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Strain dependence of effective masses in tetrahedral semiconductors
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The complete first-order strain dependences of the conduction- and valence-band effective masses of
germanium and zinc, -blende semiconductors at k = 0 is calculated using third-order perturbation theory and
the Pikus-Bir Hamiltonian. These dependences are expressed analytically in relatively few matrix elements
and self-energies. using a model band structure consisting of the spin-orbit-split I » upper valence bands and
the 12, I », I », and I, conduction bands. These matrix elements and self-energies are evaluated from
pseudopotential theory. While a two-band model consisting of the I » valence and I 2 conduction bands is
adequate to describe the electron and the light-hole effective masses, more terms involving also the I »,
I », and the I, conduction bands are required to interpret the dependence of these masses on strain. Our
results account for the strain dependence of conduction masses observed in GaAs. They also indicate that the
anomalous strain dependence of the cyclotron hole masses observed for Ge by Hensel and Suzuki are not due
to a strain-dependent spin-orbit interaction, as suggested by these authors, but to orbital terms involving the
higher conduction bands.

I. INTRODUCTION

The k. p perturbation theory has proved to be
very useful for interpreting effective masses in
tetrahedrally bonded semiconductors. ' ' For ex-
ample, the isotropic effective mass w~ of the
lowest conduction-band minimum at the center of
the Brillouin zone (I',, and I'„ for crystals of
diamond and zinc-blende symmetry, respectively)
can be expressed as

m 2P' 2

In the same spirit it is possible to use Eq. (1)
to estimate the effect of pure shear stresses along
[100] or [111]on m,*. This effect arises from the
shear-induced splitting of the I'» (I'„,) P-like
valence-band triplet into a singlet and a doublet.
Under shear, the mass m,* becomes anisotropic
with different components m,*„and m,*„parallel
and perpendicular, respectively, to the stress
axis. These can be expressed as" "

where P is the momentum matrix element between
the I', (I'&) conduction-band minimum and the I'„
(I'». ) valence states, and Eo and &0 are the direct
energy gap and upper-valence-band spin-orbit
splitting, respectively. With P'/m, = 13 eV, Eq.
(1) describes well the lowest I' conduction-band
mass of Ge and a large number of III-V sernicon-
ductors. "'

It is also tempting to use Eq. (1) to describe the
dependence of the mass on hydrostatic pressure.
A hydrostatic stress increases the gaps Ep and
E, +&,. This increase, which amounts to 8'%%uo at
10 kbar in QaAs, "' should produce a corresponding
increase in m,* according to Eq. (1) if P' remains
independent of stress. Actually, P is roughly
inversely proportional to the lattice constant ap. '
Therefore, an increase in P' of 1'%%uo is expected
at 10 kbar. Experimentally, an increase of 6%%up

in m,* is found at 10 kbar, ' in agreement with the
above considerations.

(2a)

2P' 6Ep
+ E (2b)

where we have assumed for simplicity that 4p~~Ep.
In Eqs. (2), GEO is the stress-induced shift of the
singlet state.

For a given uniaxial stress X, 6Ep is roughly
isotropic and independent of the stress direction
in the III-V compounds. It is positive for a com-
pressive stress. " Thus, upon compression, a
decrease in the parallel-mass component would
be expected, with a magnitude roughly independent
of stress direction. This prediction is in total
disagreement with experiment: while a small
decrease in m,*~, is observed in GaAs, for example,
for a stress along [100),"a large increase is found
for a [ill] stress. '~" Related anomalies have also
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been observed for the dependence of the resistiv-
, ity of n-GaAs on uniaxial stress. " Similar prob-
lems arise when trying to interpret the stress
dependence of the I'» (I"„,) valence-band masses
on the basis of k.p theory and the stress-induced
splitting of the I'»-orbital triplet. " These dif-
ficulties led Hensel and Suzuki to introduce a de-
pendence of the spin-orbit Ha&iltonian on uni-
axial stress to explain them. '"" Such a depen-
dence is difficult to reconcile with rigid-ion mod-
els" and with the observed" nearly negligible de-
pendence of ~, on hydrostatic stress.

In this paper we present calculations which show
that the splitting of the I"» (I'». ) valence band is
not the only term which contributes significantly
to the dependences of m,* and the valence band
masses on uniaxial stress. In fact, the stress
dependence of these masses can be viewed as re-
sulting largely from third-order perturbation
terms involving the k. p Hamiltonian twice and the
stress Hamiltonian once. One such term gives
the effect described by Eq. (2). The usual argu-
ment, that this term is the only one which needs
to be considered in view of the small value of E„
is shown not to hold: 6E, has anomalously small
values because of a fortuitous cancellation of ki-
netic and potential energy contributions. It is
shown using the pseudopotential method that this
cancellation does not take place for many other
matrix elements of the stress Hamiltonian. Hence
third-order perturbation terms involving also the
I'„and the l,„coriduction bands contribute sig-
nificantly to the stress dependence of the effective
mass and, in the case of a [111]stress, even re-
verse the predictions of Eq. (2). Thus agreement
with the experimental results for m~ is restored.

These additional perturbation terms give also
a substantial contribution to the dependence of the
hole masses on stress. They largely eliminate the
discrepancies with the two-band theory reported
in Ref. 17 without having to invoke a stress de-
pendence of the spin-orbit splitting. The additional
perturbation terms should also yield a substantial
contribution to the nonlinearities in the dependence
of energy gaps on uniaxial stress which have been
reported for Ge and GaAs. "

Htfr = (H, +H')tji=Eg,

Ho =p /2m~+V(r),

(3a)

(3b)

II. GENERAL THEORY

A. Strain Hamiltonian and effective mass
I

The general theory of strain effects around cri-
tical points in crystals has been given by Pikus
and Bir, '""who express the effect of a general
strain E by the first-order k. p-strain Hamiltonian

H' =5k p/m, —(5/m, )s;~pqkj

(1/m, )s);PJ'S + E))V;;, (3c)

V„=, V[(1+~).r]
~'$~

where 1 is the unit tensor, & is the strain tensor,
and all other symbols have their usual meaning.
In Eq. (3c), summation over repeated indices is
implied (i, j=x, y, and z). For simplicity and
for later use, we define hydrostatic, tetragonal,
and trigonal (rhombohedral) shear strains es,
&~, and e„, as

&„=3 Tr(e) =
& &3e, ,

e, =c„--,'Tr(c) =-', vo e, ,

~z = &x3 = e5xy.

