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Electronic structure of the ideal and reconstructed Si(QQ1) surface*
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A self-consistent pseudopotential method is used to calculate the electronic structure of the (001) surface of
Si. The results for the ideal 1X 1 surface are discussed in terms of density-of-states curves and charge-
density distributions and compared with earlier calculations. The calculation for the reconstructed surface is
based on the geometry recently obtained by Jona et al. using a low-energy-electron-diffraction (LEED)
intensity analysis. It assumes that the surface reconstructs in a 2 X 1 pattern by forming zig-zag chains along
the I100] or [010] direction of the surface plane. Although this geometry agrees with observed LEED spectra
far better than any of the previously discussed reconstructions, our calculation yields a metallic surface for
this geometry. This results primarily from surface states which arise from broken bonds in the surface and
the second atomic layer. In addition, the calculated local density of states near the surface is not consistent
with existing photoemission data.

I. INTRODUCTION

The atomic and electronic structure-of the Si
(001) surface has been the object of extensive ex-
perimental' -5 and theoretical6-8 investigation. A

major problem is the fact that the atomic arrange-
ment at this surface is not known. Low-energy-
electron-diffraction (LEED) studies" of clean
Si(001) surfaces reveal a 2&& 1 reconstruction, that
is a doubling of the periodicity along the [100]or
[010] direction in the surface plane compared with
a corresponding bulk plane.

A number of more or less plausible structural
models have been proposed" "for this recon-
struction. Two of the simpler ones have been dis-
cussed extensively: One is the pairing model, the
other is the vacancy model, both originally pro-
posed by Schlier and Farnsworth. '] Both mbdels
have been compared with each other on the basis
of a self-consistent calculation of the electronic
structure of the surface by Appelbaum et al.'
Their results favor the pairing model over the va-
cancy model, since i.t gives better agreement with
existing photoemission data; however, the surface
has metallic character for both geometries, pos-
sibly giving rise to a charge-density-wave insta-
bility. Appelbaum et al."argued that this insta-
bility might be the origin of a secondary recon-
struction seen on Si(001).

Very recently, Jona et al,."proposed an entirely
different structural model which they derived from
a I EED intensity analysis. Some of the main fea-

. tures of this model were previously suggested by
Seiwatz. " In particular, the surface atoms are
assumed to form a zig-zag chain along the [100]or
[010]direction of the surface plane. This so-called
conjugated-chain model gives a much better cor-
respondence with the observed I RED intensity

spectra than any other proposed reconstruction,
including the vacancy and the pairing models.

In this paper the electronic structure of both the
ideal 1x1 Si (001) surface and the 2x1 recon-
structed surface is studied using a self-consistent
pseudopotential met. iod.""The geometry of the
chain model is adopted for the reconstructed sur-
face.

The paper is outlined as follows. In Sec. II we
review the geometries of the Si (001) ideal and the
chain-reconstructed surfaces. In Sec. III we brief-
ly describe the calculational techniques. The re-
sults of our calculation are presented and discuss-
ed in Sec. IV for the ideal surface. and in Sec. V for
the reconstructed surface. In Sec. VI we summa-
rize our results and present some conclusions.

II. GEOMETRY OF THE IDEAL AND RECONSTRUCTED

SURFACE

The atomic positions of the atoms in the topmost
four layers of an ideal Si (001) surface are depict-
ed in Fig. 1(a). The surface unit cell is a square
containing one atom per cell with two broken bonds.
The corresponding surface Brillouin zone (SBZ) is
shown in Fig. 1(b) together with the labeling of
various symmetry points. It can be seen from
Fig. 1(a) that there are four symmetry operations
which leave the crystal unchanged: the identity, a
twofold rotation about an axis perpendicular to the
surface through the center of the indicated unit
cell, and two mirror planes normal to each other
and to the surface. Thus the irreducible part of
the SBZ consists of one-quarter of the zone.

