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Valence-band Auger line shapes for Si surfaces: Simplified theory
and corrected numerical results*
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A reduced version of the independent-electron theory of Auger line shapes is given that takes advantage'of
the general smallness of those components of a solid's local density of states (LDOS) matrix which are off-
diagonal in angular momentum. Thus we present approximate formulae which relate the valence-band Auger
line shapes of a solid simply to its angular-momentum projected LDOS near a surface. Using these simplified
formulae, we have located and corrected a number of numerical errors in our previous calculations of the
Auger line shapes of Si. %'e present corrected results h'ere, showing that the independent-electron theory,
coupled with the use of atomic Auger matrix elements for Si, actually predicts too large a probability of
L»M, M» decay relative to that for L»M»M» decay to give good agreement with measured Si L» VV
Auger line shapes. Possible reasons for the experimental smallness of the L»M, M» Auger decay rate are
discussed. The Si L,L23 V Coster-Kronig line is also recalculated and shown to be in correspondence with the
simplified theory of Auger transitions.

In a recent paper, ' we have, with K. C. Pandey,
presented numerical results for the valence-band
Auger lines shapes of clean, ideal Si surfaces. In
the course of generalizing our computer codes to
permit similar calculations for more complicated
surfaces, we have, however, uncovered a number
of computation errors in our earlier work.
The discovery of these errors raises a question
which is important in its own right, namely, how
are we to decide when the results of the rather
complicated FORTRAN program written to evalu-
ate Eqs. (2.15) and (2;25) of Ref. 1 are sensible;
or more specifically, how can we develop a simple
approximation to the line-shape theory of Ref. 1
which preserves the most important qualitative
features of the full theory's predictions and there-
by makes it easier to understand what underlies

/

these features. The present note is accordingly
intended to fulfill two purposes. First, it is in the
nature of an erratum; i.e. , we present corrected
numerical results for the L. .VV and L, L, ,V
Auger lines of Si surfaces. Second, it encom-
passes the development of a reduced version of the
line-shape theory of Ref. 1, in which we take ad-
vantage of the fact that in general the diagonal
components of the occupied local density-of-states
matrix F~ z. (E,Z) [see Ref. 1, Eq. (2.16)] are
considerably larger than the off-diagonal ones.
This reduced line-shape theory points to a rather

I

simple way of parametrizing Auger line-shape
data. It also enables us to show that our corrected
computer codes are now giving reasonable results.

The discussion which follows is divided into two
parts, the first concerning the L2, VV transition
and the second, the L, L, ,V Coster-Kronig decays.
For the L, ,VV case we show that, to quite an ac-

curate approximation, the theoretical line shapes
are simply linear combinations of folds of the s-
like and p-like local densities of states (LDOS's)
on the Si atoms near a surface. With matrix ele-
ments calculated using atomic wave functions, the
contributions of the cross-fold of the s- and P-like
LDOS's turn out to be too large by a factor at least
-2 to give good agreement with experiment, con-
trary to our earlier finding. ' We are therefore led
to discuss the question of why these contributions
might be smaller if we used Wannier rather than
atomic orbitals to calculate Auger matrix ele-
ments.

In the case of the L, L, ,V lines we show that
again to a good approximation the theoretical line
shape is a linear combination of contributions
from the s- and P-like DOS's. Although we do
present corrected numerical results here too, our
qualitative conclusions concerning the comparison
of theory and experiment are the same as they
were in Ref. 1:

(i) The atomically calculated matrix elements
overestimate the contribution of s electrons .to the
L, L, ,V line shapes considerably; the matrix ele-
ments involving 3s electrons are a factor -2.5 too
large relative to those involving 3P electrons.

(ii) For t,he Si(111) surface the predicted line
shape is too narrow by ~1 eV, as one can see by
convolving the Si DOS and a Lorentzian of width
-1 eV, which is a reasonable guess' for the width
of the Si 2s level, and comparing it to the data.

(iii) For the Si(100) surface our model, which
does not incorporate the observed 2 && 1 reconstruc-
tion, shows substantial contributions due to back-
and dangling-bond surface states. These features
are not present in the data, presumably because
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they are removed when the 2 && 1 reconstruction
occur s.