(4a)

(4b)

(4c)

The quantities e~, E~, and &~ are related as shown
to the quantities e„e, , and e,„,previously defined
by Kane. " For a uniaxial stress X along [001]
(X =Xr) or [ill] (X =ps), the two cases that we con-
sider here, we have

[001] or [ill]: es- —,'(s»+2s»)yr s,
[001]: c r ——',(s „—s„)ltr, a„=0,
[111]: es- —,

' S„xs, fr=0.

(6a)

(6b)

(5c)

E,(k) =E„(0)+ +H„'„
lÃ g

H„'+„'~H~I„

~~„„(E —E„)(E~—E„)
'

The band-effective mass follows from

(7)

Quantitively, it is seenfrom Eq. (3c) that in the
perturbation H' the first term is linear in k, the
second bilinear in k and E, and the third and fourth
are linear in e. The energy expansion (6) can be
separated into zero-order [first by order of ap-
pearance in Eq. (6)], first-order (third), second-
order (second and fourth), ' third-order two-band
(fifth), and third-order three-band (sixth) terms.
Deformation potentials representing effects linear
in strain (by definition at k =0) clearly come only
from the first-order term in Eq. (6) and the two
strain-linear terms in Eq. (3c). The band-effec-

The strain dependence of band-effective masses
is calculated from expansions of energy levels to
first order in a and second order in k. For a given
level E„, the required third-order expansion is",.
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tive mass (by definition at e = 0) arises only from
terms quadratic in k and thus in the tetrahedral
semiconductors comes only from the second-order
terms in Eq. (6), the second of which is evaluated
only with the k-linear term in Eq. (3c).'""

Strain-linear corrections to the band-effective
masses come from terms linear in the strain
and simultaneously quadratic in k. The usual such
term, as indicated in Sec. I, is the third-order
two-band term, which expresses the strain-linear
correction in terms of the deformation potentials
(i.e., expectation values of the strain Hamiltonian
of the valence and conduction bands). The other
two possibilities not considered so far in the lit-
erature are the third-order three-band and the
second-order terms in Eq. (6). In the latter case,
the required dependence is obtained by using the
k-linear and bilinear terms of Eq. (3c).

B. Model band structure

From Sec. IIA it follows that deformation po-
tentials, band-effective masses, and strain-linear
corrections to the masses come from a relatively
small number of nonvanishing matrix elements and
expectation values. We consider henceforth only
the states at k=0. For the tetrahedrally bonded
semiconductors the most important k=0 states
are the l"„, valence band, and the 1"... I'„, I'„,,
and I"

f conduction-band levels, at energies 0,
Ep Ep Ep and E,', respectively, in the absence
of spin-orbit splitting. These states transform
according to the coordinate representations (X
=ye, Y=zx, g=yx), (xyz), (x, y, z), [n=xyz(x'+y'
—28'), p =xyz(x' —y')], and 1, respectively. "

Other states. at k=0 are relatively far removed

in energy and their influence is expected to be
less.

We identify the following nonvanishing mom-
entum matrix elements involving k-linear per-
tu rbations:

&r„,(Z) Ip, lr„)=P,

&r„,(z) ~p„~r„(y)) =q,

&I „,(X) ip„ir„,(o.)) =Z,

&r„(~))p, )r,) =T.

(8a)

(8b)

(8c)

(8d)

(~, ~): (Xy+ iF4 —2Z))/v6 at E = 3 b

(-.', --,'): (Xc ~I ~)/WaatZ=-'. ~„
(-,', —,'): (X&+f1"y+Z&)/&Sat Z= 2~, .

(9a)

(9b)

(9c)

These matrix elements and others to be defined
later are summarized in Table I. The meaning of
P, Q, R, and T is similar to those previously de-
fined in atomic units by Cardona and Pollak, "ex-
cept that our matrix elements P, Q, and T are a fac-
torof 2 smaller, and 8 is afactor of 2v 2 smaller.
Strain-linear perturbations depend on the type
of stress applied and will be discussed below.
The bilinear term is related trivially to the
k-linear term for the high- symmetry stre sse s
of interest.

The spin-orbit splitting of the valence band can
be incorporated explicitly by using the linear com-
binations of the I"». wave functions that diagonalize
the spin-orbit Hamiltonian. The states of interest
and their energies, projected along the a axis in
the (j,m&) representation, are given in terms of
the corresponding orbital functions X, Y, and Z,
by'

TABLE I. Definitions of interbapd matrix elements used to express effective masses and
their linear strain dependences. . The pseudopotential variables are defined in Sec. III. 1 fp (Q)
=gygb; + y~ 2g ); I'f2, (p) =gyg(g y ).

Quantity Definition P seudopotential expression

CZ

CR

Cg2

CB

&r». (X)lp, lr„(z)&

&rgb (x)lp„lrf2 (n)&

«ip ( )lp.

Iran&

&rp. lH, r lfrp( 0) l&e r
&r,.lH, „lr&, (-)&i~„

«is(x) IH.~I r12' &p»/~s

«il&,glr~5Ã) &/~~

[Pg. Pgp + (2/v 3 )yg. pop]SGp

Ppp SGp

(~2/~3)V

SGp

4&2'&, 9+ 0/&2)y2. v 8+ —~3 0'v iffi

Pg [—4v 3 0 —v 3va+ 7l v 3 g(v4+ vf2)]

+72 [— v3 ——
3 2

4r~v3+ 4 ~»'fi ~r~&(v'3 v'„)
3 fi

P„,[ 4&3n vYV', ~&3&(V4+v»)]

+ y) 5-, [—(2W2/vY)v', +
f f

W6v ff

(x~3/W2)((v3+ 3vif)]
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The quantity 4o is the spin-orbit splitting of the
valence band. The spin-orbit splitting of the I'„
conduction band introduces only a correction to
second order in 6,'/E„where 4,' is the spin-orbit
splitting of the second conduction band and E is
a relevant energy sepa. ration (e.g. , to the r& con-
duction band). For our purposes the I'„spin-
orbit splitting is negligibly small and will be ig-
nored.