Next consider the surface reconstructed accord-
ing to the chain model [Fig. 2(a)]. The zig-zag
chains run along the [010] direction (y direction) in
the surface plane. Two neighboring chains are
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l. (a) Orientation of the first four atomic layers
ofani ead l 1 x 1 surface when viewed norm

nted brd the bulk. The atoms are represente yface towar t e u
on atomic layer.circles. The number in a circle labels on a

+"e following second"1"is the surface layer, 2 is e g
=5.43A, etc. The planarlayer separated by ~a where a =

unit cell is a square of length a/W2 indicated by the
dashed lines. ~0~ e~u) Th Brillouin zone corresponding to
the planar unit cell of the ideal geometry.

ion the [100]direction (x direction) by
twice the nearest-neighbor distance of two a oms

the size of theof the ideal surface, thus doubling e
surface unit cell in x direction.

The atoms in the second laye r are shifted to
ke the back bond of each chain atom symmetri-mae e c

cal with respect to the intrachain bon s.
rangement roughly accounts for three of the, four

h d 1 bonds of a chain and a second-layer
tom: The intraehain bond angle is ana, om: e

angle between a chain bond and a bacback bond is 101 .
There are two broken bonds per per lanar unit cel1 of
the surface and second-layer plane

'
lane introduced by

this geometry, one associated with each chain
atom pointing out of the pap per lane in Fig. 2(a),

d sociated with each second-layer atom
ted toward an atom in the fifth ayer.

oint will come up again below. In ad iporn wz co
onstruction parallel to the surface the secondrecons r

' interla er distance is contracted and has a value' in er ayer
f 1 22 A whereas all other inter ayerla er distances

6are ke t equal to the bulk-value 1.3 A.are ep equ
From the structural parameters oof this model

':KK-'
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2 0 ' t t'on of the first four atomic layers
o e x rf th 2 1 reconstructed surface accor g

all intomodel, viewe romd f m the vacuum looking normal y
e as in Fig. 1 a).the bulk. The symbols are the same as in Fig. a .

d half a lattice vector alongLayers 3 and 4 are displace a a
i . 1 a . The planar recon- '

the y axis relative to Fig.
truction in t e irs wtrue ' '

h f' t t o layers is characterize y e
arameters d„=1.15 A and d~== 0.96 A. The planar unit

c l d ated by the dashed lines. (b)cell is a rectangle in ica e
electedf the 2 x 1 planar unit ceQ with selec eBrillouin zone o e

lines along w ic e eh' h the energy bands are calculate .
ent thearea enclosed by these lines does not represent e

irreducible part of the zone.

one obtains the following bond lengths: the dis-
tance between two nearest neighbors '

h
'rs in the chain

is 2.45 A (bulk value 2.35 A), the back bond length
nd the shortest dis-of a chain atom is only 1.8 A, and e s

third-layertance between a. second-layer and a r — y
atom is 2.47 A.

Thss mo eh' de1 eliminates the two mirror planes
metrpresent in e i eath 'd l case and leaves as symme ry

a twofoldo erations of the crystal the identity and a two oopera ions o
rotation about an axis perpendicular o er to the surface

The irreduc&bleth h the center of a chain bond. e irr
part of the SBZ [Fig. 2(b)] is therefore one-ne-half of
the zone.
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III. CALCULATIONAL TECHNIQUES

V, (q) = (4~e'/I qP)p(q),

V.(q) = -o.(2/2~)(3v')' 'e'p' '(q),
(2)

where a =0.79 and p(q) and p'~'(q) are the Fourier
components of p(r) and p'~'(r), respectively.

The justification for using Slater's exchange po-
tential and the choice of- z is discussed in detail in
Hefs. . 16 and 17. Using a plane-wave expansion to
diagonalize the Hamiltonian, the secular equation

TABLE I. Ionic pseudopotential parameters as de-
fined in Eq. (1). The units are such that if q is entered
in atomic units (a.u.), then I/(q) is in Ry. The poten-
tials are normalized to an atomic volume of 190 a.u.

Qg

Q2

03
Q4

0.813 71
0.790 65

—0.352 01
—0.018 07

To calculate the electronic structure for the two
geometries we consider a, 12-layer slab of Si with
three layers of empty space added on top of a (001)
surface on both sides. This arrangement is re-
peated periodically throughout the whole of space,
permitting us to apply s tandar d band-s true ture
techniques to solve for the electronic structure of
the surface on both sides of a, film. For calcula-
tional convenience we introduce inversion symme-
try into this "slab crystal, ", which'means in the
case of reconstruction that both surfaces of a slab
are reconstructed. A slab surface still represents
the "true" surface as long as the film of material
and the vacuum between the slabs are thick enough
to decouple the various slab surfaces. A detailed
discussion of the method has been given in Hefs. 16
and 1'l; therefore, it will only be briefly described
below.

