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Intermediate valence states in the Falicov-Kimball model
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The Falicov-Kimball model for an electronically driven semiconductor to metal transition is treated within

an approximation which includes intra-atomic excitonic correlations. Discontinuous transitions from the

semiconducting to a metallic phase with intermediate valence are found in contrast with the mean-field

treatments where the transition is always to a pure valence metallic state when discontinuous for simple band

densities of states. The results are applied in a descriptio'n of' the phase transitions of samaruim

monochalcogenides under pressure. It is demonstrated that this simple model provides a reasonable

theoretical description for intermediate valence phenomenon provided excitonic correlations are taken into

account.

I. INTRODUCTION

The phenomenon of intermediate valence found
in certain rare-earth compounds has been the
subject of considerable experimental and theo-
retical interest. ' Although the experimental aspects
of this phenomenon have beenwell established, par-
ticularly in the samarium monochalcogenides, ' "
the theoretical picture is uncertain at present,
there having been suggested various models" "
some of which are quite complicated. It is the pur-
pose of this paper to demonstrate that the very
simple Falicpv-Kimball mpdel" fpr an electrpnic-
ally driven semiconductor to metal transition,
when properly treated, provides a reasonable theo-
retical description within which to consider the
pressure and chemically induced transitions from
the semiconducting phase to an intermediate val-
ence metallic phase observed in the samarium
chalcogenides.

A system having both localized and itinerant
quasiparticle states is described in the Falicov-
Kimball model by a Hamiltonian consisting of three
terms: the Hamiltonian for the localized ionic
states, the Hamiltonian for the one-electron band

states, and the intra-atomic Coulomb interaction
between the two types ot' states.

Now it is generally believed, based on treatments
of this model within the mean-field. approximation,
that the Falicov-Kimball model cannot describe
the discontinuous transition from semiconducting
to an intermediate valence metallic state as ob-
served in SmS under pressure. Although the de-
tails of the first-order phase transitions depend
on the form of the conduction band, the transition
found in mean-field treatments is to a pure val-
ence metallic state for reasonable band shapes.
To rectify this assumed deficiency the model has
been generalized tp include hybridization pf the

localized states with the band states. However,
this extended Falicov-Kimball model presents a
very formidable problem being something like a
"Kondo lattice" when the strongly correlated char-
acter of the localized state is taken into account,
and therefore the current one-electron-type treat-
ments of this extended model. cannot be considered
reliable. Although it may be essential to take into
account this mixing of localized and band states
in order to describe the magnetic properties and
the very-low-temperature behavior of these ma-
terials, the mixing can probably be ignored in de-
veloping a theory for the transition from semi-
conductor to intermediate valence metal. We find
that excitonic correlations neglected in the

mean-field treatments of the Falicov-Kimball mod-
el can stabilize the intermediate valence state on
the metallic side of the transition.

In the Falicov-Kimball model the transition is
electronically driven by the Coulomb interaction
between the localized 4f electrons and the con-
duction-band electrons. Some other theories"'"
for the transition have ignored this interaction and
have assumed that lattice contributions to the

energy provide the mechanism which drives the
transition. Also the lattice energy has even been
invoked to stabilize the intermediate valence
state. " Lattice effects may be j.mportant, however,
we present here results which indicate that the
Falicov-Kimball model can yield a transition in
qualitative agreement with the experiments on the
samarium monochalcogenides with reasonable val-
ues for the parameters of the model.

The idealized version of the Falicov-Kimball
model Hamiltonian that we consider is presented
in Sec. II where we describe our approximate meth-
od for treating the excitonic correlations. In

Sec. III we discuss the results obtained and apply
these to the description of SmS, SmSe, and SmTe
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under pressure. Finally, in Sec. IV we make some
comparisons with related treatments.

II. MODEL AND TREATMENT

For simplicity we assume the following idealized
form for the Falicov-Kimball model Hamiltonian:

where

n, (1 —n, )G'E((d -(2 -n, )G)
1+ (1 —2n, )G E((d —(2 —n, )G)

(2.4)

(2.5)

H=Q (~yf» f» +'&Hf -f»-. f» f» )

+ E k Cy Cg +

(2.1)

Here f»t, and f„are creation, and destruction oper-
ators for an electron of spin o in the localized
state at R& with binding energy && and intra-atomic
Coulomb correlation energy U, and c~~, and c~, are
operators for an electron in the conduction band
with energy e()'»). Thus the localized ionic states
are approximated by a nondegenerate Hubbard Ham- .

iltonian with zero configuration width while the con-
duction electrons are assumed to be uncorrelated.
The last term describes the Coulomb repulsion be-
tween the localized and conduction electrons which
is taken to be completely intra-atomic.