C. Hydrostatic strain

For hydrostatic strain, the Pikus-Bir Hamil-
tonian, evaluated for k =kx perpendicular to the
quantization. axis z of the spin-orbit-split valence
bands, becomes

bands are assumed. For hydrostatic strain, the
quantities P', Q', and R' are given by

Z'=(I/m, )(1 ~ )Z,
Q' = (8'/m, )(1 —e„)Q,
R' = (h/m, )(1 —e„)R,
T" = (8/m, )(1 —&s)T .

(13a)

(13b)

(13c)

(13d)

+ E g 8 +

From Table III and Eqs. (6), (7), and (11)-(13),
we calculate

m, 2P' 2 3a' =1+ 1 —&0 2+
C e o 0'

H„' = (hk/m, )(1 —a„)P„+H,'„, (10a)
(14a)

where the k-linear and bilinear terms have the
symmetry of P„, and the strain-linear term

H,' =& [-(p'/ .)+F +I'„+I'..)j (10b)

has the symmetry 1", of the unperturbed lattice,
and therefore, contributes only to self-energy
terms. For the vth state (v=I'„, , I'...I'», I',z, and
I', ), we write these as

3a„&„=&r„ iH', „i r„) (11)

2P' 3a=1+ —— 1 —cH 2+ =—
— m, E Eo

5M2
1 —CH 2+3

(14b)

These self- energies, and others to be defined
later, are given in Table II. The Pikus-Bir de-
formation potential a is given by

4R' 12' 25'

(14c)

0 =Qg —025I . (12) The quantity E, has the meaning

The complete set of nonvanishing matrix ele-
ments and self-energies for hydrostatic strain is
summarized in Table III. Spin-orbit-split valence

Eo =Eo+:~o

Equation (14b) is the expansion of Eq. (14a) to

TABLE II. Definitions of self-energies used to express deformation potentials and linear
strain dependences of effective masses. The pseudopotential variables are defined in Sec. III.

Quantity Definition Pseudopotential expression

Q25i

a2e

a15

ai

b25,

bf5

d2 P

df5

(r2g. (Z)lH, Hl r». (z)&/3EH

(r, , lH, „lr,,&/3~„

(r|g u) IH, air|5&)) /3&H

(r„,(n)lH, Jr„,{n)&/3~„

«ilH. HI rf &/3~H

(res, (z)lH, rl r», (Z)&/er

{r„.(n}lH,rl r „,{n))/~r

(rpp (z)lH, ~l r)5. (z)&/e„

(rg, {z)lH,~l rg, (z)) /e~

~~3 P25'+ 4725'i P25Iv 8 + 2v 2 P25' Y25I QV3 —v f1 i3

~~3{82' +4+2'i+ ~ P2'+ 72'+ 8+ 2&6P2'+2» ~v3+v ff~3

-20-v 8

8g 2V8
3

20+ 3v 8

—8"j/25' 9+—v 2 p2p")/2giv f1 + p25tv 8
2 16~ I 2 I

I
V8

—4n+vs

—2 p25, [4g —V8 —7'(v4 —vf2)]

+ 2v 2 p25. ')/25. [—v3+ v f1 + 7r((v3 vf f)+4)/25. V8]

—2[40 —v 8+ 7r& (V4 —v12)]
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TABLE Qg. Nonvanishing k-linear, e-linear, and bilinear (ek) matrix elements for hydrostatic and tetragonal shear
strains evaluated in a direction k=kx perpendicular to the quantization axis & of the spin-orbit-split valence band and

the axis of the [001] uniaxial stress. The quantities P', Q', and 8' are defined in Eqs. (13) for hydrostatic strain and

in Eqs. (20) for tetragonal shear strain.

ENERGIES, WAVE FUNCTIONS: MATRIX ELEMENTS: SELF- ENERG I ES:

Ep

kR' X:

55ia'eH + bin'eT

&~~p'~g —
b& z'~T

Ep

Ep r& . xyz&

kp'x:

-2
Q6

ka' x: CT&T

ls+H &b|5&T

5%5sH + bi5sT

lp5'~H + ybp5'sT

25 eT 55/5'sH pbp5'eT

2—p~P I'a5' 2' 2 3025&cH

first order in Ao/Eo The term. 2 in each post-
factor of EH is a second-order contribution that
comes from the cross term of k-linear and bilin-
ear (in k and e) terms in the Pikus-Bir Hamil-
tonian.

One can calculate similarly the masses for the

(2, —2) band in the x direction; the resulting ex-
pression is identical in form to Eq. (14c) except
that the prefactors 1, 5, and 4 of the P', Q', and
R' terms must be replaced by 3, 3, and 12, res-
pectively, owing to the different weighting factors
in Table III. For the (2, &) band, the respective
values are 2, 4, and 8', and the terms 4, must
be replaced by (-2A, ). Along the quantization dir-
ection z, where k =kz, the multiplying factors for
the (—,', 2), (2, —2), and (2, 2) bands are 4, 2, 16;
0, 6, 0; and 2, 4, 8, respectively, where for the
(2 2) band A, must be replaced by (—2A, ). The
1",, mass is isotropic.

For a pure hydrostatic stress, the quantization
direction for the valence band is that of k, and
only the results fork lie have physical meaning.
The perpendicular values given above and in Eq.
(14c) are vahd if the quantization direction 2 is

determined by a directional perturbation, e.g. ,
a uniaxial stress along z. Corresponding coef-
ficients for hydrostatic stress for k parallel to
[111]are given at the end of Sec. IIE.

