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Self-consistent pseudopotential calculations for Ge and diamond (111)surfaces*
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The self-consistent pseudopotential method with a slab geometry is applied to electronic structure
calculations of the Ge and diamond (111) surfaces. A nonlocal pseudopotential is derived and found to
produce an energy band structure of bulk diamond in good agreement with other calculations and
experiments. This potential is then used for the diamond surface calculations. The calculations are restricted
to unrelaxed, unreconstructed surfaces. Various surface states are identified and discussed.

I. INTRODUCTION

In this paper we present the results of calcula-
tions of the electronic structure of the Ge and
diamond (1ll) surfaces using a self-consistent
pseudopotential method. ' Only clean, unrelaxed,
and unreconstructed surfaces are examined. Al-
though this assumption may be unrealistic com-
pared with various experiments' ' which more or
less support an inward relaxation of surface atoms
and a 2 x 1 or a. 2 x 8 reconstruction for Ge depend-
ing on experimental circumstances, the results
for this ideal case reveal many of the physically
interesting phenomena occurring on the surface.
Furthermore, these results can be used for com-
parison with calculations involving more compli-
cated geometries and also with interface prob-
lems.

Details of the present method are discussed
extensively elsewhere, ' hence, only brief out-
lines of the calculational procedure are given be-
low. The one-electron Schrodinger equation is
solved with a pseudopotential Hamiltonian

H = P /2' + Vy, + V„+V„.
V~, is a total pseudopotential taken to be a super-
position of ionic pseudopotentials V;,„representing
Ge" or C" core,

V„(r) = Z V,.„(r-R„-~,) (2)
Rn, sf

where the R„'s and 7;.'s are the lattice vectors and
the basis vectors in the primitive cell, respec-
tively. The ionic pseudopotential is screened by
adding a Hartree potential V„and a. local exchange
potential V„obtained from the charge density p by

%~V„(r) = -4we'p(r)

parameter e i.s chosen to be 0.794 to make pos-
sible a direct comparison with similar work for
the Si (111) surface and the Ge (111)relaxed sur-
face' using the same n.

The self-consistent iteration procedure is in-
itiated by approximating the (V~, + Va + V„) term
in the Hamiltonian by an empirical pseudopoten-
tial constructed from a superposition of atomic
pseudopotentials. With this Hamiltonian, the Val-
ence charge distribution is calculated and from it
the screening potentials V„and V„are obtained.
V„and V are then put back into the Hamiltonian
(1). The procedure is repeated until self-consis-
tency is reached, i.e., until the input and the out-
put screening potentials (Va + V„) agree with each
other. The wave functions are expanded solely in
terms of plane waves. This basis set of plane
waves was shown to successfully represent charge
distributions of covalent bonding materials with a
relatively small number of waves. '

In Sec. II, the Ge (ill) surface results are re-
ported. In Sec. III, a nonlocal pseudopotential for
carbon is obtained and tested for the bulk band
structure of diamond. The electronic structure of
the diamond (111) surface is presented and dis-
cussed in Sec. IV, and some summarizing re-
marks and conclusions are given.

II. Ge (111)SURFACE

In this work the (local) ionic pseudopotential of
Appelbaum and Hamann 8(AH) is employed to
facilitate comparison of our results with calcula-
tions for the relaxed surface done by Chelikowsky
using the same potential,

4~~
V;.„(0)= — —,+ — v,~.tom — q' e

V,(r) = -Se'(3/8n )' 'op(r)'~'.
In the present work, the value of the exchange

(4)

+ — — —,v, exp

(8)
where Q,t, is the cell volume per atom, z =4,
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FIG. 1. Total valence charge distribution for an un-
relaxed Ge (111) surface. The charge density is plotted
as contour in a (110) plane intersecting the (111) surface
at right angles. The plotting area starts in the vacuum
and extends 42 atomic layers into the crystal. The nor-
malization is in terms of the number of electrons per
bulk unit cell volume O~ =4a~.

n =0.61, v, = 2.64, and v, = —1.237, respectively.
This potential gives energy levels of the Ge atom
in agreement (up to a few tenths of an eV) with
Herman and Skillman. "

As in the Si (111) surface calculation of Ref. 1,
we retain the periodicity of the system along the
direction perpendicular to the surface using
"supercells" of repeated slabs. The "supercell"
consists of 12 Ge layers and a vacuum region
equivalent to 5 layers in thickness. The slab
thickness and the separation between slabs are large
enough to prevent any significant interactions be-
tween neighboring surfaces. 0,&, is 216.45a~,~
for the present geometry. Nearly 200 plane waves
are used for the expansion of the wave functions
and another -250 plane waves are included through
Lowdin's perturbation scheme. ' These values
correspond to cutoff energies of 2.6 and 5.0 Ry,
respectively. Most of our results are given using
the figures described below.

