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Self-consistent LCAO calculation of thf: electronic properties of graphite.
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Alex Zunger*
Department of Theoretical Physics and Applied Mathematics, Soreq Nuclear Research Centre, Yavne, Israel

(Received 11 August 1975)

The electronic properties of the regular graphite lattice are investigated within self-consistent LCAO (linear

combination of atomic'orbitals) scheme based as a modified extended-Huckel approximation. The band

structure and interband transition energies agree favorably with previous first-principles calculations. Good

agreement with experimental data on the density of valence states, energetic position of the lowest conduction

states, equilibrium unit-cell parameters, cohesive energy and vibration force constants, is obtained. The

McClure band parameters that were previously adjusted to 'obtain agreement with Fermi-surface data and the

electronic specific heat, are reasonably reproduced. The charge distribution and bonding characteristics of the

covalent 'graphite structure, are discussed. The same calculation scheme is used in part II of this article

(following paper) to discuss properties associated with point defects in graphite. The correlation between the

electronic. properties of the regular and point-defect-containing lattice is studied.

I. INTRODUCTION

\

In view of the accumulation of rather detailed
experimental data on the electronic properties of
both regular and point-defect containing semi-
conducting covalent solids, theoretical interest
has developed in methods that are capable of
treating these related phenomena by a unified ap-
proach. The electronic properties of point defects
in covalent solids have been treated either by
methods using the perfect-lattice periodic states
as zero-order eigenvectors' ' or by methods that
have utilized the local atomic orbitals surrounding
the defect site to construct the "defect mole-
cule."' ' The first approach, usually implemented
either by using various forms of resolvent meth-
ods' ' or by direct expansion techniques, ' does not
provide a natural way of introducing self-consis-
tency in the description of the charge rearrange-
ment accompanying the defect formation, and in
many cases requires the knowledge of the perfect-
crystal eigenstates in the Wannier representation.
Lattice distortions around the defect site are
usually not amenable to treatment by these meth-
ods owing to the large perturbation associated
with such a rearrangement. The second approach,
using the defects. local-environment representa-
tion, does not provide a correlative scheme be-
tween the eigenvalue spectrum associated with the
defect and the perfect-solid band structure, and is
deficient both in the description of the coupling
of the defect states with the band states and in
treating the relaxation of the lattice. Effective-
mass theories'" on the other hand, are not suit-
able for description of deep defect levels associa-
ted with a deep short-range potential, since in
these systems, a rather subst8, ntial part of the

Brillouin zone (BZ) and more than a single band
are i:mportant in determining the defect levels.
Truncated-crystal calculations" "solving for the
eigenvalue problem of a relatively large cluster
of atoms with a defect placed at its center, have
yielded a wealth of information regarding the
charge distribution around the defect and the re-
laxation mechanisms; however, owing to the
presence of a substantial number of dangling bonds
on the cluster's surface, significant unrealistic
charge inhomogeneity is generated in the cluster.
Except for clusters with special symmetries, "one
cannot establish a correlation between the cluster's
energy eigenvalues and those of the perfect in-
finite solid. '4

Recently, a new model has been suggested" "
for treating point defects in covalent solids. This
model is based on the representation of the one-
electron energies of the defect by the eigenvalue.
spectrum of a small Periodic cluster of atoms
treated in the I.CAO (linear combination of atomic
orbitals) representation. Undesired surface
effects are completely eliminated and a simple
correspondence between the cluster levels and
that of the infinite solid is established. Lattice
relaxations can be conveniently treated and cou-
pling of the defect states with the bulk crystal
bands at a discrete subset of points in the BZ is
automatically introduced. In the present paper
we treat the electronic structure of the perfect
lattice and in part II" (following paper) we treat
the vacancy problem in graphite using this "small-
periodic -cluster" (SPC) approach. We extend
our previous treatment of point defects in hexa-
gonal systems"" by introducing recently devel-
oped theorems ' for the mean value points in the
BZ in conjunction with the small-periodic-cluster
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approach, enabling a detailed study of self-con-
sistency effects and emphasizing the density-of-
states aspects of the problem. Both the localized
and the extended crystal states in the presence
of the vacancy are examined.

The problem of describing the electronic states
of perfect lattice and radiation-damage induced
defects in graphite, is one of great importance,
both from the fundamental and practical point of
view. In the past years, a large amount of ex-
perimental data concerning the electronic struc-,
ture of both the perfect and the defect structure
has been accumulated. The perfect lattice has
been studied by optical absorption, ' reflect-
ance, ""electron energy loss,"'"thermoreflect-
ance, "soft-x-ray emission, "photoelectron spec-
troscopy (ESCA),""secondary-electron emis-
sion (SEE),"'"and photoemission. " The d'etails
of the Fermi surface have been analyzed by the
de Haas —Van Alphen effect, "'"cyclotron reso-
nance, "'"and magnetoreflectance. " Electronic
heat capacity has been measured and analyzed
by several authors. 42~' The crystal force con-
stants have been deduced""' from neutron-scat-
tering data" by fitting the calculated phonon spec-
tra to experiment while the lattice sublimation
eriergy has been measured by thermochemical
techniques. "" The properties associated with
point vacancies in graphite have also received
experimental attention. Experiments on electron
paramagnetic resonance of damaged-graphite" ~'
lattice-parameter change due to defect forma-
tion" "and displacement energy by electron im-
pact" "have been performed. Optical absorp-
tion of irradiated graphite, "diffusion, thermal-
annealing, and stored-energy-release experi-
ments measuring the energy of vacancy formation
and migration"~' have been performed. The
electron dynamics in the presence of defects has
been examined by Hall-effect experiments, "mag-
netoresistivity, '"'" and electrical resistivity. "