The inputs into the calculation include the atomic
structure given in Sec. II and an ionic pseudopoten-
tial. In the case of Si, this potential may be ex-
pressed solely in terms of a local pseudopotential.
This approach has been shown to give highly satis-
factory results for both bulk and surface calcula-
tions on Si. For Si" the Fourier coefficients of
the ionic pseudopotenial may be obtained from

V~„(q) = (a, /q')[cos(a, q) +a, je'4' (1)

where the parameters a; are given in Table I for
both geometries. The ionic pseudopotential is
screened by adding a Hartree potential V~ deter-
mined from Poisson's equation and an exchange
potential V„determined from the cube root of the
charge density. The Fourier coefficients for VH

and V„are given by

may be written in the form

)0-;,, (k) -Z(k)5;-, ,
~
=0, (

where G denotes a reciprocal-lattice vector and

&oo =Ik+GI 5«+V.;..(IG-G'I )S(G —G')

+V„(G-C')+V„(C-G') . (5)

The structure factor is denoted by S(G).
Self-consistency was achieved by the following

iteration process. The eyele is initiated by diago-
nalizing the Hamiltonian for four special k points"
using an empirical starting potential. Once the
wave functions at these k points are known, a val-
ence charge density is calculated and used to de-
termine Vz and V„via Eqs. (2) and (2). Thus, a
new screening potential is obtained and the whole
process is repeated until the screening potential is
converged within 0.01 Ry. At this stage the eigen-
values are normally stable to within 0.1 eV. Fi-
nally, the convergence was checked by calculating
the screening potential from 36 sampling points in
the irreducible part of the two-dimensional Bril-
louin zone of the ideal surface, and from 18 sam-
pling points, respectively, for the reconstructed
surface. In both cases, the potentials were equal
to the potentials obtained by the special point
scheme within less than 0.5 /o for the largest Fou-
rier components.

In the diagonalization process, approximately
180 plane, waves were used to expand the wave
function for the ideal geometry including 320 addi-
tional plane waves by Li5wdin's perturbation
scheme to improve the energy convergence. For
the reconstructed geometry at least 380 plane
waves are required in the expansion with another
900 plane waves via.perturbation theory to get sat-
isfactdry convergence. Increasing these numbers
results in a negligible change of the energy eigen-
values by less than 0.01 eV. The change in the
screening potential obtained by including more
plane waves in the expansion is about 2% for the
largest Fourier components of the potenial.

IV. RESULTS FOR THE IDEAL GEOMETRY

As mentioned in Sec. II, by forming an ideal Si
(100) surface one has to break two bonds per sur-
face atom. The electrons which previously par-
ticipated in these bonds will tend to occupy sur-
face-induced states which are localized at the sur-
face and have energies in the gap between the val-
ence and conduction bands, because they ean no
longer take full advantage of the attractive bonding
potential between the atoms. Two surface bands
are found in the gap whose dispersion is plotted in
Fig. 3 along certain symmetry directions in the ir-
reducible part of the SBZ according to the notation
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Si (001) IDEAL SURFACE

b-band state at k„= K
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FIG. 3. Plot of the gap energy bands vs k„ for the
ideal surface along symmetry lines in the SBZ. The

t m bulk energy levels (valence bands and con-
d t bands)- are represented as striped regions.
%here the a band merges into the conduction band and
exists as a surface resonance, it is indicated by a
dashed line. Energy is measured from the valence-
and maximum. ,The Fermi energy Ez, given by a dashed
line is found to have a value of 0.21 eV.