Si~lll~ [) 3VV
I

e* ~

69 89 E(eV)

FIG. 1. Comparison of theoretical L2, 3 VV Auger line
shapes for @n ideal Si(111) surface, and data of Houston
et aE. (Hef. 3), solid curves. The theoretical (dotted) .

curve of (c) corresponds to the use of the atomically cal-
culated matrix elements and phase shifts, given in Ta-
ble I. The theoretical (dotted) curves (a) and (b) corre-
spond to the use of the same atomic parameters except
that the matrix element 6lo(0110) is multiplied by 1/v 3
in the curve (a) and 1/v 2 in curve (b). For all the theo-
retical curves the inelastic mean free path was taken to
be 7 A.

L2 3 VV LINES

The most significant error we have discovered
is for this case. Due to faulty computer logic, the
contributions of Auger decays involving one va-
lence s electron and one valence p electron were
deemphasized, ironically leading to excellent'
agreement with the data of Houston, Lagally, and
Moore Now, as is shown in Fig. 1, we find that
ratio of the radial matrix elements 610(1111)and
(R, (0110) [Ref. 1, Eq. (3.6)], which represent, re-
spectively, the most important amplitudes for de-
cays involving two 3P electrons and one 3P and
one 3s electron, is too small by a factor ~1.4 to
give good agreement with the data. We must
therefore seek to understand why the calculation
of this ratio using atomic wave functions underes-
timates its value. This question is discussed fur-
ther below. First we wish to present a reduced

version of the line-shape theory of Ref. 1, that
shows that the ratio 6t, (1111)/(R,(0110) is in fact
the crucial quantity and also shows that our pres-
ent compute. r results are reasonable.

To begin we recall Eq. (2.15) of Ref. 1,'

1'(E~, Z) =

L], L2~ Lj' L2

d(d F~ ~, (Eg —(0, Z)

x F«, (E,+ e, Z)

fSg = dv f(E —&u)g (E,+—~) .

Noting the identity,

f g =gf, -
we then rewrite Eq. (1) in the form

x Wq ~, q q, (Ey, Z),

which expresses the partial width I'(E&, Z) for the
Auger decay of a core hole of energy E, in an atom at
depth Z in terms of the local, occupied density-of-
statesmatrix Fz z.(E,Z), where the angular-mo-
mentumindexI, = (l,m), andwhere Wz ~, ~ ~, is
a rather complicated expression involving Auger
matrix elements and geometric factors [cf. , Ref.
1, Eq. (2.25)].

The main problem in analyzing Eq. (1) is that
there are many terms in the sum, and most of
them involve off-diagonal components of Fz, r, (E,Z)
which are not quantities for which one has much
intuition. However, as is seen in Fig. 2, the only
off-diagonal component of F~ z, (E, Z) which can be
nonzero for Si(111), given the high degree of sym-
metry of this surface, is small in magnitude com-
pared to the diagonal components despite the fact
that sP' bonding is highly nonspherical. This re-
sult follows from the fact that the sP' bonds in Si
are largely mixtures of s and P orbitals from dif-
ferent bands. Only for surface bands, which are
narrow in energy and which tend to be located in
small regions of the surface Brillouin zone should
one thus expect substantia'l values of off-diagonal
F~ ~, components.

The generality of the smallness of the off-diag-
onal F~ ~, 's, coupled with the fact that, while the
diagonal components of F~ ~, are necessarily real
and positive, the off-diagonal ones are complex
(and should therefore contribute terms to Auger
line shapes which tend to cancel because of phase
randomness), permits us to reduce Eq. (1) to a
much simpler though still fairly accurate form.
We proceed by defining

p (E, Z) =F (E, Z)
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~0, 0},L+1, 0) L=L'g1. W)

P ~F„„,(E, Z) fdx exp(—Z/Xx}
z

off-diagonal I' 's and are therefore quite unimpor-
tant. In order to see why most of the terms in Eq.
(5) that are linear in FL. L„, L' CL" vanish, note
that the quantity WL, L, L, L,.(E&, Z) [Ref. 1, Eq.
(2.25)] is a sum of products of Auger matrix ele-
ments of the form