D. Tetragonal strain

For a tetragonal shear strain resulting from a
uniaxial stress along [001] the Pikus-Bir Hamil-
tonian, evaluated for k=kx, becomes

H' = (kk/m, )(1 y —,
' e )p„pH', (16a)

where the k-linear and bilinear terms have the
symmetry. of P„, and the strain-linear term

H', r = —,
' sr[(I/m, )(P2+P2 —2P2)

—(V„„+V —2Vgg)] (16b)

has the symmetry I'». Therefore, H,'z, generates
self-energy shifts of the I",-... F„, and I'„, states,
and couples I'„ to X',„.We define the nonvanishing
self-energy terms b». , b„, and b]g as

I „,e, =(I'„,(Z) life IF- (~)& (17a)

I „e,=&r„( ) la;, ll „( )&, (17b)

=(I',„(o.) le,' ll', g (o.)& . (17c)
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The self-energy terms for the ~,&X, F and ~,p', y
states are -2 times their ~-symmetric counter-
parts. The self-energy for the I",&(P) state is
the negative of that for I',z(n). The Pikus-Bir
deformation potential b has the value

b=3b„, . (18)

P' = (a/m. )(1+—,
' ~,)P,

Q' = (5/m, )(1+~ or)Q,
R'= (5/m, )(l+ —'e )R .

(20a)

(20b)

(20c)

For the direction parallel to the [001]-stress-
quantization axis the quantities + —,er in Eqs. (20)
are replaced by -c~.

From Table III and Eqs. (6), (7), a.nd (16)-(20),

The ~z —I'«coupling is defined by the coefficient
cz,, where

(19)

There is no coupling between I',, and I'», (p). The
coupling between the (-,', 2) and (~, 2) valence bands
is given in terms of b,„, as indicated in Table III;
no change of valence-band representation occurs
because the shear is parallel to the original quan-
tization direction. In Table III, the quantities P,
Q', and R' for the k direction perpendicular to the
[001]-stress-quantization direction are given for
tetragonal strain, from Eq. (16a), by

the strain-dependent I'~ conduction-band mass
perpendicular to [001] becomes

m,*, 3m, E, 4 E

E +Q }+~z

4cre+P 2 1
(21a)

~ }+ }+~ } . 25'
2P2 b„,

4RP &~c~

m, X,(Z -Z, )
(21b)

Equation (21b) is the expansion of Eq. (21a) to first
order in 6,/Z, . The cross term between k-linear
and bilinear terms gives the term } in the post-
factors of the E~ terms. The two-band third-
order terms, which are usually assumed to give
the entire stress dependence of the conduction-
band mass, "are those proportional to b», . For
the direction k=kz parallel to the stress/quan-
tization axis the mass is given by replacing every-
where E~ with -2&~.

The valence-band masses can be evaluated sim-
ilarly. We find that the (—'„2) mass perpendicular
to the [001]-stress-quantization direction is

c
ol

3/2, Z/2

b, +b
2(E» ——,

' 6,)

(22)

The only strain-linear terms taken into account by Hensel and Suzuki" are those proportional to P', Q',
and R' in the last row of Eq. (22). Because the strain lifts degeneracies, no simple change of coefficients
will give expressions for the perpendicular masses for the (~, ——,') and (2, —,') valence bands as in the hydro-
static case, but they can be calculated easily from Table III and the above if needed. %e give explicitly
only the mass of the (~, ~) band parallel to the [001]-stress-quantization axis, which is

(23)

To use Eqs. (21)-(23) with uniaxial stress, the
hydrostatic correction terms from Eqs. (14) must
be added because both components e„and e~ are
present.

E. Trigonal (rhombohedral) strain

For a trigonal shear strain resulting from a uni-
axial stress in the [111]direction, it is more con-
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TABLE $V. Nonvanishing k-linear, e-linear, and bilinear (ek), matrix elements for k = kx for trigonal shear strain
resulting from a uniaxial stress perpendicular to the quantization axis p'= g+y+2)A3 ) of the spin-orbit-split zalence
bands. The quantities P', Q', R', and T' are defined n Eqs. (26).

ENERGIES, /4' fUNCTII'
INATRIX ELEMENTS:

kRX:

&RX:
SELF-ENERG IES:

0

Ecol

Eo

p . )I )l2' i'd@)

.x i
X $~)5: i-
Yi
21

kT'

ko'x:

)i jl ji

gs,
jK,

0
0

——d,5~R2
d)5~R

1

2 d)5&R
+ d)5'R

EO

kp'x:
r

R52C

2'2
Fa5'.

d 25

+ 2d25'~R

~ A
u25 6R

2

venient to rotate all wave functions and operators
into directions parallel and perpendicular to the
[111]axis. ' The rotated momentum operators for
example are the linear combinations

(24a)

(24b)

(24c)P.=(P.+P, +P.)/~~ .
I

If analogous linear combinations of all threefold-
degenerate wave functions are formed similarly
and the quantization axis for spin-orbit splitting is
taken to be 2 = (x+y+z)/v 3, then the previous for-
malism is unchanged except for different values of
momentum matrix elements. In the rotated bases,
the Pikus-Bir Hamiltonian evaluated for k =kg
=k(x —y)/W2, perpendicular to the stress —quanti-
zation axis Z becomes

II' = (lk/m, )(l + ~„)P„+a',„. (25)

The Q-linear and bilinear terms have the symmetry
of p„, and lead to the values of momentum matrix
elements in the rotated system, with k perpendic-
ular to the stress and quantization axis, as sum-

marized in Table IV. Here the coefficients P', Q',
andR' are given by

P' = (h/m, )(1+v„)P,

Q
' ='(h/m, )(1 + e „)Q,

R' = (I/m, )(1+e„)R,
T' = (0/m, )(1 + e „)T,

(26a, )

(26b)

(26c)

(26d)

where P, Q, R, and T are defined in Table I. For
k parallel to the [111]-stress-quantization axis,
the quantities +e„ in Eqs. (26) are replaced by
-2e„. The strain-linear term

&',s = 2e~[(I/~. )(PJ, +-P,f .+f.f.)