For the case of the samarium monochalcogen-
ides, the localized states correspondtothe 4f lev-
els of samarium. In our simplified description the
state with two "felectrons" corresponds to the 4f'
configuration of Sm, the state with one to the 4f'
configuration, and the parameters e& and U are as-
sumed to be such that

(2.2)

i.e. , the state with zero occupation has a negligible
expectation at all temperatures of interest. The
doubly occupied localized state is a singlet like
the 'E, ground state of the 4f' configuration of
Sm; and while the singly occupied state is a dou-
blet unlike the actual 'H, &, ground state of the 4f'
configuration, this is not important for the physics

. of the transition. Finally the nondegenerate band
states correspond to the lowest submultiplet of the
5d-Gs bands.

We have used the equation of motion method" to
obtain an approximate. one-electron Green's func-
tion for the electrons in the band states which takes
into account excitonic correlations between the
localized and band electrons. Our result for the
Green's function is

(2.3)

with the self-energy Z(»(&) given by

Here n, equals the number of conduction-band elec-
trons per site (0- n - 1) which is constrained to
be equal to the number of holes per site in the lo-
calized state.

This result was obtained by decoupling the equa-
tions of motion using the following approximation
for the three-particle Green's function
((f...f...f&,„f,,„c»;,ct, )) (Zubarev notation"),
where f denotes the corresponding operator for
holes in the localized state:

he' $o' july" &&' fey Aa

+c ffy' ie~Ckfrqc&fy

(2 6)

Also, condition (2.2) has been used in obtaining the
simple form of expression (2.4) for the self-energy.
Owing to the intra-atomic character of the interac-
tions, approximation (2.6) is reasonable, and,
furthermore, it does not neglect excitonic-type
correlations which are completely ignored in the
usual mean-field approximation. In the limit of
zero bandwidth the treatment is exact.

The first term in our expression (2.4) for the
self-energy is the mean-field self-energy to which
our result reduces in the small-G limit. One can
gain some insight into the physics contained in our
expression by considering values of n, near zero
and one. To first order

n, G

, -0 1+ GE((d —2G) ' (2.7)

(1 -n, )G
n, » 1 —GE((»» —G)

((d) ~ G+ (2.8)

The»luantity —A( 'G[1+ GE(~ —2G) ]
' is Just the t

matrix for the scattering of a conduction-band elec-
tron in a f ' lattice by a single f hole, and N 'G[1
—GE((d —G)] ' is the t matrix for scattering in a
f' lattice by a single f' site For G s.ufficiently
large the scattering produces in the first case,
where the scattering is attractive, an excitonic
state (bound f hole and conduction-electron pair)
at an energy e given by
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Re[1+GE(e+i0' —2G)]= 0 (2.9)

for e below the band continuum. In the second ca e
the excitonic state is pulled out above the con-
tinuum. Thus our expression for the self-energy
(2.4) is seen to contain excitonic correlations
that are associated with fluctuations in the number
of f electrons at the sites.

It would be very difficult to construct a suitable
approximate Green's function for the electrons in
the localized states. The simplicity in the case of
G,(k, a) is derived from fJ,f;, commuting with the
Hamiltonian whereas c~, c„does not commute with
the Hamiltonian for a finite bandwidth. Fortunately
it is not necessary to evaluate this localized-state
Green's function since the total energy is com-
pletely determined as a function of n, by G,(k, e).
The total energy is simply

$(n, ) = (2~, + U) —(~,+ U)n,

n
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+2, ep(e)f(~)de,
v'

(2.10)

(2.11)

n, = 2 p(~)f(e) de. (2.12)

p(~}= --X-'g fmG, (k, ~+ f0 ).
k

Here f(e) is the Fermi function and the chemical
potential is determined by

FIG. 1. plot of the electron concentration in the
conduction band as a function of N~ for several values
of G jg&. Solid-line curves are results of the calcula-
tions which included intra-atomic excitonic correlatioris
and dashed-line curves are results of mean-field cal-
culations.

ergy e„. In Fig. 1 the electron concentration n, in
the band states at zero temperature is given for
various values of G as a function of the gap param-
eter

At zero temperature the number n, of conduction
electrons per site is determined by the absolute
minimum of the total energy while at finite tem-
peratures n, is determined by the absolute mini-
mum of the free energy"

E(n„T)= $(n„0) —T d T'$(n„T') —$(n„0)
0 (TI)2

(2.13)

In general this problem must be solved numerically
for a given choice for the one-electron band den-
sity of states.