L=L'+0, 0)

I, I

-15 -10 -5

L=L+1, 0)

I I

-15 -10

M . M* (6)lf, mfa l& m&; Ll, L2 lf2 mf' l~, m], L1' L2

The quantum number m, represents the orientation
of the an. gular momentum of the decaying hole and,
thus is the same in both the M and the M* factors.
The quantum number mf represents the orientation
of the final Auger electron momentum. It is the
same in both M and M* because we assume that
Auger electrons are collected over all 2~ of azi-
muth angles. Finally if we are looking at terms in
which L, = L,' then by def inition rn, = rn,'. Thus
since the M's are atomic matrix elements: i.e. ,
they are calculated for a central potential, con-
servation of angular momentum requires that
m2= m2'. Moreover this same argument applies to
terms in 8'of the form

Ej,eV)

FIG. 2. Comparison of the magnitudes of the various
components of the local-density-of-states matrix of a
Si(ill) surface. Each curve is labelled above by I
= (E, m) and I '= (l', m') and represents the quantity,

f

I &L,L {E.Z, )l dxexp{—Z,./))xl,

versus energy E, where Z; is the depth of the jth layer
and A, is the inelastic mean free path, taken to equal 7 A.
The only off-diagonal I'L L, which is nonzero for Si(111)
is E(p p) (f p) because this surface has a threefold ro-
tation axis and three mirror planes. [For Si(100),

(f f ) (f f ) is al s o nonvanishing and for Si (110), none
of the EL L, vanishes identically. ] The energies on the
x axis are measured from the valence-band maximum.
All curves are drawn to the 'same scale.

M . . M*
lf1, mf-, ll, mf Ll L2 lf2'™f'l~mf;L2 Ll ' (7)

Having concluded that in the second term of Eq.
(5) only terms for which m'=m" survive, it is ob-
vious that for s-P band materials, the only off-
diagonal I L, L„'s which contribute are E&p p) (1 p)
and F(l p) (p p) which moreover are the complex
conjugates of one another. ' [The argument is that
in the set of possible L's, viz. , f(0, 0), (1, 1), (1,0),
(1, -1~)] the only different elements having the same
m are (0, 0) and (1, 0).] Thus Eq. (5) may be ap-
proximated simply by

I

r(z, , z)= p p,~p, , w, .. ., (E, z)
L, L'

+ 4R Q pL (0, 0), ((,0)
L

r(E, , z)= p p, ep, , w. .., ,, (E,, Z)
L, L'

+ Q 2 pLSFL, L„WL L L, L„(E~,Z)

L, L, (0, 0), (1, )( 0fz)

+ O(FL, L„,L' aL") . (8)

L, L', L"
LI g LII

Ll, Ll, L2, L2

Ll e L21 Ll ~ L2

Il, I l L2 I2

X WL L L L (Ey& Z) (5)

The interesting feature of Eq„(5) is that most of
the terms in the second summation on the right-
hand side are forced to vanish via angular-momen-
tum selection rules. Thus the corrections to the
first term of Eq. (5) are mostly quadratic in the

At this point there are two ways to proceed.
First, we consider Auger emission in the bulk re-
gion of a solid. That is, we ignore the mean free
path' and any Z dependence in Eq. (8), and consi-
der the partial width for Auger emission at ener-
gy Ef, integrated over all 4m steradians of exit
angle. In this limit, the quantity B(f (z (Ez, Z)
[cf. Eqs. (2.23) and (2.25) of Ref. 1] takes on the
value

(2mE,/e')" '6„,,
Thus in the "bulk" limit the if's in the products of
matrix elements of Eqs. (6) and (7) must be equal
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to one another. However, if lf, = l f, and l, = l,', and
since l,. is the same in both M's, conservation of
parity requires that l, and l,' must either both be
odd or both be even. Consequently in the "bulk"
limit, we have

