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Phase rule for the semiconductor-vacuum interfacee
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An expression for the integrated surface charge of a semiconductor-vacuum interface is derived in terms of
phase shifts in the one-electron approximation. For a semi-infinite one-dimensional Kronig-Penney model the
charge is quantized and obeys a simple phase rule involving the surface charge and the number of surface
states split from the band.

I. INTRODUCTION

The electronic-charge density in the surface re-
gion of a semiconductor is known to depart signi-
ficantly from its bulk values. Because of its re-
levance to most surface effects and the surface
geometry itself, an important theoretical effort
has been made in the past few years to develop
models and computational techniques for deter-
mining electron energies and density contours
near the surface. ' Also, the effect in the bulk of
surface-charge deformation has been studied.
Heine first showed that to order ~ ' a defect in a
one-dimensional ring of & atoms does not affect
the mean-charge density of a full band far away
from the defect. ' Kleinman later extended this
result to the case of a semiconductor slab with a
twofold rotation axis normal to the surface and re-
flection symmetry through the central plane. '

In this work we explore the effect of the semi-
conductor-vacuum interface on the integrated sur-
face charge. 'In Sec. Q we derive an expression
for the integrated charge in terms only of phase
shifts. In Sec. III the one-dimensional Kronig-
Penney model is used to study the phase shifts.
This model, being unrealistic in many respects,
has been very useful in the past for understanding
surface effects."We use it here because of its
feature of being exactly solvable in the presence
of a surface. We show explicitly how the quanti-
zation of surface charge as reported by Appel-
baum and Hamann' arises in this model and others
of its kind. Finally, in Sec. IV we give a phase
rule in terms of the net surface charge and the
number of surface states split from the band. The
rule is proved exact for the one-dimensional case
and suggested as valid in three dimensions.

man' in the evaluation of the average bulk charge
for a finite semiconductor follow similar lines,
and we shall adapt in this section some of their
formula to our choice of coordinates and phases.

C ons ider a semi-infinite crystal whose pr imi-
tive translation vectors are a, b, c. a and b de-
fine a plane parallel to the surface and are normal
to c but not necessarily to each other. We use a
coordinate system with its origin in a lattice site
of the outermost plane and the z axis pointing into
the crystal, along c.' The region occupied by the
lattice is then the entire half-space z-0. If Qk is
an eigenstate of the system it obeys Schrodinger&s
equation (we use atomic units)

[--'V'+V(r)le« =E(k)e-. , (I)

where E(k) is the energy and V(r) the potential.
V(r} is periodic along an x-X plane, oscillates
along the positive z direction and tends to a cori-
stant as z - -~. We shall also assume that suffi-
ciently deep into the crystal the potential is per-
fectly periodic and invariant under inversion and
reflection on an x-S atomic plane. Qq is bounded
to the crystal and obeys the boundary condition
Q„(z =-~) =0. Let z, be a depth into the crystal
beyond which distortions in the periodic potential
can be neglected. For z

=2 '(g e' +c.c.), (2

where & is the phase shift' and c.c. stands for com-
plex conjugate. gq is an eigenstate of the infinite
crystal and in our symmetry may be written in
the form'

g& =2~'ZCp(k}[cos(k+G) r]e'

II. SURFACE CHARGE INTEGRAL

We proceed first to derive an expression for the
integrated charge near the surface. Langreth' and
Appelbaum and Blount' studied this quantity in con-
nection with the sum rule for the metal-vacuum
interface. The methods used by.Heine' and Klein-

with CG real. G is a reciprocal lattice vector and
a bar indicates a vector in the &-5 plane. We fix
normalization by imposing

2 c'-, =o,
G
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where 0 =a&&b' c is the unit-cell volume. Note
that Eq. (4}follows if the constituent Bloch states
of Eq. (3) are normalized to one in the unit cell.
Transforming Eq. (1) and using Eqs. (2)-(4) one
gets for the surface charge of state k to the left
of the plane at z =nc (see Appendix A}

1 &~
P'dr =n~ n+ — +n(k)c ek, (5)

ex (2b- age)

4& sink, c

e(k) = +dr.