(a) (b)

TABLE II. Comparison of the surface band energies
of the ideal surface at @~I

= I', J, &, anK and J' obtained in
this calculati (KLC) and by Appelbaum, Baraff, and
Hamann (ABH). All energies are in eV arid referericed
to the valence-band maximum.

b band 0.352
—0.02

0.204 —0.415 —0.312 KLC
—0.42 . —1.13 —1.00 ABH

2.393
1.86

0.107 —0.322
—0.50 —0.93

2.89
2.23

KLC
ABH

,
. in Fig. 1(b). As discussed in Ref. 6, these two

bands correspond to the symmetric and the anti-
symmetric combination of the two broken-bond
orbitals. The band arising from the symmetr'zc
combination, denoted by b in Fig. 3, is generally
lower in energy than the band associated with the
antisymmetric combination, deno y

~ ~ ted b a except
a ongl g the symmetry line between J to K, where the

='0.2 eV thea band lies slightly below (maximum ='0.2 eV) e
b d. The a band merges into the conduction

band along the symmetry line between J an
d l I' and J near I". The bandwidth of the

two bands is about 1 eV for the b band and a ou
eV for the a band. In Table II, we compare the en-

K ander gies of the two surface bands at kI~ = I', J, K,
J' with the values of Ref. 6. Although our values

6 b 0.3-differ from the energies quoted by Ref. y
0.7 eV the overall behavior of the two surface
bands along the chosen lines agrees reasonably
well with the curves obtained by Ref. 6.

In Fig. 4(a) a charge-density contour map for a
b band state at kI~ =K is displayed. The plotting
plane is perpendicular to the surface passing
through a row of broken bonds. One finds a typical
dangling bond state directed into the vacuum at a

FIG. 4. Charge-density contour plots for two gap
surface states at K. Atomic positions and atomic
layers are in ica e' d ted by dots and heavy lines, respec-
tively. The plotting area starts in the vacuum and ex-
tends about 3~- atomic layers into the crystals- passing
through a row of broken bonds. Contours are nor-
malized to one electron per unit cell. Successive con-
tours are separa et d by one tenth of the maximum value
of the charge density given in each plot. ,

right angle to the surface with a, node just below
the surface atom. Most of the charge (70%) is
concentrated above the surface. The state decays
very quickly into the bulk, the charge is practica-
ly confined to the first two surface layers.

In Fig. 4(b) the charge-density distribution of an
a band state at k~I =K is plotted. The contour
plane is the same as ~n Fig. a . It is -like and
forms a kind of an electronic bridge between two
surface atoms. It is even more' localized at the
surface than the corresponding b-band state. The
larger width of this band stems from the overlap
of the p„orbitals and gives rise to an overlap in

energy between the a band and b band, thus making
the surface at least semimetallic. The redistribu-
tion of the electrons from the broken bonds has a
considerable effect; on the screening of the ionic
potentials at the surface thus giving rise to back-
bond surface states. These states are relatively
weakly split from the bulk bands and mainly exist
in the gap regions of the valence bands. A charge-
density contour plot of a typical back-bond state
found at K at an energy of —6.90 eV from the val-
ence band edge is plotted in Fig. 5. The contour
plane is normal to the surface and passes through

first and second layer. The state is highly local-
ized below the surface atoms in the first interlayer
region. An, excellent overall picture of all the sur-
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Si (001) IDEAL SURFACE

Back bond state at kII
= K

(
—~V eV)

Si (001) 1 x 1 IDEAL
1 1 I
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I I I I I I

(a) LDOS Slab Center

p I I
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(b) LDOS Surface

FIG. 5. Charge-density contour plot for a surface
back-bond state at E around -6.9 eV using the same
conventions as in Fig. 4. The plotting area passes
through a row of back bonds which are indicated by
heavy lines joining the surface atom with the two atoms
in the second atomic layer.
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face states occurring in this model is obtained by
calculating the local density of states (LDOS)

X, (F) = g, )@ nI(r))'6(Z -Z„(k~~)) d'r, (6)
X n-n.

11 i

where k11 is the wave-vector parallel to the surface,
rt is the band index, Q „ is the electronic wave

.11

function and 0; is the integration volume of a re-
gion i.

We have calculated the LDOS for a thin slab, an
interlayer spacing thick and centered around an
innermost layer and around the surface layer, re-.
spectively, using 36 points in the irreducible part
of the SBZ. The resulting histograms are display-
ed in Pigs. 6(a) and 6(b). ft can be seen from Pig.
6(a) that the LDOS in the interior of a Si slab
strongly resembles the Si bulk density of .states,
whereas the surface LDOS in Pig. 6(b) has changed
drastically reflecting. the effect of the different
surface geometry on the electronic states.