I, I (0 O) (i 0)( f ( 10)

and thus we expect, to quadratic order in the ratio
of off- to on-diagonal components of I', that

I bulk(E ) g p Iap ~'0 1k (E )
I, L'

Equation (11) may be evaluated straightforwardly,
providing direct insight into the question of what
contributes most heavily to a calculated Si L»VV
Auger line shape (as well as providing a useful
"reasonableness test" for a computer program).
Specifica. lly, using Eq. (9) above, as well as Eqs.
(2.25) and (3.4)-(3.6) of Ref. 1 to evaluate
W~~"'~ ~, ~, (E&), we rewrite Eq. (11) in the' form

KI"(Ez) ='Ml, '(ill 1)(P~I P~ ——g Pt, „&RP, ,
&)

+ 2[(R,'(0110)+ -', (R', (0101)—a3R, (0110)(R,(0101)]p, Sp~+ ~$, (1100)p, @ p, (12)

where the 8,„(l&l,.l, f,) are dimensionless, radial,
Auger matrix elements [see Ref. 1, Eq. (3.6) for
their definition], 6t is the Rydberg, p, = p«, &, and

p~ is defin. ed by

,~&i, m) ~

In' deriving Eq. (12) contributions involving the
radial matrix elements 6l, (2101) and (R, (2110) have
been dropped because these elements are quite
.smail in magnitude for Si (see Table I), and those
involving (R, (3111) and 6t, (1111)have been dropped
because their contributions are greatly reduced
by their associated angular integrals, i.e. , by the
factor (21c+ 1) '= 0.2 which [cf. Ref. 1, Eq. (3.5)]
accompanies them.

In order to understand the implication of Eq. (12)
roughly, let us suppose that all the p&, &

are iden-
tical. Then SI'~"' (Ez) is given approximately as a
linear combination of the self-fold of the P-like
density of states, twice the cross-fold of the s-
and P-like densities of states and the self-fold of
the s-like DOS, locally, on a Si atom in the bulk.
Consulting Table I to obtain the values of the radi-

al matrix elements, one finds the relative weights
. of these three contributions to RI" "'"(E&), to be in
the approximate proportion. 1:—,':—,'. Thus the con-
tribution of p,I3p, is greatly suppressed in
hl"'"'"(E&), and that of 2p, II p~: somewhat reduced
relative to that of p&@p~. In order to obtain an
AI'""'"(E&) curve that looks more like the Auger
data of Houston et al. ,

' one would require 6t, (111)
to be somewhat larger and/or (R', (0110) to be some-
what smaller, as noted above in connection w.ith
Fig. 1. However, for comparison with data it
wouid be better to use a theoretical expression
which includes surface effects.

We therefore proceed to extend our reduction of
the full formula for I'(E&, Z) to the case of emis-
sion from surface atoms. In this case the l&'s of
the products of matrix elements in W~ ~ &», &, »
are not required to be equal and thus one may not
a Priori drop the second term on the right-hand
side of Eq. (8). One may still, however, take ad-
vantage of the fact that the radial matrix elements
6l, (2101), and those for which v=2, contribute
little to I (Ef, Z). Using this fact we can write Eq.
(8) more explicitly as

TABLE I. Radial matrix elements for Si I.p 3V V Auger decays. These numbers differ from those in Ref. 1, Table
II(a), because they were calculated on a finer mesh of points and also because a sign error has been corrected fo'r the
elements go(0110), Q,~(0101), &R~(2101), and g~(2101).

E (eV) g~ (1100) g o(0110) g, & (0101) gg (2101) gp(2110) g, (3111) 6lo(1111) @g(1111)

85
95

105
115

0.582 x 10 ~

0.625
0.659
0.684

0.785 x 10 ~

0.770
0.758
0.743

0.596 x 10 —0.074 x 10
0.613 -0.038
0.628 -0.016
0.637 -0.006

0.233 x 10
-0.151
-0.087
—0.042

1.046 x 10
0.948
0.849
0.761

0.803 x 10 0.416 x 10
0.788 0.457
0.773 0.491
0.757 0.518
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III'(E&, Z) = g p&, , &8p&, ,&B„&R'(1111)(2—5. )
m] ~ m2