III, RESULTS

A. Intermediate valence states

(3.1)

which has a bandwidth W and is centered at the en-

In order to illustrate the effects of the correla-
tions included in our treatment of the Falicov-
Kimball model, results are shown. in Fig. 1 for the
case of a semielliptic density of states

D(~) -=N 'g &(e —~(k))=, [&
W' —(e —e,)']'!',8

6 = (e&+ 2G+ c~ —~ W) —(2e&+ U), (3.2)
/

which is the energy required to excite an electron
out of the. insulating state into a state at the bottom
of the band ignoring excitoni:c correlations. The
solid-line curves correspond to the solutions ob-
tained using our expression (2.4) for the self-en-
ergy, while the dashed-line curves show the
mean-field solutions for comparison.

One finds in our treatment that for G&2' there
is a discontinuous transition from n, =0 (semi-
conducting) to n, = 1 (metallic, pure valence) as n
decreases at n = G —2(1 —4/3v) W just as in the
mean-field treatment. However, for G & & W there
exists a range of values of G for which the transi-
tion from n, = 0 is also discontinuous but where it
is to a value of n, less than one (i.e. , from a semi-
conducting pure-valence state to a metallic in-
termediate valence state). This transition takes
place at smaller values of 6 with decreasing G val-
ues. For sufficiently small values of G the transi-
tion becomes continuous,

In the mean-field approximation the transitions
are continuous for G& —,', vW, for —,', mW& G&-,(1 4/
3~)W there are discontinuous transitions from n,
40 to n, =1, and for large G the transition goes
from n, = 0 to n, = 1. (Note that this differs with
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B. Phase transitions under pressure

Although we are primarily concerned in this pa-
per with showing the possibility of discontinuous
transitions to metallic states with intermediate
valence in the Falicov-Kimball model, it is of in-
terest to make a crude estimate of the values of
the various parameters required by experiments.
In order to make a comparison with the observed
transitions in the samarium monochalcogenides
under pressure one must consider the Gibb's free
energy. At zero temperature

G(n„p) = E(n„v) + pv, (3 3)

where the energy E is the sum of the electronic and
lattice contributions, and the volume per Sm atom
v is given in terms of the pressure and electron
concentration n, by the relation

—&E(n. , v)
O'U (3.4)

We will assume for simplicity that the energy is

E(n„v) = $(n„v) + 2B(v —v)'/v, (3.5)

where 8(n„v) is our expression (2.10) from the
Falicov-Kimball model with suitable volume de-
pendences for the parameters, B is the bulk modu-
lus of the semiconducting phase, and V is the
"average volume, "

the familiar mean-field result for a rectangular
density of states where the transition is continuous
for G & 4 W, while for G & 4 W it is discontinuous
from n, = 0 to n, = 1 at 6 = G ——,'W. ) It is character-
istic of the mean-field treatment of the Falicov-
Kimball model that the discontinuous transitions
go to a pure valence metallic state for simple band
densities of states. However, this is clearly not
the case- in our treatment which includes excitonic
correlations. Our approximation is seen to
stabilize the intermediate valence states for n, on
the metallic side of the transition. For the semi-
elliptic density of states (3.1) the condition for an
excitonic state satisfying (2.9) is G & —,W. Clearly
excitonic correlations cannot be neglected
when G is comparable to 4W, but this is just where

. one finds the discontinuous transitions in the
mean-field approximation. Therefore it is not sur-
prising that we obtain qualitatively different results
for the discontinuous transitions.

Compared with the zero-temperature results of
Fig. 1, the results that we obtain at finite temper-
atures show a thermal occupation where at T= 0
there is a pure valence state and a decrease with
increasing temperature of the change in n, for the
discontinuous transitions Thi.s discontinuity also
moves to smaller 6 before it terminates in a
critical point.

v= (1 —n, )v, +n,v„ (3.6)

L= a, +P(v, —v, ) (n, w0), (3.7b)

where v, is the volume at which the semiconducting
state becomes unstable. Furthermore we neglect
any volume dependence of the bandwidth 8" and the
parameter G since we are only interested in quali-
tative results. Although (3.7b) appears quite ar-
bitrary it has the advantage of yielding v for the
p= 0 equilibrium volume and a very simple cor-
respondence with the original Falicov-Kimball
model as seen in the following.