In the region of the absolute gap three peaks ap-
pear. The peak around 0 eV has less dispersion
in energy, is therefore higher and is obviously as-
sociated with the b-surface band. The two smaller
peaks between 0.5 and 2 eV are associated with a-
band surface states. In fact, the two-peak struc-
ture of the upper surface band is due to the sta-

0 I I

—12

I I I I I j11 I I

4 0 4

Energy (eV)

PEG. 6. Calculated local-density-of-states (LDOS)
curves for the 1x 1 ideal surface. The difference curve
of the local density of states (DLDOS) at the surface is
discussed in the text.

V. RESULTS FOR THE RECONSTRUCTED GEOMETRY

Whereas the influence of the Si (100) ideal sur-
face on the electronic structure is practically con-
fined to the first two surface layers, the distor-
tions from the tetrahedral bonding pattern intro-
duced by the chain model, affect, as we will see

tistics and should end up in a broad one-peak
structure centered midgap, if one includes more
k points in the calculation of the density of states.
In addition if one plots a difference curve by sub-
tracting the LDOS at the center of the slab from
the LDOS at the surface and keeps only the positive
contributions the energy regions where back-bond
surface states occur, are clearly revealed [Pig.
6(c)].
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yA = 0.,(l»+I »)+PL(l2&+l4&),

y. = .(I» -I»)+V.(I2& -l4&),

Aa = o,(l»+I») -P.(l2& +l4&),

&0 = rR4(li& —l3) ) —P~(I2& —l4))

('7)

The coefficients cR;, p~ are a measure for the cou-
pling between the surface and the 'second-layer
orbitais.

The dispersion of the four bands along selected
lines in the SBZ is shown in Fig. 8. The lowest
completely occupied band, denoted bye. , merges

below, the electronic structure of the first four
surface layers. Besides the planar reconstruction
in the first two layers, the backward relaxation of
the second layer toward the bulk creates a region
between the second and third layer which has a
slightly more attractive potential than the corres-
ponding bulk region. We expect, therefore, an ac-
cumulation of charge between the second and third
layer. Clearly, the very short back bond between
a chain atom and a second-layer atom has a. poten-
tial which is more attractive than anywhere else in
the crystal and gives rise to surface states which,
in fact, lie below the bottom of the valence band.

The four broken bonds per half slab unit cell are
schematically depicted in Fig. '7. Note that the or-
bitals 1 and 2 do not lie in the same plane, but are
twisted against each other, orbital 1 pointing into
the vacuum and orbital 2 pointing toward the bulk
into a region of relatively weak potenial. The same
holds for orbital 3 and 4 since these orbitals are
obtained by rotating 1 and 2 by an angle m around
the indicated axis. These orbitals, energetically
very close to each other, combine linearly and give
rise to four-surface bands which lie in the absolute
gap.

The combination from which these ba,nds could be
derived are

I

e

0 4~ B F 8 A

+imam
a —2 g Si (001I 'SURFACE

~ ~~2 x 1 CHAIN-MODEL Y//

(o,o) (O,—'/2) (/2, —/2)

vectQr

FIG. 8. Plot of the gap energy bands vs k fl for the
2x 1 reconstructed surface along selected lines in the
SBZ.
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Surface

' ~.J

&
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into the valence b@nd only along the 0, line, where-
I

as the uppermost completely unoccupied band, de-
note'd by D, is more a surface resonance than a
real surface band, since it is very close to or lies
inside the conduction band. The Fermi energy E~
is indicated by a dashed line. We found a value of
8~ =0.9 eV from using 36 k points throughout the

/

FIG. 7. Broken bonds introduced by the chain geome-
try. Orbitals 1 and 3 belong to chain atoms and are
directed into the vacuum. Orbitals 2 and 4 belong to
the second-layer atoms and point towards the bulk.
Also indicated is the twofold rotation axis perpendi-
cular to the surface.