+ Rp, ttp B„,(tR', (0110)+—'tft', (0101)—M, (0110)tR,(0101)]+0,ttP, (
—Q B„)tR,'(1100)

mf

+ B„,Re(e" "1 "o&E(0» „,&) 8 p,(W»(1100)[&R,(0110)+ Mt, (0101)g

+ Re(e ""1 "0&F&0 0&&, o&)tag p&, &(4(R0(1111)[&R0(0110)(l-z&&,)+ MB, (0101)(&& 0 —z))J

(14)

Here the B», are defined by'

(2l, + 1)(2l, + 1)(I, —m)! (lz —m)!
(I, +»&)!(I, + m)! dxP, (y(x))P& (y(x))e z

where X is the mean free path, ' where

y(x) —= [(Eix'+ V,)/(Eq+ V,)]'i',
with V, equal to the inner potential, and where
P, (y) is an associated I egendre polynomial. Also
the phase p, is that corresponding to the large
distance behavior of the lth partial wave in the
final Auger electron wave function, and i:s de-
fined in Eq. (3.4) of Ref. 1.

Note that in Eq. (14), the first three terms are
quite similar to the three corresponding terms in

Eq. (12) for hI'""'"(E&).' The magnitude of the last
term must be evaluated numerically in order to
see how reasonable it is to think of the measured
hI'(E) as being simply a linear combination of
folds of the p($ ).

The results of evaluating Eq. (14) numerically
for Si(ill) are shown in Fig. 3, where they are
broken down into the contribution. s of the various
p~ pl. , and p~(3E(o o) (]p) and are also compared
to the results of the full, corrected line-shape
calculation. Note first that the full and approxi-
mate calculations of the L, ,VV Auger line shape
are in excellent agreement, lending credence both
to the correctness of our present computer code,
as well as to the validity of the approximations
underlying Eq. (14). Note also that the contribu-
tions of the folds other than p(, )(Ip(y ) and

2p, @p~ are quite small and thus that the nature of
the theoretical line shape is principally governed
by &R0(1111) and by the largest matrix element in-
volving a 3s and 3P electron, &Ro(0110).'0 If the
independent-electron theory is to describe the
Si(111)L, ,VV Auger line shape, then, as is seen
in Fig. 1, i;he ratio &R,(0110)/&R, (1111)must be
smaller by a factor of -0.6 (or smaller yet, cf.
Fig. 4) than its value calculated using atomic,
Herman- Skillman" orbitals.

It must be borne in mind, however, that for an
atom in the same row of the periodic table as Si,
namely Ar, the Auger matrix elements calculated

using Herman- Skillman orbitals lead to excellent
agreement with the measured intensities of the
various LMM Auger lines. " Thus we are faced
with explaining why the location of a Si atom in a
solid should lead to a significant change in the all-
important quantity &R,(0110)/&R, (1111). And to that
end, we conclude this section with a brief discus-
sion of an Auger matrix element calculation. The

~t r ~
re r ~ ~ r ~ ~ r 0 ~trrr

69 79 89 V(eV)

FIG. 3. Lower curves: Comparison of line shapes cal-
culated using the simplified expression for the Si(ill)
I.&, 3VV transition, Eq. (14} (solid curve), and the fuQ
theory (dotted curve}. Upper curves: Breakdown of con-
tributions to the simplified model for the Auger line
shapes (solid curve). Contributions due to (a) p(& m)

~(p, m')& (b} !()s j()p & (c) I')s~s and (d) +(o (j) (f p)S p(g m)
are shown as dotted curves. For all the theoretical
curves we used X=7 A.
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S i ( 1 1 ]. ) I
p 3V V

I

79

FIG. 4. Comparison of Si(111)L2, 3UU data (solid
curve), Ref. 3, with the theoretically calculated cur-
rent coming only from the p, ~~(3p&&~. ) terms of Eq.
(14). This comparison indicates that experimentally
the decay rate for processes involving other than two
valence 3p electrons is small.

first point to note is that contributions to v=0
radial Auger matrix elements come strictly from
the core regions of Si atoms. Specifically note
[cf. Ref. 1, Eq. (8.6)] that

approaches zero. Consequently. the first term of
Eq. (17) also only contributes for r, and r, &a, .