—(v„+v„+v.,)] (27)

d„,~, = &r„,(z) lII'„I r„,(z)&,

d„e =(r„(r)ja',„ir„(z)) .
(28a)

(28b)

has the symmetry r», (Z) and generates self-en-
ergy terms in I'„and I'„. It also couples I'„ to
I', and I'», and I'» to I,. The self-energy terms
can be expressed by two coefficients d». and d»
defined as
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The self-energy terms for the l » X, F and I'»7, y
states are -1/2 times their Z-symmetric counter-
parts in Eqs. (28). The Pikus-Bir deformation po-
tential, Q, is given by

The I', -l „, I'„-I'„,, and I"„-I',couplings are
represented by the constants c„„c~„andc», de-
fined by

( 30a)

( 30b)

E, +6,
4PQc„,c~ 2 1

1+c 2 —~252P2=1+
m, Eo

4PQ e„c,
~pm, Eo(EO —Eo)

3 E 4 E

(31a)

(31b)
I

(30c)

The coupling between I'»(y) and I'», (o.) is also
given by c~, . The matrix elements of II,'~ between
I'„(7) and I'„.(o,), and between I'„(y) and I „.(P),
are zero. No coupling occurs between I",.and the
states I'»(x) and 1»(y), nor between I"»(Z) and
I'„,, nor between I'», (7) or I'», (y) and I', . Non-
vanishing terms are summarized in Table IV.

It is straightforward to evaluate the conduction-
ba, nd mass from Eqs. (6) arid (7) and Table IV. We
find for the mass perpendicular to the [111]-
stress —quantization axis that

Equation (31b) is the expansion of Eq. (31a) to first
order in 6,/E, . The expressions are identical in
form to thdse obtained for tetragonal shear, except
that the cross term between the 4-linear and bilin-
ear terms per unit strain is twice as large, and the
sign of the three-band term is reversed. The two-
band third-order terms are those proportional to
d» . For the direction k =QZ parallel to the [111]-
stress-quantization axis, the mass is given by re-
placing ez everywhere with -2m~.

The (2, —,') valence-band ma. ss evaluated perpen-
dicular to the [111]-'stress-quantization axis is

(32)

The parallel component can be calculated similarly and we find

m, 4P'=1 — 1+a —4+ d25, 6Q'

4 &25 4&25'~a
2(E,"——', &,) 3m, &,

4 + 25'. 15
6(E' ——'6 )

P2 Q2

E„Z,' ——', 6„)

(33)

The (—,', —,') and (-,', —,') masses can be calculated sim-
ilarly if needed.

For a [111]uniaxial stress, the contribution
from the hydrostatic component must be added.
For the I', , band, this correction is identical to
that given in Eqs. (14a) and (14b). The expressions
differ from Eq. (14c) for the valence bands because
the weighting factors of Table IV are different
from those of Table III. It is straightforward to
show that the weighting factors 1, 5, 4 of the P,
Q, R terms in Eq. (14c) should be replaced'by 1,
3, 4 and 4, 6, 8 for the (-,', —', ) mass perpendicular (x)

and parallel (z), respectively, to the [111]-stress-
quantization axis. For the (2, —,') and (-,', —,') bands
the perpendicular values are 3, 5, 12 and 2, 4, 8, and
the parallel values are 0, 2, 8 and 2, 4, 8, respec-
tively.

III. PSEUDOPOTENTIAL EVALUATION

A. Stress-induced changes in lattice potential

We evaluate the expressions of the previous sec-
tions with a pseudopotential model previously used
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TABLE V. Pseudopotentials of the unperturbed crystal.

Pseudopotential Plane-wave representation

V'(r)

ys(r)

(&~s/'v 2)[ (111)+(111)+(111)+(111) (111)+(111)+(111)+(111

v~8[-. (220)+ (220)+ (220) (220)+ c.p. ] ~

(g f f/~2) I —(311)—(311)—(311)+(311) —(311)—(311)—(311)+(311)+ c.p. ]

*c.p. means cyclic permutation.

to evaluate deformation potentials in Ge.' We re-
call that these expressions are based on two ap-
proximations: (i) inversion symmetry, and (ii) a
I'„,, I', , F„, I'„,, and I', basis set, as discussed
before. Here, we make the additional assumptions
that these expressions ean be evaluated using
pseudopotential coefficients up to v» [plane waves
up to (222)] and wave functions using (111)and

(200) plane waves.
The nonvanishing pseudopotentials V', (r), V', (r),

and V»(r) are obtained from the standard defini-
tions"

V(r) = P [V:cos(G ~ r)+ iv:sin(G ~ T)] e
G

(34a)

go= —,'[v, (G)+v, (G)], v:=—:[v,(G) —v, (G)], (34b)

2
v, (G) = d'r V, (r)e 'o'",

0
(34c)

where v =(—,'a, )(x+y+z), V, is the volume of the
unit cell, a, is the lattice constant, and V, (r) is the
potential of atom 1. The pseudopotentials are list-
ed in Table V. The plane-wave notation is stand-
ard

q~f) eiGO(hx+'y —tx)

G, =2m/a, .

(35a)

(35b)

In Table V and elsewhere, e.p. means cyclic per-
mutation. Using Table V one ean obtain explicit
expressions for the strain-linear terms H,'„, H,'~,
andH', r in Eqs. (10b), (16b), and (27), by use of the
definition, Eq. (3d).

We should point out that while the pseudopotential
Hamiltonian yields correct energies it is not likely
to yield correct values of matrix elements between
diffexent true states if pseudo-wave-functions are
used. ' Nevertheless, we are using such matrix
elements only in the expressions for the effective
masses (related to energies). Hence the use of
pseudo-wave-functions seems justified.

Because hydrostatic strain leaves the symmetry
of the crystal unchanged, its only effect is to
change the magnitudes of the form factors. These
can be evaluated by considering their change with

volume

p v3 s
3 7R, V3

+-, Pr+, V„r (36a.)

(36b)

dvg

dG
(36c)

Here, v,'. and v,'. are the logarithmic wave vector
and volume derivatives of v', , respectively. Thus
H,'8 is expressed in terms of the unperturbed crys-
tal pseudopotentials given in Table V.

Tetragonal shear induces a change in V(r) that
transforms as F». Because the volume does not
change, the form factors are invariant and the
change in V(r) arises from the expansion of the
plane-wave terms themselves, in terms of the
first-order changes in the wave vectors 6», under
shear ("derivative" terms') Under . tetragonal
shear the primitive lattice vectors become to first
order in c~:

j " & A

6[iii]-G[Tii]+zerGO( ~+3 —2z),
1 A A A

G[lll] G[lly]+2E Gpr(X —y —2Z)

A A

G[lly] G[y]]]+2'ErG (X+y+28)

(37a.)