Here +~ is the number of cells in the &-5 plane.
In order to get the total charge in the band under
consideration we must sum over k in the Brillouin
zone. This is trivial for the first two terms of
Eq. (5). The third term represents the Friedel
oscillations in the density and its contribution to
the band charge decreases rapidly with & except
near the origin and the zone boundary. We account
for these contributions to order + ' using the for-
mula proved in Appendix B, and get for the inte-
gral over &,

7f/C

n(k)d&, =4 &(&, 0)cos2&(0}
71 p

+& ~q —cos2~ +O ~

The quantity & can take the values +1 depending
upon the parity of the wave function. Calling &(&, 0)
=&, and e(&, v/e) = e, one may in fact write

,(r, -z )—=e,g—,,(r, z ),
A(r, —z) = e2$» ~(,(,z),

(5a}

(eb)

E E 2E {0{EEEEEEEEE25( )

(7)

where p, is the charge density of the filled banal
and the quantities in square brackets are to be
taken in general as averages over ~ at the cor-
responding values of ~,. Thi.s expression gives to
order & ' the total band-surface charge per spin
in the volume up to the &+1 atomic plane and en-
closing &~ surface cells, simply in terms of the

which follow from the symmetry of our potential,
and where &„,=~1. Summation. over ~ is then im-
mediate and we finally have from Eq. (5),

p, (r)dr =n, n+ —~ — —&(0)
1 m

d 0 2c 3c z~
PIG. 1. Semi-infinite Kronig-Penney model. The

potential step. U simulates the surface barrier.

phase shifts at &, =0 and 7{'/c. Subtracting from
this integral the corresponding expression taken
up to the &th plane and dividing through by &~ we
find that to order & ' a cell on the +th plane can
accommodate in the band up to one electron per
spin. Taking into account the charge of the ion in
the cell, this implies charge neutrality deep into
the solid, a result previously found by Kleinman. '
Equation (7) does not give much information as to
the rate at which the disturbance to the density
created by the surface heals. The reader is re-
ferred, to the work of Rehr and Kohn" and to Ref.
5 for more insight into this point.

III. ANALYSIS OF PHASE SHIFTS

V(z) = g V, 5(z —nc) +UH(d —z),
n~p

(8)

where 8 is Heaviside's unit function. Its associ-
ated band structure is entirely determined by the
delta-function strength Vp and the lattice constant

Since an isolated attractive delta function is
capable of only one bound state, there is only one
band possible for negative energies. Above this
band there is a sequence of bands of positive ener-
gies. Repulsive delta functions have no bound
states and can only form bands of positive energy.

Our purpose is to study the phase shifts at the
bottom and top of the band as we vary the surface
parameters U arid d. Phase shifts are obtained by
equating at z =d the logarithmic derivative of the
one-dimensional analog of Eq, (2) to a function de-
caying exponentially to the left. This yields

e" = —P'*/I'),

In a neutral semiconductor, the neutrality of a
bulk cell, as predicted by Eq. (7), implies that
the total surface charge, including that of the ions,
must vanish. It is tempting then to extract directly
from Eq. (7) a condition for surface-charge neu-
trality. We shall first, however, analyze the
phase shifts using the one-dimensional Kronig-
Penney (KP) model, » which allows an exact treat-
ment. . We shall find that two different cases may
OCCur.

Consider the model potential in one dimension
shown in Fig. 1. It is represented by
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I' = ——Lg
9(

J g-g and

—,'[&, cos26(0) +~, cos26(v/c)], = ——,
'

(13a)

L =[2(U —E)]~'

It is convenient to study positive and negative
energies separately. The one-dimensional version
of Eq. (7} is

nc

p~(z) dg =n +—6 — —5(0)c

+4 &, cos26 (0)+e, cos26 — y 0—1 7r 1

(1/m)[5 (n /c) —6 (0)] = i&, (i3b)

with t& an integer. Substitution in (10) then yields
a half-integer surface charge for this case.

B. Case E)0

Now we take for z &0

Q(k)e Ihc/2 sin% I el K(4 c+/ )2
/K+ Q)C

(10}
as can be shown following similar steps as for Eq.
(7). e, and e, are d'efined by the one-dimensional
analog of Eqs. (6a) and (6b).

A. CaseE(0

+sin 8
(K —k)C

& K(g+ c/2)

with /3 real and I& = (2E)' ' related to k through

coskc =cosI&c + (Vo/I&) sinKc .
wave function (14) yields

(14)

(14')

For this case we take for z ~0

g =i&(&}e-'""( ~'" ~' e"""'
2

+sin e(iq+k)c q(„ /, )

+i (L sinhqd —q coshqd) sinkc, (12)

which together with Eqs. (9) and (il') gives the
phase shift for any value of ~. We have summa-
rized the results of interest to us in Table I.
Using these results we get

TABLE I. Parity of our wave functions and phase
shifts at the band edges. Note that the latter are given
modulo 7r.

Band E'2 kc a(mod ~)

E&0

E&0
s odd

s even 0

7r/2

7r/2

7r/2

0
0

Vr/2

with /l real. q = (-2E)~' is given in terms of k by

coskc =coshqc +(V,/q) stnhqc.