These facts combine to imply that all contribu-
tions to the matrix elements 6to(lzl, l, l, ) come
from within the radius of the core orbital (R~, (r),
which in the specific case of the Si 2p Auger de-
cBy is -0.2 A, . compared to a nearest-neighbor '

distance in Si of 2.35 A. In order to understand
how the ratio (R,(0110)/(R,(llll) is affected by the
fact that a Si atom is in a solid, it is therefore
necessary to ask how the valence and continuum
orbitals of the Si atom are affected within 0.2 A
of the nucleus —i.e. , the behavior of these wave
functions in the interstitial regions is irrelevant,
except insofar as it determines the wave function
normalization. One possibility, suggested by this
argument, is that since the atomic 3p orbital of
Si is larger than the 3s orbital, the former will be
more compressed when a Si-atom resides in a
solid, pushing up its normalization near the core.
However,

'
the wave functions used in our calcula-

tion of Auger matrix elements correspond to a Si
atom which contains a 2P hole. Tbus the 3P and
3s orbitals are already quite small compared to
their sizes for neutral Si; for example -60% of
the SP orbital normalization, and 75% of that for
the 3s, is found within a sphere about the nucleus
whose radius equals & the bulk Si nearest-neighbor
distance. Consequently the differential renormal-
ization of the Si' 3s and 3P wav'e functions in the
solid does not appear to be a large enough effect
to explain the necessary decrease in the magnitude
of the. ratio (R, (0110)/(R, (1111). The actual source
of the observed magnitude of this ratio is thus
still a matter for investigation.

1.
+ dr, —i((, (r,)t((, (r,)),x

(17)

where F~&(p&r, )/(wp&)'~' is a normalized continuum
radial wave function [with Pz= (2mE~/5')' '] and
where the (R, (r) are atomic bound-state radial
wave functions. In Eq. (17) it is obvious that in
the last term no contributions come from the re-
gion of space r, or r, &a„where a, is the radius
of the core orbital (R, , (r). Moreover, since @=0,
the orbital angular momenta of stateg 1 andi must
be equal [i.e. , l, =l„as is evidently the case in
(R,(1111)and (R,(0110)]; thus the radial wave func-
tions (R) (r, ) and (R~.(r,) are necessarily ortho-
gonal, and as x, becomes &a„ the integral

\

L,L, ,V LINES

Here again our earlier Auger line-shape theory'
can be presented in a more transparent form. We
start from the exact formula, Eq. (2.29) of Ref. 1,

I

hl" (Ey, Z)=2 Q F~ ~.(Ey E, , +E„Z)—
S, I.', mc.

where the indices c and c' refer, respectively, to
the lower (2s) and upper (2P) core levels. The im-
portant feature of Eq. (18) is that W is diagonal in
its first two subscripts, reflecting the fact that we
must sum the partial widths for the transitions in-
volving the 2P orbitals of different magnetic quan-
tum number. " As a consequence, following argu-
ments identical to those made in the previous sec-
tion, one finds that m and m' in Eq. (18) must be
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equal, and therefore that the only off-diagonal
component of F~ z, (E, Z) to contribute to r(E&, Z)
is F&, , & &„,&(E, Z). Thus Eq. (18) can be rewritten
in the exact form

@r(E„Z)=2 g p, W. , . ..(E„Z)
L1mc 6

+ (00) (10) JF c' cP

mc'

. (...(. ( ..((BE Z)]) ((0)

where p~= F—~~(E& E—,, +E,, Z). We anticipate (cf.
Fig. 2) that the first term in Eq. (19) will domi-
nate, in which case the I,L, 3V line shape will be
approximately just a linear combination of the an-
gular momentum projected components of the Si
local state density.