Figure 1 shows the total (valence) charge density
in a (110)plane cutting the (111) surface at right
angles. %e calculate wave functions at 2S points
in the irreducible Brillouin zone (BZ) (» of the
first BZ in the present geometry) and add all
charge density contributions from each band up
to the Fermi energy EF. The atomic positions
are indicated by dots. Moving into the crystal,
the charge distribution closely resembles the Ge
bulk charge density, whereas it decays rapidly

1.4
I

Ge (ill) SURFACE

DISPERSION OF
DANGLING-BOND STATES

PRESENT WORK (UNRELAXED)

1.0—

0.8—

~ 0.6

0.4

I
I 1

1I
I~, ~

1

I '~
1

I 1
I 1I 1

1

RELAXED:

CHELlKOWSKY

PP

AH

I~1
I
I

I 1
I I
I 1I

I
I 1

/I
0,2g' I

I
I
II

0 C.
X.~' ( I

I I
/

—0.2
r

FIG. 3. Energy dispersion curves of the dangling-
bond surface states in the gap. Also displayed are the
results of Refs. 8, 9, and 14 for the relaxed surface.
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FIG. 2. Two-dimensional band structure of a 12-layer
Ge (ill) slab along symmetry lines. Various surface
states or surface resonances are indicated by heavy
lines and are labeled. Dashed lines mean "weak" sur-
face states or resonances which have a long decay
length into the bulk. Subscripts represent a "dangling
bond (d), "a "transverse backbond (tb), "or a "longitudinal
back bond (lb), "respectively. Heavy dots refer to the
calculated energy eigenvalues of surface states. As a
slab has two surfaces, the surface states come in pairs.
Some of them are not completely degenerate due to the
finite thickness. The projected band structure is also
plotted. ,A picture of the BZ is inserted.
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FIG. 4. Charge-density contour plots for dangling-bond states at I', M, and K. Indicated values are normalized to the
number of electrons per unit "supercell" volume.

into the vacuum near the surface region. %e can
calculate the work function from the relation

~= Vyg, cuum ~F ~ (6)

where V~~«,m refers to the total potential in the
region far from the surface so that the potential
is actually a constant. The value we obtained is
4.5 eV, which is in good agreement with the experi-
mental values ranging from 4.6 to 4.9 eV."'~

In Fig. 2, the two-dimensional band structure is
shown along the symmetry lines in the BZ. Var-
ious surface states are labeled. The projected
band structure" of Ge bulk in the (111)direction
calculated using the same potential is also plotted
as a background. The details of the dispersion
curve of the dangling-bond states in the gap are
given in Fig. 3, together with those obtained by
other authors'"" for the relaxed surface. The
overall comparison is good although our result is

for the unrelaxed surface. Chelikowsky's result
for the relaxed surface' using the same potential

. and the same method as ours indicates that the
bandwidth increases slightly (-0.2 eV) and the
valley at I" gets deeper by 0.3 eV when the sur-
face is relaxed.

Contour plots of charge density of surface states
are given in Figs. 4 —6. %e see a close resem-.
blance between these results for Ge and the simi-
lar calculations for Si.' Transverse back-bond
states in the upper valence band exist almost
everywhere in the BZ. The energy level I,b lies
within 0.1 eV of E, . This is in contrast to Si'
where it is found nearly 1 eV below E„.' Plots
for the back-bond surface states in the lower val-
ence band are omitted. They are localized near
the bonding sites and decay rather slowly into the
bulk region. The transverse back-bond surface
states (tb) in the lower valence band (at -10 eV- -7 eV) are found and indicated in Fig. 2. These
states are, however, not observable either in

Ge (111) SURFACE, UNRELAXED

a. STATES AT -0.07 eV (I"tb) b. STATES AT -3.4 eV (K~b)

Ge (111) SURFACE, UNRELAXED

STATES AT -2.1 eV (Kfb)

FIG. 5. Charge-density contour plots for back-bond
states in the upper valence band at I and K. Qnly one
of the doubly degenerate su'rface states at I' is shown.
The states at M are the same as at I', so the corres-
ponding plot is omitted. Note that I'tb is within 0.1 eV
of E„.

FIG. 6. Charge-density contour .plot for the longi-
tudinal back-bond states at K. These longitudinal back-
bond states are found at It. only.
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TABLE I. Parameters entering Eqs. (7) and (8) to
define the ionic pseudopotential (in By) of C.