One can readily verify that this last relation has
no solution for q unless V, & 0, a necessary condi-
tion for the existence of a negative energy band as
stated earlier. From Eq. (11), and apart from a
real factor, one gets

V,L1'= (Vo+L)coshqd — " +q sinhqd sinhqc
7j

VII' = (Vo+I ) cosl&d — ' —I& sin&d sinKc
K

I

+i (L sinzd —I& cosj&d) sinkc, (16)
I

and the corresponding limit values of the phase
shift have been entered in Table I. Note that we
have labeled bands starting from s =1 for the low-
est, s =2 for the next up, and so forth. From
these results we obtain Eq. (13a) once again and
Eq. (13b) gets replaced by

1 1—6 — —5 (0) = l& +2,
'll C

(i6)

with 1& an integer. Substituting in Eq. (10) we find
for this case that the surface charge per spin is an
integer.

The integers L& and f& defined in Eqs. (13b) and
(16) can be simply related to the occurrence of
surface states. One can see this by taking a closer
look at the behavior of the phase shifts as a func-
tion of &. Figure 2 is a plot of the phase shift for
the negative energies band in the case V,c =-3.0
and d =-0.25c. As the height of the potential bar-
rier is increased from Uc' =6.0 to 10.0, && changes
from 1 to 0 and the band loses one state.
can occur only if & crosses the zero axis and the
condition for this is ReI ='0. With the aid of this
condition, inspection of Eq. (12) shows that as one
increases U the value of &c, for which the phase
shift vanishes moves to the right and eventually
reaches &, after which no solution is found and &&

jumps from 1 to 0. One can show further that
ReI' =0 for &c =r corresponds exactly, to the con-
dition for existence of a surface state right at the
edge of the gap xi T'he emergence of this surface
state from the band into the gap therefore explains
the loss of a state by. the band. Calling 0 the num-
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creasing function of &. When a solution moves
outside the range of allowed values of & (delimited
by vertical broken lines on our figure) the phase
shift may show a maximum or a minimum as with
the broken. curve in Fig. 3 and the top curve, re-
spectively. We have included in Fig. 4 a segment
of the tangent for d =-2.0c (broken curve) to show
that for the latter case a solution of Eq. (17b) has
just moved across the boundary to the left of al-
lowed values of &. This actually corresponds to
the emergence into the lower gap of a surface
state that has split from the bottom of the band,
and while && has decreased by one, & has jumped
one unit upwards. One can easily see that ~& is
the number of solutions of Eq. (17a) in the allowed
range of & minus the number of solutions of Eq.
(17b) to the left of this range so that for d =-1.7c,
I& =2 (v=0), and for d =-2.0c, l& ——1 (c =1).

Although we have been discussing the s =1 band,
our results remain qualitatively the same for
higher index bands that are bounded to the solid.
The same is true for other parameter values than
those chosen in our discussion both for E &&0. It
can be shown further that for -0.5c&d&0.0, l&

—-0
or 1 only, and that these are the only values that

can assume for any negative value of d.
It is apparent from Eq. (10) that the quantization

of surface charge into integer or half-integer val-
ues arises from the fact that the phase shift at the
origin and zone boundary is a multiyg of v/2. Any.
model with a center of inversion an iving rise to
an equation such as Eq. (9) will, for e ample, ex-
hibit this feature. Table I can in fact be obtained
using just these assumptions as can be readily
verified from Eq. (9) and the coincidence of the
wave function and its complex conjugate at & =0,
v/c. " The same holds true in three dimensions,
since Eq. (7) is identical in structure to Eq. (10).

IV. DISCUSSION AND PHASE RULE

The quantization of surface charge for full
bands into integer or half-integer values as de-
scribed in Sec. III for the semi-infinite KP mod-
el was found earlier by Appelbaum and Hamann in
their numerical study of the model. ' They inter-
preted it as arising from the atomic nature of the
states associateP with the case E'&0, and the mo-
lecular natur'e of those associated with E &0. Fig-
ure 5 shows these two situations. Imagine now
that the lattice is finite and the two ends terminate
as in Fig. 5(a) for a band of Z&0. If we were to
think of the & functions carrying two units of
charge each, the surface would be neutral on ac-
count of the band only, provided that ~& ——1 and all
pair of spin states are occupied. If a state has
been split from the band into the gap, then for

(a).

2c . 3cZ~

(b)

2c

FIG. 5. Shape of the electron density in the band for
the (a) E &0 case and (b) E & 0 case.