(37b)

(37c)

+V,'(r)+ V,', (r)], (38)

where V, (r) and V~»(r) are given in Table &I. The
V, (r) component vanishes because tetra. gonal shear
does not change the length of the (111)reciprocal
lattice vectors to first order.

Trigonal shear induces a 1» change in V(r),
where as for tetragonal shear the form factors re-
main invariant. The first-order changes in the
plane waves due to changes in the wave vectors

Changes in other reciprocal-lattice vectors can be
calculated from appropriate linear combinations.
Expanding the plane-wave parts of the pseudopoten-
tials in Table V to first order in c~ and Using Eqs.
(37) leads to the complete expression

H', r = fr[(1/2m, )(p,'+p', —2p', )
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Component

yTg)

Plane-wave representation

——v 8[2 {220)—2 (220) —2(220) + 2 (220)
4

—(202)+ (202) + (202) —(202)

(022) + (022) + {022)—(022)]

—~2vgg[2(113) + 2(113)+2(11'3) —2(113)

+ 2(113)+2 (113)+2(113)—2 (113)

—(311)—(311)—(311)+ (311)

—(311) —(311) (311)+ (311)

—(131)—(131)—(131)+ (181)

—(131) —(131)—(131)+ (131)]

(derivative terms) can be calculated from

Gt.

ill�

] Grill 1] RG 0+

[ill] I ill] R603

Gt.,Q]
—G),Q] —2e ~G o~

(39a.)

(39b)

(39c)

But in addition there are "phonon" terms which
come from the structure factors. ' These express
the effect of the relative shift of the two sublattices
which occurs because the four (111)bonds are no
longer equivalent under tetragonal shear. .

The phonon terms can be calculated as follows. '

TABLE UI. Stress-induced changes in pseudopotentials
for tetragonal shear ([001]-stress —quantization axis).

Suppose a trigonal shear is applied to the crystal
by, e.g. , a uniaxial stress along [111]. The unit
cell is therefore compressed along [111]and the
[111Jbond becomes inequivalent to the other three.
The crystal strain along [111]is 2ez. Due to com-
petition between bending and stretching, however,
the relative change of length of the [111]bond is
less than that of the relative change of length of the
unit cell along [111];we denote the relative dis
crePancy by g so that instead of the relative change
2m~ expected for a uniform deformation of the unit
cell, the actual relative change of the bond length
is 2c„(1—g). For group-IV and -III-V semicon-
ductors (= 0.6."

Now the Pikus-Bur Hamiltonian is obtained by
applying the inverse transformation to the Hamil-
tonian to restore the deformed unit cell to its orig-
inal dimensions. Along [111J, this transformation
changes all relative lengths again by -2e„, in which
case the new relative bond length is 1+2m„(1 —g)
—2m+=i —2e~g. Thus in Eq. (34a) the structure
factor for trigonal shear along [111J becomes

cos(G ~ v) - cos[G ~ (1 —2ezg)v]

= cos(G ~ v)+2m„g(G 7) sin(G v) . (40)

The correction term also generates phonon con-
tributions from the forbidden v4 and v» pseudopo-
tential terms.

The pseudopotentials for trigonal shear lead to
the explicit perturbation Hamiltonian

TABLE VII. Stress-induced change's in pseudopotentials for trigonal shear ([111]=z stress-
quantization axis). The superscripts d and p identify derivative (macroscopic strain) and pho-
non contributions, respectively. 1 —f represents the fraction of strain along Z that appears
across the bond parallel to the stress.

Component

yR y 4{r~)

yR P(&)

yR yP (r~)

yR y4 (r)

pR y4 (~)

yR ~P {r)

P'R yP (r)

Plane-wave representation

-v 2v3[3(111)+(111)+ (111)+(111)

+ 3(111)+ (111)+(111)+(111)]

f/2V 2 )vs3[3(111)+(111)+ (111)+ (111

+ 3(111)+ (T11)+(111)+(111)]

xfv4[(200)+ (020)+ (002)+ (200)+ (020)+ (002)]

vs [(220)+ {220)+(220)+ (220)+ c.p.]

—v 2 v gg [7(311)—(311) —(311)+ 5 (311 ) + 7(311)

—(311)—(31T)+5(311)+ c.p. ]

(xf/2~2)vs&& [5{311) 3 {311) 3{311) {311) + 5 {311

—3 (311)—3 (31T) —(311)+ c.p.]
—mdiv && [3(222) —(222 ) —(222 ) —(222)

+ 3 (222) —(222) —(222) —(222 )]

~c.p. means cyclic permutation.
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TABLE VIII. Pseudopotential wave functions for evaluating hydrostatic pressure and tetra-
gonal shear perturbations. For I"&&, and 1"~5, only the wave functions transforming as Z and z
are shown. The coefficients p25, , y~&. , p&, , and y2, are defined in Eqs. (42).

State Plane-wave representation

I'g5, {Z)

rgqQ)

rg2, {n)

(P~5, /&8) [(ll 1)+ (111) + (111)—(111)+ (111) + (111)+ (111)—{111)]

+ (y, ~, /W2) [(002)+ (002)]

8 }[(111)—(111) —(111)—(111)—(111)+ (111)+(111)+(111)]

+ {y2,/v 6 ) [{200)+ (020) + (002) —(200) —(020) —(002)]

(1/v 8 ) [(111)+ (111) + {111) (111) (111} (111) (111}+(111)]

(1A12 )[(200)+ (020}—2 (002) —{200)—(020) + 2 (002)]

2 [(200)—(020) —(200)+ (020)]
I

{1/&8)[(111)—(111) —{111}—{111)+ (111) —(111)—(111)—(111)]

a, =c„[-(2/rn, )(p„p, +pp, +p, p„) 0 =O'Go/2m, (42d)

+ yB,d (r ) + yR, P(~+ )+ I/B, P(r ) + I/Rd(~+),

yR, d( ) yR~, P( ) yR 0( )] (41)

where the superscripts d and p refer to derivative
(macroscopic strain) and phonon terms, respective-
ly. Al]. are givenexplicitlyin Table VII. We note that
the V (r) terms can also be used to calculate elec-
tron-phonon interaction constants, provided that
the sign is changed and g is replaced by a factor of
4 6

B. Wave functions

y25i/p25~ .= -2&2(v~ —vg~)(Q + vs + [(0 + van)

+ 8(vs vs )2]1/2] -1

y, , /p, , = -2ve (v', +v'„)/0+v', + [(II+v', )'

(42a)

p'+y' =1,
24( s s )2]l/2)-1 (42b)

(42c)

The plane-wave representations for the I'„,, I', ,
I y5 Fy2 ~

and I, state s are standard' and are given in

Table VGI. The projection coefficients P», y»,
P, , and y, for the I'», and I', , wave functions are
given by' "

For trigonal shear it is more convenient to use the
linear combinations of the I'» and I'» wave func-
tions corresponding to rotation into the g, y, Z

coordinate system, with Z along the [111]-stress
axis. The I'» (Z) and I'»(Z) wave functions are
given in Table IX.