The W's in Eq. (19) are easy to calculate exactly
(see Appendix for the exact results). However,
since for Si the radial matrix elements &R, (201zl„)
and &R, (201~1~) are small compared to &R, (001+1~)
and &R, (001„,lz) (cf. Ref. 1, Table II), we may ig-
nore the former elements to lowest order, thereby
finding

)11'(B(Z) = 16((R p, ( Q B, , )
(0('(1001)( —',0(,'(1010)—B( (1001)$1,(1D10)]

my-1
'(

+ ', p~B. ..[&R', (001 lz~) &R+,'(001~1~)—&R, (001~1„)&R,(001„1~)]

+ 2 Re[e""o "&F«» &, »(E&, Z)]B, »[MB,(1001)&R,(001„1~)

+ '
&R, (1010)&R„(001~1~)—-'&R, (1001)&R,(001z1~) '

&R, (1010)&R,(001„1z)] (20)

By virtue of the definitions of the B„„,and of
the P& (y) it is clear that

1

000 Q l, lpmy'
my =-1

Thus to the extent that the last term of Eq. (20) is
small, we have

Ar(Ey, Z) = 16&]RB...(p, [3&R',(1001)+Mg', (1010)

(21)

-&R,(1001)&R, (1010)]

+ -' p~[&R', (001~1~)+ &R', (001„1~)

—&R, (001z 1„)&R, (001~1~)]] . (22)

Looking back at Fig. 2, one notes that

~
F&, ,&, »&(EI, Z)

~

is quite small for the Si(111)
1 && 1 surface except at the energy of the dangling
bond (where substantiai mixing of s-like and I = 1,
m = 0 orbitals is necessary to produce the direction-
ality of that bond). Thus, except at the dangling
bond energy, the neglect of the last term of Eq.
(20) turns out to be accurate to within a few per-
cent. At the dangling bond energy the error in-
curred by neglecting the E(p p) (1 p) contribution in

Eq. (20) is more like 30%. However since there is
little evidence that on a real Si(111) surface a
dangling bond state exists in the gap, it is reason-
able to ignore the quantitative inaccuracy of Eq.
(22) at the dangling bond energy.

If one thus assumes the validity of Eq. (22), a
reasonable procedure to follow in analyzing Si(111)
L, I-2 3V Auger l.ine-shape data is to attempt to fit
the experimental line shape with a linear combina-

I

tion of the calculated partial densities of states,
thereby determining the ratio

3&R', (1001)+ W,'(1010) &R, (1001)&R,(1010)
—' [&R,'(001~1„)+&R,'(001„1z)—&R, (001z1„)&R,(001„1~)]

(23)

It is then for the theorist to explain the experi-
mental value of this quantity.

In the upper panel of Fig. 5, a comparison of
Si(111)I.,I, ,V data' is shown with theoretical
curves actually calculated using the full formula
for hr(E&, Z), Eq. (19) [which as explained is little
different from what one obtains using Eq. (22)],
and folded with a Lorentzian of width 0.8 eV to ac-
count roughly for the lifetime broadening of the
Si 2s state. ' The matrix elements &Ro(1001) and

&R, (1010) in the theoretical curve have each been
reduced by a factor, 1j2.5, from their atomically
calculated values in order to make the highest and
lowest ener'gy peaks in the theory agree in relative
intensity with the data. As was discussed in Ref.
1, at present one does not know what physics is
responsible for this large reduction in the matrix
elements for 3s electrons. And moreover, we do
not understand at present, why the experimental
curve is as broad as it is. Note in the lower panel
of Fig. 5 that if the theoretical curve is folded with
a Lorentzian of 2-eV width, then the agreement
between theory and experiment is excellent, apart
from the fact that the middle experimental peak
corresponds to a slight dip in the theoretical curve.

Similar results are shown for the Si(001) 1 x 1
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Si(111) L L V

Si&00~) L L
1 2, 3

35 E(eV» 25 35 45 E(eV)

FIG. 5. Comparison of data (Ref. 3) for the Si(ill)
L &L2 3V line (solid curve), and theory (dotted curve).
In the upper theoretical curve the calculated results
were folded with a Lorentzian of width 0.8 eV. In the
lower panel we used a Lorentzian width of 2.0 eV. In
both cases A. was taken to be 7 A, and the matrix ele-
ments involving 3& electrons are reduced by the factor
1/2. 5. Essentially no shift of the theoretical energy
scale was required to bring the theoretical and experi-
mental curves into alignment, contrary to what was
reported in Figs. 7—9 in Ref. 1.