=1 —2c (Z & 0) = 21 (E &0) . (18)

For E &0, the number of surface states per spin
& can be either 0 or 1. For E &0, E is a non-ne-
gative integer and 2& —1 is the surface charge per
surface atom in the band. If l =0, a surface state
must be present, whereas for && 0 there may or
may not be a surface state in the gap.

We have no general proof that the above phase
rule holds in three dimensions as it stands. As
pointed out by Appelbaum and Hamann, ' one can
expect a band to be of atomic type if the set of

charge neutrality the surface state must be doubly
occupied. For E&0, charge neutrality is attained
if I& =0, the band is full, and the surface state
singly occupied.

We have shown, however, that && can also be a
positive integer and there still be a surface state
in the upper or lower gap. This would- mean that
there are more states in the band than those re-
quired for charge neutrality and a neutral system
would have an unfilled band, and therefore a non-
neutral bulk cell. The band would bend to permit
some charge to flow to the bulk and achieve, in
the end, local bulk-charge neutrality. A self-
consistent procedure would presumably then do
away with the extra states in the band, since other-
wise the band would have metallic properties. This
need not be the case if the system is charged with
extra electrons. This extra charge would be lo-
calized at the surface and with energy below the
gap.

Gathering these results and taking into account
spih degeneracy, we can state the following phase
rule for the surface charge in a band

2 7r j. jr—5(0) +—, e cos25(0)+e cos25-
1l' C 1 '2
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planes parallel to the surface and separated by
the normal projection of the primitive basis vec-
tors cut the center of .the charge distribution, and
of molecular type if the charge is concentrated be-
tween these planes. These correspond to the cases
E &0 and E &0, respectively. One can then con-
jecture the validity of Eq. (18) on the basis of
charge neutrality setting & =0 and for crystals with
the appropriate symmetry so that Eq. (7) is obeyed.
Bands of atomic nature do not allow extra electrons
to be accommodated within the band or its asso-
ciated surface states. Bands of molecular nature
could have a foreign electron fill the available sur-
face state at a surface atom, a picture used in
models of chemisorption. ' The filled state could
in this case become a resonant state of the band
without affecting bulk neutrality. The case L& 0,
corresponding to having more than one extra elec-
tron per surface atom, would imply large local
electric fields near the surface, thus calling for a
different treatment than the simple one-electron
theory used here.

Bk» Bk» Bk»

We take a volume integral in the range nc~z +nc
+c and use Green's theorem and the symmetry of
({) to get

BE z= nc+c
(I)H dr = a (g, g) dA, „,

» nc-=-z-nc+c

(
2i))HH

nc
b. (P, g) dA.

Replacing Eq. (A2) in Eq. (A1), using Eq. (AS) and
the above result Eq. (5) follows after some rear-
rangement and the aid of Eq. (3).

APPENDIX B

where we have used Eq. (4) andA =n~~a&&b~ is the
area in the &-X plane. The second term in Eq. (A2)
is simplified if we note that (I) is a solution of Eq.
(1) for z &so. Again, from Eq. (1)
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APPENDIX A

Consider the integral

f(~ )
&H i H (k H di

sinkc

g(y)&2in))C ~
where f(&) is regular and

(B1)

Following Ref. 3 one easily gets from Eq. (1),
on account of the symmetry of the wave function
and the boundary condition at z =-,

Q'dr = b, (Q, (I)) dS,
BE2—
Bk,

(A1)
=nc

where

Bp, B v B2p.
b, (i),, v) = ——v

Bk, Bz BzB&,
'

One further has from Eq. (3) and the reality of
CG,

8(i)+ 8( 8&
b, ((I) (t)) =i g —g*—nc+

Bz Bz Bk,

+—,'[b, (P, g)e" +c.c.]. (A2)

The factor in the first term in the right-hand side
is proportional to the current flowing in the z di-
rection, and its surface integral yields'4

H(k) = H (k)H ——k),
f(k) v

sin&c c

with H(&) Heaviside's unit function. "g(&) has sin-
gularities at & =0 and v/c. Near these points,

g(k) = „H(k) +f'(0)H(k)+0 (k), k-0f0

H{k)=
k H( k) -f'()H(———k-)

+0 ——k' kc- g.c

We have isolated the singularities in both cases
with a remainder whose first derivative is abso-
lutely integrable in an interval containing the cor-
responding singularity. We can then apply a well-
known theorem of Fourier analysis which to order
n ' allows to express Eq. (Bl) in terms of the
Fourier transforms of the singular term. " This
leads to the result

Bg+ 8$ BE '(k 2 n~ BEi ({t —gk dS =2A ~CG ——2—
=nc Bz Bz Bk» G c Bk»

(As)
I =—2 0 — — +0— (B2)
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