Using our assumed volume dependences Eq. (3.4)
yields for the volume as a function of n, and the
pressure the result

v = (I —[(v, —v, )lv, ]n,] (1 p/a)v, . (3 8)

The Gibb's free energy can then be expressed as
a function of n, and P and the conduction electron
concentration n, 'determined by the absolute mini-
mum of G(n„p) for fixed pressure. The solutions
are found to correspond to our previously obtained
solutio. ns for the Falicov-'Kimball model with an
effective gap parameter given by

eff

&, ——pv, — 1 ———p(v, v), n, =0,
(3.9)

L, ——p, v, — 1 ———p(v, —v, ), n, & 0,

v, and v, being the volumes for compounds com-
posed of divalent and trivalent Sm ions. This form
for the lattice contribution whi'ch takes into ac-
count the large differences in ionic sizes is simi-
lar to that assumed by Varma and Heine" except
we do not include their nonlinearity parameter at-
tributed to an elastic interaction between ions of
the same size. Also we neglect any volume de-
pendence of the bulk modulus.

Aided by the electronic structure of the samar-
ium monochalcogeni. des given by Batlogg et al. '
based on optical studies, we make the following
very simple model for the parameters of $(n„v).
In the semiconducting phase the main effect of ap-
plying pressure is clearly to decrease the gap pa-
rameter 6 owing to the lowering of the 5d(t„) band
due to increased crystal-field splitting. Hence for
n, = 0 we assume for the gap parameter

a= s, +P(v —v, ) (n, = 0), (3.7a)

where P and the zero pressure gap 6, are given by
experiments. However, in the metallic state
(n, & 0) the crystal-field splitting is not resolved
in the optical spectra. ' Furthermore, since the
lattice is no longer purely ionic when n, ~0, it is
difficult to estimate. the change in the total energy
with volume. For simplicity we will assume 6
does not change with volume when n, &0:
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though the transitions go to the pure trivalent me-
tallic state at a lower pressure than observed ex-
perimentally, this could be improved by allowing
for an increase in bandwidth with decreasing vol-
ume. However. in such. a crude model as ours it
would not be instructive to include such effects
without making the model more realistic overall.

These estimates of G of the order of a fraction
of an eV are certainly consistent with its identi-
fication as an intra-atomic Coulomb matrix ele-
ment. Also one can speculate that the factor of 2
difference in the value of G required for SmS com-
pared with SmSe and Sm Te is due to an increase
in the 6s character of the states near the bottom
of the band in SmSe and Sm Te.

20' 40 60 80 100 IV. DISCUSSION
PRESSURE ( k bar )

FIG. 2. Calculated pressure-volume relations for the
samarium monochalcogenides using the parameters of
Table I. -

where p, is the pressure at which nonzero n, so-
lutions appear. Thus ~,« is a single-valued func-
tion of the pressure in our treatment as is gener-
ally' assumed in applications" of the Falicov-Kim-
ball model and as has been demonstrated for an
ionic lattice. "

In Fig. 2 we present our results for p-v curves
using parameters appropriate to the samarium
monochalcogenides which are listed in Table I.
Only the parameter G is freely chosen. The zero
pressure gap parameter 4, is based on Ref. 8 for
SmS and those for SmSe and SmTe are taken- from
Ref. 2. Since the results are not very sensitive to
the other parameters we have simply chosen val-
ues that represent an average for the samarium
monochalcogenides. Although the model is very
crude the essential behavior observed in experi-
ments' is seen to be reproduced. Using G=0.4 eV
we obtain for SmS a discontinuous transition from
the divalent semiconducting state to an intermed-
iate valence state at 5 kbar with a valence of 2.6,
For SmSe and Sm Te we have chosen G values of
0.25 and 0.2 eV and find continuous transitions
which begin at 30 and 40 kbar, respectively. Al-

Although the form of the Falicov-Kimball model
we have considered here is highly idealized, our
results clearly show that the model can be used
to interpret intermediate valence phenomenon if
one takes into account the intra-atomic excitonic
correlations. '

The approximation we have used
is quite simple and yet should be reliable for
quantitative predictions. Our main result has
been to show the possibility of intermediate valence
states on. the metallic side of a discontinuous tran-
sition from the semiconducting state as observed

I

in SmS under pressure. However to make detailed
comparisons with experimental observations one
should generalize the model to realistic ionic states
and realistic band densities of states. Fortunately
this generalization does not present any formidable
difficulties within our approximation scheme.