FIG. 6. Comparison of data (Ref. 3) for the Si(001)
L fL2 3V line (solid curve) and theory for an unrecon-
structed Si(001) 1 x

&
surface (dotted curve). The upper

and lower theoretical curves correspond to folding with
Lorentzians of widths 0.8 eV and 2.0 eV, respectively.
The matrix elements for transitions involving 3s elec-
trons have been reduced here by the factor 1/2. 5. The
mean free path was taken to be 7 A.

CONCLUSIONS

surface in Fig. 6. In this case the use of a theore-
tical density of states based on an unreconstructed
surface leads to worse agreement with experiment
than in the (111) case. SpecificaLly, there is no
evidence in the experimental curves for either
split off back-bonding states on the low-energy
side of the L, L, ,V data or for a dangling bond
state on the high energy side.

Finally, it should be pointed out that the theory
curves in Figs. 5 and 6 incorporate corrections of
a number of minor computer code errors in our
earlier work, ' which were found through the use of
Eq. (20) as a consistency check. Also the state
ment made ia. the figure caption of Figs. 7-9 of
Ref. 1, to the effect that a 3-eV shift of the theory
curves was necessary to align them with the data,
was incorrect. Within the uncertainty of the ex-
perimental energy scale, no shift of the theory
was necessary at all.

The fact that the off-diagonal components of the
occupied local density-of-states matrix can gen-
erally be expected to be small permits one to
write simplified expressions for Auger line shapes
in terms of the angular momentum components of
the ordinary I DOS. As a consequence it is found
to be relatively easy to parametrize Auger line-
shape data in such a way as to provide the theorist
with values of Auger matrix elements and with
hole widths to try to understand. At present the
confrontation of theory-and experiment for the Si
L, L2,V and L, ,VU lines produces a number of
problems. Specifically for both these cases we
must learn why matrix elements involving emis-
sion of 3s electrons are smaller experimentally
than they are when calculated using atomic orbi-
tals. Also we need to understand why the L,L, 3V
lines are a volt; or so broader than one would ex-
pect on the basis of x-ray photoelectron spectro-
scopy measurements of 2s hole widths in the third
row of the periodic table. '
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APPENDIX

We present here the exact formula for the shape of an L, L, ,V line in an s-p band material. The formula
1s

j.

Rr(B& Z)=162B( Q B„[&R'(1001)e-'0((1010) eR, (1001)&R,(1010)]p,
my =-1

+ ', B [&R', (001~1~)+ &R', (001~1~)—&R, (001~1„)&R, (001~1~)]p~

+,' [&R'„(201~1„)+ &R,'(201~1~) —&R, (201~1„)&R, (201„1~)]

[(P(1,1) P(1 -1))( 222 221 220) P(1, 0)( 221 220)]

+ . cos((p, —(po)B,O, [&R, (201+1~)&R,(001~1„)+(R,(201~1~)&R„(001„1~)
2

9 5

—,'&R, (201 1~)&R)(001~1~) —,'&R, (201~1„)&R,(001„1~)]
~\t

x (2p&, )
—p&, , ) p(), ))+ 2 Re[e'"o ""E&0 ())(1~ p)(Ey, Z)]B100

x [BBR (1001)&R, (001~1~) + -', &R, (1010)&R, (001~1~)—-', &R, (1001)

x &R, (001~1 )
'

&R, (1010)&R,(001„1~)]

2
+2 Re(e"" "'B&, ,«, ,&), 2& .B. .+ B„),
+[—,tR, (1001)tR,(201 1 ) + 261, (1010)6(,(201 1„)——', &R,(100&)61,(201 1„)——'$&, (1010)61,(201„1 )])

For an L»VV transition in an s-p band material the exact expression contains too many terms to make
writing out the full expression practical.
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