Theoretical studies on the electronic properties
of graphite have been performed both within the
m -electron approximation" "and within the all-
valence electron model. """ The electronic
structure of the point vacancy in the same system
has been treated by the nearest-neighbor "defect
molecule" approach. '

In this paper (part I) we treat the electronic
band structure of graphite within the LCAO tight-
binding scheme using a self-consistent modifica-
tion to the extended-Huckel (EXH)" approximation
to the interaction integrals. It has been previously
indicated ' 8' 3~ that a charge-self -consistent
scheme is essential for maintaining realistic de-
scription of systems exhibiting some sort of
heteropolarity, such as binary crystals" "or

homopolar crystals containing defects." There
is some strong evidence" " that for systems with
relatively homogeneous charge distribution (e.g,
homopolar molecules and solids or systems with
small electronegativity difference between the
constituent atoms}, the EXH method provides a
reasonable approximation to the Hartree-Pock-
Roothaan method.

The details of the calculations involved in EXH
band structure are described in Sec. II and in Sec.
III we discuss the results of optical transitions,
positions of high-symmetry points with respect
to the Fermi energy, electron density of states,
imaginary part of the dielectric function, valence-
charge distribution, unit-cell parameters, force
constants, and various band parameters related to
Fermi-surface data. Comparisons with both
available experimental data and with other theo-
retical approaches are discussed. In the second
article (part II), we use the self-consistent EXH
method in a small-periodic-cluster approach to
calculate various properties related to the vacancy
in graphite, i.e. , energy of localized states, den-
sity of states in the presence of the vacancy,
Jahn-Teller distortions, energy of vacancy for-
mation, and migration and charge redistribution
due to the defect. A completely self-consistent
approach is used. Relations with previous ap-
proaches and with available experimental data are
discussed in detail.

II. METHOD OF CALCULATION

The Bloch function 4~(k, r) constructed from
atomic orbital X,(p, = 1, .. . , o} situated at the site
n(n = 1, . . . , h) in the unit cell is given by

4 (k r) =N ' ' Pe'"'"&g (r —R —d )

where n = 1, . . . ,N numbers the unit cells and d
is the position vector of site & in the unit cell.
Crystal eigenfunctions belonging to the jth band
(j= 1, . . . , vh) are given by

The expansion coefficients C~,.(k) and the band
eigenvalues e,.(k) are determined from the solu-
tion of the variational equations:

g P [E,',(k) -S,~(k)e,.(k)]C„(k)=0.
a=I

The matrix elements of the Bloch function are
given in the atomic basis set by
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Eug(k) g eik (Ru-Rp)

x(X, (r —R, —d ) ~E~X,(r —R„—1(())

-=pe" E"(O,n),

S up(k) g eik (Ru-RP3

x (X„(r—R, —d )~X,(r —R —d, ))

—P eik R„Su~ l((0 n)

where R, is the position vector of the origin unit
cell and E,",,(P0, )nand S ~P(0, n) are the matrix
elements of the Hartree-Pock operator F and the
unity operator, respectively.

The secular equations [Eq. (3)] are solved by
applying the Lowdin orthogonal transformation'
to the basis Bloch functions followed by a direct.
diagonalization of the orthogonal eigenvalue equa-
tions. The resulting wave functions are subjected
to a Lowdin charge analysis. " The elements
of the charge matrix are computed by replacing the
Brillouin zone integration by a numerical quadra. -
ture" over 180 inequivalent k points in the —,', sec-
tion 'of the two-dimensional hexagonal Brillouin
zone. The population analysis is used to compute
the following quantities: (a) the charge contribu-
tion by the p-basis orbital to the state

~

kj). The
dispersion curves of this orbital charge q (kj) is
calculated for all occupied bands, through the
Brillouin zone. (b) A band-by-band integration of

q~(k, j) yields the contribution of the jth band to
the p-orbital charge R ~, (c) The contribution
of the jth band to the total electronic charge on
site &, D,. is computed by summing R„over the
basis orbitals p, . The quantity D, for the defect
level j will be used as a measure to the localiza-
tion of the defect wave function on given sites &.
(d) The total electronic charge on site (k due to

E..(q.)=E:(0)-q.&.'....—Z q y...
l0/nn

(6)
'

E~(0) is the li-orbital energy of the neutral atom
at site & and is obtained from atomic ionization
potentials determined spectroscopically'""" and

is the change in the p, -orbital energy of
atom & due to deviation from charge neutrality
at this site. p„,z is the two-center spherically
averaged Coulomb repulsion integral:

all occupied bands, Q . If no charge transfer
occurs between the various sublattices, this
equals the valence electronic charge of the free
atom. (e) The net atomic charge q, is given by
th.e difference between Q and the core charge Z
These quantities are defined in Appendix A.

