-
0
cients ¢, of the wave function y=2*"c,¢, are de-
termined through
APPENDIX C: TRANSITION-MATRIX ELEMENTS C(—€+nw)+ B(Cpy+Cpy) =0 (D1)

FOR A PAIR OF COUPLED CHAINS
IN THE S CONFIGURATION

When we use the Genkin-Mednis approach to de-
rive the susceptibility expressions in terms of the
dipole transition strengths @,,.(k) in the case of a
pair of coupled chains in the S configuration, care
must be taken so that the corresponding expres-
sions for single chains are recovered when the
coupling vanishes. This was only indicated in I;
here we give a more detailed derivation.

As is shown in I, the Bloch functions for-this
system in the absence of an electric field are
written in the form ' :

Y= AV L+ ey D) = et

where ¢ &’ and 9 2’ are linear combinations of
atomic orbitals centered on atoms of chain 1 and
2, respectively. We write

Zp;i)_eikxu(’{z) (’i: 1"2) ,

where x; is the coordinate along chain (=1, 2).
Further we define

8 (
@) (1)* Ump dx
286) =5 [T as,.
In the presence of an electric field E = (1/c)(3A/5%)
following Genkin and Mednis'® (see Appendix A) we
write that the perturbed wave function § can be
written

9= c,(k1)d,, ,

mJ

where K=k~ (e/ch) and we impose that
b= (L2 @Y+ ey &)

*Note that in the exponential e?*® expressing the re-
lative phase of the two-chain wave functions, &
has not been replaced by «. With this condition the
dipole transition strengths for the pair are

QB =3[ (k) + QL) (k)].

The analytical expressions of ©,,(k) were given in
I. .1t is easy to see that for vanishing coupling be-
tween the chains (no 7-electron hopping between
the two chains) these expressions for &, reduce
to those of a bond-alternated chain.

and the boundary conditions c¢,=c,,,; =0, where €
=E-a,w=eEua, ais the interatomic distance,
and « the Coulomb integral; in (D1) the approxi-
mations (¢,,]x] ¢, =na, (qb,,[ ¢, =0,, were used.
The solution of (D1) is®®

Cp=Ade)(=2w/B) + BY o/ ,(=2w/B) , (D2)

where J, and ¥, are the Bessel and Von Neuman
functions related by Y, (x) sinvr =J, (x) cosvm - J.,,(x).
The boundary conditions give

e VY (1 /5-652Y) = Ty /5-6)2V) Y (27) =0, (D3)

wherey= - 8/w, £=—-¢/B, and y=(N+1)/y. The
roots of this equation give the eigenvalues ¢,. In
the case of zero field, E,=0, there are 2 N roots.
€°=2Bcosé, where §0=nm/(N+1). We wish to
fmd the changes in these roots in powers of the
perturbation strength eaE, in the limit where the
perturbation theory applies, namely, —w/f<«<1
(or y<«1) and Nw/B<1 (or 7> 1). - The polariza-
bilities o ® of the chain are then obtained from

1 @n=1) 2
w= Z€~w—22na gz (D4)

occ
where for symmetry reasons only the odd-order
polarizabilities appear.
For this purpose we use the double asymptotic
development®® of Y,, and J,, for large y>0

Jopu(2y) 22 A (L, cOSY, + M, SinY,) , (D5)
Y,,.(2y) =2A L, sing, - M, cosy,) , (D86)

where with yu=v, 2cosf=u, one has”
A, = (2/mvtgo)/?
¥, =2y(sinf - 6 cosh) - 57,
=L (3cotgh+5cotg®o)(1/v)+. ..,

" +385 cotg®0)(1/v?) +

Inserting (D5) and (D6) in (D3) and developing in
powers of 1/7 <« 1 one obtains

Z——s

where

—HY W) T ¥ (Y (-£)]=0, (D7)
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J(-£)=L ., cosd,+ M., sind, 7 Zsiny,
Y(-£)=L., siny, - M, cosy, =2 cosy,

¥=2y(sind - 6cosh) — zm. After straightforward
calculation of the derivatives ¥ ®’ and J%’, then
expansion in powers of 1/y and substitution in
(D7) one obtains

© 1 g @)

s'm(N+ 1)9—"-— Z’:?m,

where m = [(1/y)(d?¥/8u®)],..,. In (D8) we sup-
pose that N is very large. Assuming that

| 6,~ nm/N|<<1/N one obtains from (D8) the nor-
malized energies

gﬂ—__?’I: Z nZk : (Dg)

(D8)

For a given % the values of 7\""" do not differ
markedly and one may put A *’~x%), Then sub-
stituting (D9) in (D4) one obtains
}\(k)

- k=0 '
and by identifying terms of the same power in E
in (D10) and (D4) one obtains the expression of the
polarizabilities

a @en=1) ~ N2n+162n

aZH/B 2n=1 .

In particular the linear and third-order polariza-

bilities are
aW~N3e2q?/8, a®'~NSe'at/B3.

They show the same behavior as the corresponding
expressions derived in the free-electron model.®
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