S1
s potential P potential

t
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FIG. 7. Local density of states (LDOS) curves for
Ge (ill) slab. The surface states T& and $'& are des-
cribed in the text. E„denotes the top of the bulk valence
band and the Fermi energy E& falls in a region of large
density of surface states.

accuracy. As there exist no p core orbitals to
cancel the strong Coulomb potential felt by 2P
electrons, it is quite unlikely that a single local
pseudopotential can serve as an acceptable ef-
fective potential for both 2s and 2P electrons. We
therefore derived two different potentials for s
and P states,

2

V, (r) = —a, exp[ a,(r-—a,)'],r+ a, exp(-a, r) (7)

Si', or diamond (Sec. IV of the present paper), due
to the fact that the potentials are stronger in those
materials than in the Ge case.

Finally, the local density of states (LDOS) of
each region of the slab is shown in Fig. 7. The
peak at the gap denoted by S, is observed in the
energy-loss spectroscopy. ' This peak mainly
consists of dangling-bond surface states existing
throughout the Brillouin zone. Some contributions
come from the transverse back-bond states lo-
calized just below the surface. E~ falls in this
peak so that the ideal surface would be metallic.
This figure can be compared with Figs. 2-4 in
Ref. 15 where the tight-bonding calculation is
done for the same surface. Agreement between
the two is good in general, but the peak at E
= -7.3 eV(T, ) due to the back-bond surface states
occurs at a higher energy compared with the cor-
responding peak at —8.0 eV in Ref. 15 and is less
prominent here. Other minor peaks in Ref. 15
such as .Dy Ly & L2 p Ry, and 82 are al 1 observable
here again. However, as they are relatively in-
significant, they are not labeled. Ez —E„is 0.35 eV.

III. ENERGY BAND STRUCTURE OF BULK DIAMOND

The ionic pseudopotential of carbon is derived
subject to the constraint that it reproduce both
the atomic energy levels given by Herman and
Skillman" and the experimental ionic energy
levels of C" (C" core plus one electron). "

We were unable to find a local potential which
could satisfy the above conditions with acceptable

(8)

where z =4. The values of the parameters are
found in Table I. Despite the fact that V& and V,
are pseudopotentials, V~ is as deep as —12 Ry and
V, is about -7.5 Ry. These values are to be con-
trasted to the typical value of -4- -5Ry for' Qe or'
Si (local pseudopotentials). Calculated eigen-
value s of C"and the C atom using the above potentials
are compared with values in the literature in Table II.
The maximaof 2s and 2p wave functions occur at
the right places compared with the calcu]ations
by Herman and Skillman. " The comparison is also
given in Table II. VN„= (V~ —V, )P, is the re-
quired nonlocal part of our pseudopotential, where
P, is the projection operator for the 1=1 angular
momentum component. The formulation used
above for the nonlocal pseudopotential is des-
cribed in Ref. 18.

We use approximately 45 plane-waves for the ex-
pansion of the wave functions and another 45 plane
waves are included via Lowdin's scheme. ' These
values correspond to cutoff energies of 10.4 and
17 Ry, respectively. In fact, these cutoff en-
ergies are too small to make the energy eigen-
values a.nd the total charge density fully conver-
gent. More plane waves could be used if a de-
tailed bulk calculation is desired. However,
limited accuracy suffices here since in proceeding
to the surface calculation we are severely re-
stricted by the matrix size because of the large
unit cell required in our method. Full conver-
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TABLE II. Energy levels of C3' and the C atom cal-
culated from the potential in the text are corn.pared with
standard references. Also shown ar'e the calculated
positions of the first maxima of xtl)(x) fog' the 2s and 2p
orbitals of carbon in comparison with Herman and Skill-
man,
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FIG. 9. Band structure of bulk diamond along symme-
try lines. The labeling for W is omitted since W has
only one two-dimensional irreducible representation
W3.
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FIG. 8. Total valence charge density of bulk diamond
in a (110) plane. The charge density is normalized to
the number of electrons per unit-cell volume g ~= ~ a ~ .1

gence (within 0.1 eV) is reached at the cutoff en-
ergies of 19 and 28.5 Ry. These values are be-
yond our computational limit for the surface cal-
culation. The differences between the results ob-
tained here and the fully convergent results are
found to, be up to 0.5 eV in the energy eigenvalues
throughout the valence band and less than 20@(; in
the total charge density everywhere in the bulk.
As for the charge density, the worst deviation
(20%) comes from the relatively unimportant anti-
bonding site which is the direction where we do
not have enough plane waves to take care of the
rapid charge-density modulation over short dis-
tances. At the bonding site the deviation is only
7%. We feel this deviation is tolerable for the

purpose of the surface calculation in Sec. IV.
The total valence charge density is shown in

Fig. 8. This figure just shows a typical charge
distribution of a covalent bonding material. Fig-
ure 9 shows the band structure for bulk diamond.
The indirect gap is 5.7 eV compared with the ex-
perimental value of 5.47 eV,"and the position of
the conduction band minimum occurs at (2m/a, )

(0.7, 0, 0) where a, is the lattice constant, com-
pared with the experimental determination of (2m/a, )

(0.78, 0, 0)." The valence bandwidth is 20.6 eV,
which is consistent with other calculations, ""
especially with Painter's results (21 eV)." This
value is in remarkable agreement with the x-ray
K emission" or the, x-ray photoemission spectro-
scopy (XPS) measurements (-21 eV).'9 Another
XPS experiment' reported a somewhat larger
bandwidth, 24 eV, but experimental uncertainties
are still as great as an eV in these experiments.