Besides yielding pressure-volume relations in
good agreement with experiment, our treatment
also has the attractive feature of giving a finite
lifetime for the band electrons in an intermediate
valence state, the imaginary part of the self-ener-
gy (2.4) being of order n, (1 —n, )(G/W)'W for small
G. If we use our previous estimate of G for SmS
we obtain a lifetime of 10 "sec for the band elec-
trons on the metallic side of the transition. This
would provide an explanation for the rather high
resistivity. observed' in the metallic phase of SmS.
Also this lifetime is expected to have a very im-

TABLE I. Parameters used for calculated pressure-volume diagram appropriate to the
samarium monochalcogenides.

c (ev) &, (ev) w {ev) a (kbar) P (kbar) (v, —v, )/v,

SmS
SmSe
8mTe

0.40
0.25
0 ~ 20

0.20
0.46
0.62

1.0
1.0
1.0

450
450
450

120
120
120

0.17
0.17
0.17
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portant effect on the physics of the extended Fali-
cov-Kimball model that includes mixing of the lo-
calized and band states.

Since the correlations we take into account are
excitonic, it is appropriate to contrast our
treatment with those" "where the mixed valence
state is described as an excitonic insulator. "
Those treatments make a new Hartree-Fock ap-
proximation that allows for the averages
(ft,c~,) to be nonzero. " This leads to an effective
hybridization that produces a gap in the electron
energy spectrum which seems unrealistic. In our .

approximation these anomalous averages are also
nonzero in the intermediate valence state, however
we include lifetime effects which prevent the ap-
pearance of a hybridizationlike gap. The interest-
ing results presented by Khomskii and Kocharjan, "
which are based on a treatment of the localized
states as isolated "impurities, " must be considered
unreliable since that problem (without explicit hy-
bridization terms) can be solved exactly within our
scheme and one obtains qualitatively different re-
sults. '

In the usual picture of the excitonic insulator"
there is a coherent pairing in the wave-vector
representation (f ~ „Cg0 0, where q is the common
excitonic wave vector. Such pairing is obviously
inhibited by the strong local correlations associa-

' ted with the intra-atomic Coulomb interaction be-
tween f electrons. In contrast to the excitonic in-
sulator description, the model of Kaplan and Ma-
hanti, "which neglects the itinerant character of
the d electrons, yields a very different picture for
the intermediate valence state. The mean-field
ground state for this model is a homogeneous lo-
'calized state for which (ftC, ) OO. This localized
"exciton" results from an explicit mixing interac-
tion associated with the interatomic Coulomb in-
teraction treated in a mean-field approximation
where intra-atomic correlations are treated ex-
actly. However, the neglect of the finite bandwidth
of the d electrons appears unrealistic, and one
can show that this localized state is not stable for
a sufficiently large bandwidth. " The present treat-
ment attempts to take into account the very im-
portant intra-atomic correlations in the case where
the bandwidth is large compared with the mixing
interaction, such that the mixing interaction can be
explicitly ignored. The resulting picture is inter-
mediate between the excitonic insulator and the Kap-

lan-Mahanti description. Here we refer only to the
original model presented by Kaplan and Mahanti in
Ref. 19. ,However this model has been generalized"
to allow for a small number of electrons occupying
itinerant states in the collapsed phase and holes in the
localized excitonic states. The resulting picture is
not that different from one where the d-band electrons
are strongly correlated withthe4f electrons as pre-
sented in the present treatment.

A final point concerns the relationship between
our treatment of the pressure-volume relations
for the samarium monochalcogenides with those of
Hirst" and Varma and Heine. " In the Hirst treat-
ment" the parameter P of our Eq. (3.7) is assumed
to be unchanged in going to the metallic state and
the lattice energy does not take into account the
large differerice in the ionic radii of the divalent
arid trivalent Sm ions. Although the p-v curves are
reproduced very well in the Hirst treatment without
taking into account the parameter G of the Falicov-
Kimball model, our treatment of the pa, rameter P
and certainly the lattice energy would seem to be
more realistic. Varma and Heine" also explicitly
ignore G but assume a nonlinear generalization for
the average volume v' of the form

v = (1 n, )v, +—n, v, + (1 n, )n,—v4, (4.1)

as compared with our expression (3.6). The phys-
ics of v~ is associated with an attractive elastic i'n-
teraction between ions of the same size but it may
also include some of the effects of short-range
electronic correlations such as are explicitly de-
scribed by G in the Falicov-Kimball model. Again
the p-v curves are well reproduced with the freely
chosen parameter v4 required to be large and nega-
tive. However the change in valence for SmS at
the discontinuous transition is predicted" to be
much smaller than observed. Also it is difficult
to see how lattice constant measurements give
estimates of the valence in agreement with other
measurements if v,/v, is of order 1 as required
for the p-v curves.

In summary, we have shown that the simple Fali-
cov-Kimball model provides a reasonable theoreti-
cal description for certain intermediate valence
phenomena, provided intra-atomic excitonic
correlations are taken into account. These cor-
relations should also be important in the extended
model with explicit mixing interactions.
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