C. Matrix elements and expectation values

The matrix elements and expectation values of
Tables I and II, calculated from the above pertur-
bation Hamiltonians, are also given in terms of
pseudopotential parameters in Tables I and II.

IV. RESULTS AND DISCUSSION

In this section, we evaluate explicitly for Ge the
terms calculated in previous sections, using
data' "" " summarized in Table X. Although the
stress-induced anisotropy of the I', , conduction-
band mass is not easily accessible to measurement
for this material (I",, is not the lowest conduction-
band minimum) the stress-induced anisotropy of the

upper valence-band (-', , —,') mass hasbeen measured to
high precision by Hensel and Suzuki. " This anisot-
ropy is different from that predicted by two-band

TABLE IX. Pseudopotential wave functions for evaluating trigonal shear perturbations.
Only the wave functions transforming as Z and z are given explicitly. The coefficients p25
and y2&, are defined in Eqs. (42).

State Plane-wave representation

r~,, (z} (p2~~/v 24)[3(111)+(111)+ (111)+ (111)+3(111)+ (111)+(111)+(111)]

+ (y25. /v 6 )[(200)+ (020) + (002) + (200)+ (020)+ (002 )]

{1/024) [3(ill)+ (111) + (111)+ (111)—3(111) —(111)—(111)—(111}l
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TABLE X. Values of parameters for Ge, used to evaluate pseudopotential expressions
derived in text.

Calculated values

Qp/ag ——.10.691 ~

v3 ———3.27 eV

V4s 1.77 eVc

Q = 4.700 eV

P25 = 0.833

y2P
—— 0.554

VS
8

V4=

V8=

I
V 12

0.44 eV"

1.06 eV ~

0.82 eV

6.53 eV'

6.33 eV'

4.49 eV'

1.36 eV e

0 16 eVc

0.66

P2i —— 0.845

0.534

v 3
—— 1.09 eV

v 8
——-1.93 eV

v ~~
——-1.51 eV

eH-—-0.00149 (10 kbar uniaxial;
10/3 kbar hydrostatic)

e& ——-0.008 29 (10 kbar uniaxial)

&&——-0.00248 (10 kbar uniaxial)

Sff — 9.78 & 10 kbar
I

Sf2 — 2.66 x 10

S44
——14.90 && 10 kbar

Ep= 0.889 eV~

Dp = 0.287 eV

Zp= 3.235 ev'

Zip =10.5 ev'
E'p" = 8.3 eVg

'Reference 32.
"Reference 33.
'Reference 6.
Reference 30.

'Reference 34.
~ Reference 35.

Estimated value, equal to corresponding
value for GaAs (Ref, 36).

terms alone. As we shall show, this difference can
be explained in terms of matrix element effects,
which is more reasonable than invoking stress-in-
duced spin-orbit effects. Thy case of the conduc-
tion-band mass anisotropy is best illustrated by
GaAs, and will be considered in detail in the fol-
lowing paper.

The calculated values of matrix elements, de-
formation potentials, and stress-induced changes
in the I', conduction- and I'» valence-band effec-
tive masses are summarized in Tables XI and XII
and are compared to experimental values"'
where possible. The "experimental" values of the
matrix elements P, Q, and R were calculated from
the y~, y2, y3, and a' valence-band parameters'
using the general expressions for these quantities
in terms of I, G, H„and 0,"and assuming no
contributions from higher bands. In general, the
agreement is good; the maximum discrepancy,
that for the shear deformation potential 5, is 20/o.

While calculated strain-linear terms may not be so
accurately determined due to cancellations between
intrinsically large component terms (in c», for
example), we believe this establishes an approxi-
mate scale of uncertainty for the quantities calcul-
ated here, provided that they are determined pri-
marily by interactions among the bands included in
our model. We mention that the values for b and d
differ somewhat from those cited in Ref. 6 due to
the correction of minor errors" in Eq. (A.17) in
Ref. 6, and the use of slightly different pseudopo-
tential parameters. " The b deformation potentials
of the va, lence and conduction bands are found to
have opposite signs, while the d deformation po-
tentials have the same sign, as indicated by piezo-
reflectance measurements on Ge by Sell and
Kane. 4'

Calculated values of the I', , conduction-band
mass and its strain-linear corrections, evaluated
from the data of Table X, are given in Table XII.
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TABLE XI. Values of matrix elements and self-energy
terms for Ge, calculated from pseudopotential theory
from data summarized in Table X.

Quantity Calc. value Expt. value

Cg

CR.i
GR2

~Z3
a2p
a2i

&5

Q(2s

kg
a

52p
&i5

d25 ~

d15

1.05AGp

0.83SGp
0.45kGp
1.00SGp

17.36 eV
-33.40 eV

1.09 eV
—36.21 eV
-5.62 eV

-17.58 eV
-7.47 eV
-8.67 eV

-15.19 eV
. —11.96 eV

-7.13 eV
4.49 eV

14.31 eV
2.38 eV

-20.20 eV
-17.88 eV

5.83 eV

1.18AG
0.69SGp
0.47@Gp ~

10.6 + 1.0 eV
—11.4 + 0.3 eV'

7.32 + 0.45 eV

2.86+ 0.15 eV"
18.3 + 1.7 eV"

5.28+ 0.50 eV

References 17 and 37.
Reference 20.