FIG. 9. x,y-integrated charge-density dist'ribution
along the g axis (perpendicular to the surface) and
charge-density contour plots for a gap surface state of
type A at K. The plotting areas are as indicated in
the figures. The contours are normalized to one elec-
tron per unit cell. Successive contours are again se-
parated by one-tenth of the maximum value of the charge
density given in each plot.
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B state at K
'

Surface
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tll 10
G
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Layer number

001) 2 x 1

state at K

bove surface

(b)

1)

te

Si (001) 2 x 1 B state at K 2nd/3rd layer

FIG. 10. x,y-integrated charge-density distribution
along the s axis and charge-density contour plots for a
gap surface state of type B at Z using the conventions of
Fig. 9.. The contour plane of the bottom figure is paral-
lel to the surface hal5vay between the second and third
atomic layer. The atomic positions are indicated by
open circles (second-layer atoms) and crosses (third-
layer atoms).

whole 3BZ. This value is relatively high compared
to the experimental value' of 0.2+ 0.2 eV given by
Rowe, " We believe that this is due to the proposed
geometry. The presence of two partially filled
bands makes, the surface, as in the ideal case,
semimetallic.

It is difficult to display the charge density be-
longirig to these bands in one contour plane in real
space because of the distortions in this model.

In Fig. 9, the charge density integrated along the

g, y directions is shown along an axis perpendicular
to the surface for anA state at k,~=K. Most of the
chir ge is concentrated around the second atomic
layer, a charge-density contour, map of this layer
and the surface layer shows that this is a state
derived from a linear combina, tion of all four
broken orbitals that leads to a maximum overlap.
The states of B and C type which belong to the two
partially filled bands, have again more charge in
the vicinity of the second layer than at the surface

FIG. 11. x,y-integrated charge-density distribution
along the z axis and charge-density contour plots for a
gap surface state of type g at K using the conventions of
Fig. 9. The open circles in the upper contour map refer
to the positions of the atoms in the surface.

as can be seen from the x, y-integrated charge dis-
tributions along the z axis at ks =Et (Figs. 10 and

11).
The state of J3 type is generally lower in energy

than the one Of C type, the two broken orbitals
along a chain back bond overlap, taking advantage
of the attractive region along this bond direction.
Various lobes of charge are found in the contour
maps of the surface plane and a plane parallel to it,

halfway between the second and third atomic layer
(Fig. 10). Lobe I is directed toward the third layer
and contains most of the charge, lobe II is local-
ized between the surface and the second layer, and
lobe III has its maximum above the surface.

The C-type state consists of the symmetric comb-
ination of the two broken-bond orbitals in the same
layer. Charge-density plots of a state at k(( =K are
given in Fig. 11 in the second-layer plane and in a
plane parallel to the surface halfway between the
surface and a "vacuum plane. " The j9-type states
arise from a combination of the broken orbitals
with the smallest overlap. They are mainly local-
ized above the surface (Fig. 12).

Up to now nothing has been said about the chain
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FIG. 12. Charge-density contour map of a gap surface
state at g of type D using the conventions of Fig. 9. The
plotting plane is perpendicular to the surface and paral-
lel to the y axis passing through the center of the chain
back bonds. gt does not contain any atomic sites.

FIG. 13. x,y-integrated charge-density distribution
along the g axis and charge-density contour plot for a
lower (a) and an upper (b) chain-bond state at& using
the conventions of Fig. 9. The contour plane is identi-
cal to the surface plane.

bonds and the back bonds between a chain-atom and
a nearest neighbor atom in the second layer. Since
these states can take full advantage of the attrac-
tive potential between the atoms which is very
much bulklike or even stronger, the energy of
these states is in the range of the valence band en-
ergies or lower. It should be noticed that both the
chain bonds and the back bonds are split because
of the effect of the potenial of the third layer atom
which makes one chain bond and one back-bond
combination stronger than the other. The situation
is illustrated in Figs. 13 and 14.

Various other states are found which are local-
ized in the surface region, mainly between the sec-
ond and third layer, arising from the distorted
bonds between the atoms in these layers. These
sta, tes are split away from the valence bulk states
and exist in isolated gap pockets in the valence
band region.

The energy distribution of all the surface states
is exhibited in the LDOS histograms of Fig. 15.