IV. DIAMOND (111)SURFACE

The calculational procedure is similar to that
described for Ge. The differences are that the
potential is nonlocal and the energy cutoffs at 10.4
and 17 Ry now correspond to -380 plane waves
in the ba sis set and another -300 plane waves
brought in through L5wdin's scheme. '

Results are presented in Figs. 10-13 in the same
fashion as in Sec. II. We obtained the diamond
work function W-7 eV with an estimated error
of 10/0. This value is large compared with the
experimental results for graphite (ranging from
4.4 to 4.8 eV)." " There exist no experimental
data for the work function of diamond to our know-
ledge. However, we would expect that the work
function of diamond is larger than ghat of graph-
ite because the valence electrons in diamond are
more tightly bound.

Dangling-bond states are shown in Fig. 12. They
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a. STATES AT 1.8 eV (Td) b. STATES AT 1.6 eV (Mg)

FIG. 12. Charge density plots for dangling-bond
states at 1", ~, and K. Normalization is the same as
in Fig. 4.

FIG. 10. Total charge distribution for an unrelaxed
diamond (111) surface in a (110) plane intersecting the

(ill) surface at right angles. Normalization is the
same as in Fig. 1. Notice that the contour interval is
taken to be 1.2 in this figure only.

Back-bond states in the upper valence band are
also more strongly localized at the bonding sites;
otherwise, they are of the same character as the
corresponding states of Ge and are not presented
here. One surface state band at low energy is
apparently missing here compared with Ge as
mentioned in Sec. II. These states merge into the
bulk bands because of the strong carbon potential.

are much more localized at the dangling-bond
sites than either Ge in Sec. II or Si in Ref. 1.
They lie in the lower half of the gap and the band-
width is -0.2 eV. Other authors have estimated
a much bigger bandwidth (&1 eV)."35 Such a
small dispersion in our calculation is apparent
in Fig. 12, where we can observe strong localiza-
tions of charges, hence weak interactions be-
tween surface charges. The bandwidth increases
when relaxation takes place. Considering the fact
that the bandwidth increases from 0.4 to Oe6 eV
for the Ge (111) surface, we expect the bandwidth
should be within a few tenths of an eV even if
relaxation is taken into account.
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FIG. 11. Two-dimensional band structure of a 12-
layer diamond (111) slab along symmetry lines. Sur-
face states and the projected band structure are indi-
cated as in Fig. 2.

FIG. 13. Local density of states (LDOS) curves for
diamond (ill) slab. Density of states (DOS) of the bulk
calculated in Sec. III is also drawn for comparison. It
can be observed that by the third layer, the LDOS is very
similar to the bulk DOS except for the gap states. . (A
portion of charges from both sides of the gap partici-
pates in forming surface states in the gap. )
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The same is true for Si (unrelaxed) in Ref. l.
The local density of states is plotted in Fig. 13.

The total density of states of bulk diamond ob-
tained from the calcula, tion in Sec. III is also
shown. This histogram agrees very well with tha.t
of Painter's 2' but the experimental curves" "
show that there is still a nontrivial discrepancy
between the experimental and theoretical density
of states of diamond and also between experiments.

F.F
—F.„ is found to be 1.7 eV. E~ falls in the

band of the dangling-bond states again, so this
ideal surface is metallic. Reconstruction is pos-
sible to form a semiconductor surface and we
hope these calculations will stimulate experi-
mental studies to decide on the geometry and on
the electronic configurations.

Summarizing, the dangling-bond gap states are
found and F.F falls in the gap states for Qe, Si,'
and diamond (111) ideal surfaces. Transverse
back-bond states exist at the top of the bulk val-

ence-band edge for both Ge.and diamond, whereas
the same states lie almost 1 eV below this edge
for Si.' This does not seem to be explained by
the difference in band structures near the gap.
However, the difference in energy between the
level I', and the level I",

b does have a definite
trend; the differences are 0.7, 1.5, and 1.8 eV
for Ge, Si and diamond, respectively. Longitu-
dinal back-bond states around K(K») are found

close to the top of the valence band for Ge, Si,
and diamond. Longitudinal back-bond state s lying
at the center of the valence band are found in a
larger region of the BZ (around M and K) and
make a finite peak in the LDOS curve for all three
materials. Transverse back-bond states in the
lower valence band were discussed above.
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