'Reference 38.

The conduction-band mass is found to be 0.045m„
compared to an experimental value at 4 K of
(0.0380+0.0005)m, ." The agreement again is rea-
sonably good, primarily because the conduction-
band mass is determined mainly from interactions,
with the I'» valence bands. The main point of this
paper can be appreciated from Table XII: the usu-
ally neglected bilinear and three-band terms des-
cribing the effect of stress on the kinetic energy
and matrix elements are entirely comparable to
the two-band terms, which describe strain-linear
effects caused by changes in-energy denominators.
In fact, for [111]shear the three-band term is
larger than the two-band term and is of opposite

sign, so that the sum of the three types of strain-
linear terms is essentially zero. This leaves only
the hydrostatic term as the main contributor to the
strain-induced mass change for [111]stress, a
prediction which is well satisfied by piezoresis-
tance measurements on n-type GaAs to be discuss-
ed in the next paper.

Results for the (—,', —,') valence-band masses are
given in Table XIII. In general, the calculated and
experimental masses differ by about 20% and 30/p
for the parallel and perpendicular cases, respec-
tively. The larger discrepancies observed here
are not surprising in view of the fact that (espe-
cially for the perpendicular (xx and xx) compo-.
nents) the masses are influenced significantly by
interactions with higher bands which we have not
considered. Nevertheless, for the parallel case
the calculated strain-linear coefficients, summa-
rized in the last column of Table XIII, are in re-
markably good agreement with the experimental
values. The small effective mass values for the
parallel components indicate directly that interac-
tions with the lower conduction bands are more
significant for them than for the perpendicular
components, and thus we expect the model to be
better in this case.

The evidence for a spin-dependent deformation
potential derives primarily from a, difference in
deformation potentials measured directly either
(a) by optical or cyclotron-resonance determina-
tions of the strain-induced splitting of the degener-
ate (-,', —,') and (-,', —,') sub-levels, or (b) the strain
dependence of the (a, —,') mass. If one assumes, as
done in Ref. 17, that the latter effect is given en-
tirely by the "three-band" terms coupling the con-
duction bands to the (—'„—,') and (—'„—', ) valence bands,
then the two should be identical. 4' In fact, based
upon this assumption, one finds that the deforma-
tion potential so calculated is about 20% lower than
that obtained directly from the (—'„—,'), (a, —,') split-
ting. The difference has been attributed phenome-
nologically to spin-dependent terms of symmetry
I&o&e;, , where f is the orbital-angular-momentum
operator. Theoretical estimates show that this

TABLE XII. Calculated stress-induced changes in the conduction band mass m~lm~=22. 42
= (0.045) for Ge for 10-kbar uniaxial stresses.

Component Bilinear Two-band Three-band Subtotal-
Total, shear plus

hydrostatic

Hydrostatic

tetragonal shear ll

trigonal shear J((

0.064
0.355

—0.178

0.212
-0.106

-1.145
1.298

-0.649

1.100
-0.550

0
-0.555

0.278

—1.439
0.720

—1.081
1.098

-0.549

—0.127
—0.064

—1.08
0.02

—1.63

—1.21
—1.02
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TABLE XIII. Values and calculated stress-induced changes in the (2, 2) valence-band mass of Ge at 10 kbar uniaxial
stress, for components parallel and perpendicular to the stress-quantization axes as indicated. Experimental values
(from Ref. 17) are shown in parentheses.

Stress-quantization
axis Component Bilinear Two-band

Total,
Three-band shear plus
HS Rest Subtotal hydrostatic

[001]=g

xx:
hydrostatic

(—9.141+ 0.003)

—0 ~ 02
0.06

0.24
-0.16

0 0
1.42 -0.05

0.22 1.49
1.27 (1.08 + 0.08)

-16.89
(-21.83 + 0.19)

hydrostatic
shear

—0.05
-0.30

0.94
—0.51

0
-2.84

0 0 ~ 89 —2.39
0.37 -3.28 (-2.4 + 0.5)

[111]=r

xx:
—5.19
(-7.692 + 0.009)

hydrostatic
shear

—0.02
0.03

0.24
—0.14

0 0
1.68 -0.14

0.22 1.65
1.43 (1.05 + 0.07)

gg:
-19.16
( 24.8+ 0.2)

hydrostatic
shear

—0.06
-0.20

0.95
-0.42

0
-3.19

0 089 -2 09
0.83 -2.98 (-1.7 6 0.5)

term should actually be much smaller, probably
not more than 10% of the value necessary to ex-
plain the discrepancy mentioned above. ""

In Table XIII, we have divided all three-band
terms into two groups: the first, labeled HS, con-
sists of the three (I', , I'„,I'„)—(-'„-,') —(—,', —,')
terms considered by Hensel and Suzuki, while the
contribution from the remaining three-band terms
shown in Tables III and IV are grouped under the
heading "rest." It can be seen clearly that the re-
maining three-band terms cannot be neglected with
respect to the dominant three-band terms; for the
parallel projections (calculated most accurately in
our model, as discussed above) along [001], re-
spectively, they comprise 15% and 35% of the total
three-band contribution, entering in such a way as
to simulate the observed apparently lower defor-
mation potential. In fact, correcting the term D,
=2.81+0.20 eV by all terms neglected by HS (bilin-
ear, two-band, "rest, " and hydrostatic), we find
that the correct value should be -4.3 eV, as com-
pared with D„, = 3.85 + 0.25 eV. For the deforma-
tion potential D„=2.31+0.17 eV, a similar calcu-
lation gives an improved value -2.7 eV, as com-

pared with D„=3.25 + 0.20 eV. Thus agreement be-
tween theory and experiment is restored, without
recourse to spin-dependent deformation potentials.

In fairness, however, we point out that the HS
terms are nearly equal to the total result calculat-
ed for the perpendicular masses (see Table XIII)
due to accidental cancellations. Thus a discrep-
ancy with the more accurately measured perpen-
dicular stress dependences remains. Because the
perpendicular masses are large it is probable that
other bands not included in the model may be re-
sponsible for the discrepancy. Thus the remaining
differences should also be explainable without hav-
ing to invoke a dependence of the spin-orbit split-
ting upon stress.
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