These histograms were obtained by using 18 points
throughout the irreducible part of the SBZ. The
uppermost diagram in Fig. .15 shows the LDQS
within a layer in the center of a Si slab; it a,gain
resembles the Si bulk density of states fairly well,
with slight differences because of the use of a
smaller number of k points and because of some
influence of the surfaces. The histogram in the
middle of Fig. 15 represents the LDOS within a
small region around a surface layer. Subtracting
the LDQS of the "bulk" layer from the surface
LIX3S and keeping only the positive contributions
gives the third histogram of Fig. 15. This histo-
gram reveals the energy distribution of the prom™
inent surface states. There are roughly four re-
gions, where states occur which are localized
within the first four surface layers: Region A re-
fers to the chain back-bond states, where obviously
some of them lie below the bulk valence band; re-
gion B refers to states localized between the sec-
ond and third layer, their contribution to the
surface LDOS is therefore very small; region C
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FIG. 14. x,y-integrated charge-density distribution
along the z axis and charge-density contour plots fo'r
a lower and an upper chain back-bond state at K using
the conventions of Fig. 9. The contour plane is parallel
to the surface halfway between the surface and the
second layer. The open circles mark the positions of
the surface atoms, the crosses refer to the positions of
the second-layer atoms.

I

/

refers to the chain bonds; and region D, which
falls within the absolute gap, refers to the broken-
bond surface states. The Fermi energy is indicat-
ed by a dashed line.

The shortcomings of the chain model are twofold.
First, broken bonds are formed which are asso-
ciated with atoms in different layers and which
cannot take advantage of an attractive bonding po-
tential. They give rise to surface states which lie
in the energy gap between valence bands and con-
duction bands and overlap eriergetically, thus mak-
ing the surface semimetallic. Second, the chain
bond states occur at energies around -5 eV below
the bottom of the valence band edge (region C) and
cause a peak in the surface LDOS, whereas the
corresponding photoemission spectrum shows a dip
in this energy range (Fig. 15).

These results are quite insensitive to the unphys-
ically short-chain back bond of the model used.

FIG. 15. Calculated LDOS curves for the 2x 1 recon-
structed surface using the chain geometry. Also given
in the surface LDOS histogram is the photoelectron den-
sity from Ref. 19. For the DLDOS at the surface see
text. The regions A, B,C, D should not be confused with
the surface band labels.

Jona et al. '~ proposed, as a modification of their
model, to increase the first interlayer distance in
order to stretch the chain back bond, and to further
decrease the second interlayer distance to obtain
a bulk length for the nearest-neighbor bonds be-
tween the second and third layer. This would actu-

10 !

LDOS Surface
Modified chain-model

s.
0 6—
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Flo. 16. calculated LDOS curve at the surface of the
modified chain model (see text).
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ally bring the bulk closer to the second layer and
provide more bonding potential for the second-
layer broken bond„on the other hand, the surface
layer would be more decoupled from the bulk with
even less bonding strength for the surface broken
bond. Furthermore, the splitting between the chain
states should be smaller. Except for the chain
back-bond states we therefore do not expect a dra-
matic change in the surface I DOS. In fact, a self-
consistent calculation carried out for this modifi-
cation again yields a semimetallic surface and a
peak in the surface I.DOS around -5 eV, as can be
seen from Fig. 16.

The disagreement between our calculated surface
density of states and the experimental data is re-
lated to the basic geometrical feature of this mo-
del, namely, the formation of atomic zig-zag
chains in the surface plane, and not to the overall
assumed geometry. This can clearly be seen if one
plots the charge density of the C-type states of Fig.
15 in real space. These states are fairly localized
along the chains and look like the charge densities
of Fig. 13. On the basis of our results on the elec-
tronic structure of this reconstruction, we believe
that the actual geometry of a clean 2x1 recon-
structed Si (001) surface is still an open question. '

VI. CONCLUSIONS

A self-consistent pseudopotenial method has been
applied to the Si (001) surface both for the ideal
and for a 2x1 reconstructed configuration found
from a recent I EED analysis by Jona et al. ' In
both cases metallic surfaces are obtained resulting
from unsaturated broken bonds.

The results for the ideal surface are consistent
with previous calculations by Appelbaum et gl. '
Additional back-bond states between the surface
and the second atomic layer are found and a den-
sity-of-states analysis is presented.

Upon reconstruction a complete discussion of all
the surface states is given in terms of charge-den-
sity plots and I DOS histograms. It is shown that
the formation of atomic chains in the surface plane
which characterizes the reconstruction leads to a
I DOS near the surface which disagrees with photo-
emission experiments.
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