We have used the Lowdin definition of atomic
charges rather than the Mulliken" or the Ros and
Schmit" definitions since the latter methods in-
volve a somewhat artificial division of the over-
lap charge between nonequivalent atoms. This
complication does not arise when orthogonal Low-
din functions are used. In systems exhibiting a
nonhomogeneous charge distribution (such as
heteronuclear solids and molecules or homo-
nuclear systems with point defects), the. Lowdin
definition has been shown to better reproduce
accurately ca).culated molecular multipoles~ "
and energies. 97

The overlap matrix elements S,„(0,n) are cal-
culated directly from a valence basis set (p, = 2s,
2p„, 2p„and 2p, ) of Slater orbitals using stan-
dard Slater exponents (1.625 for carbon). The
energy matrix elements are calculated from a
self -consistent extended-Huckel approach, simi-
lar to the approximation previously suggested for
molecules" '"

E',~(n, m) = ,'G, „[E"„,'(q-„-)+E',P(q,)]S,'.(n, m), (5)

where t" is the Wolfsberg —Helmholz constant '0'

The diagonal E,"„(q ) element is given by:

y„., „=&X..(r, -R„-d.)X.,(r. -R, -d, ) —X..(r, -R„-d.)X.B(r.-R(- 8»
g2

calculated from the formula listed by Roothaan. '0'

We use a spherically averaged Coulomb repulsion
rather than calculate the individual orbital repul-
sjLon integrals since this averaging has only little
effect on the band pattern. '" The repulsion inte-
gral y„, ,z behaves asymptotically as an electro-
static point charge potential" —

~

R„—R, p~
' and

is screened at shorter range.
The diagonal neutral atom orbital energies

E,(0) appearing in Eq. (6) and taken from atomic

/

Hartree-Pock calculations or from experiment,
consists of a carbon 2s term E;,(0) and three
degenerate carbon 2p terms E» (0) =E; (0)
=E» (0). The values usually taken for these
quantities in quantum-chemical calculations on
carbon containing molecules" '" are E;,(0)
= —19.44 eV and E»(0) = —11.40 eV. In molecular
systems having axial symmetry (e.g. , acetylene,
ethylene) or a reflection plane (e.g. , benzene),
the threefold degeneracy of the Zp orbitals is
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lifted due to the different crystal-field screening
in the various axial directions. Penetration effects
of an atomic orbital on a given center into the
screened field of other nuclei were shown to
lower the energy of the planar terms F» (0)
= E» (0) relatively to the out-of-plane term E» (0)
in aromatic molecules having their o manifold
in the x-y plane. ' ' Since a first-principles way
of introducing this effect requires a detailed cal-
culation of all penetration and two-electron inte-
grals, it has been previously suggested'" that
such an "atoms-in-molecules" effect could be
introduced phenomenologically by splitting the
in-plane and out-of =plane orbital energies arti-
ficially. Calculations on several organic mole-
cules showed that a splitting of about -0.3

~
E»(0)

~

yields satisfactory agreement with experiment
regarding the ordering of molecular levels, ioni-
zation potentials, and o-m splitting. In a previous
study on graphite" such a procedure has indeed
yielded satisfactory results. We consequently
split the F»(0) element symmetrically around the
commonly employed degenerate value of —11.40
eV taking:

E' (0)=E; (0)= —13.11 eV,

()
E;p (0) = —9.69 eV,

and the commonly used 2s value: E;,(0) = —19.44
eV. The Wolfgang-Helrnholtz constants are taken
as'".

2.0, p, = p=p„.
G 1.75, otherwise.

The one-center term &"„„,[Eq. (6)] can be
obtained from empirical interpolation schemes
relating the spectroscopically observed atomic
ionization potential E~(q) with the net atomic
charge, and, ' "' from Hartree-Pock calcula-
tions'" or ean be deduced from the m-electron
transitions in benzene. "' All these estimates
yield values around 11.6 + 1.1 eV. Inclusion of
ionic configurations and correlation effects into
the Hartree-Fock estimate yields a value of
10.53 eV,"' while fitting various calculated prop-
erties of carbon-containing molecules to experi-
ment, using diagonal matrix elements of the form
E,(q) = E„(0)+&„q yieMs a value of 11 eV.'" This
value is sufficiently close to'those yielded by other
approximations and it would be consequently used
in this work. Calculations on the charged vacancy.
in graphite (Sec. II) indicated that orbital ener-
gies and atomic charges were rather insensitive
(-7% and -4% for energies and charges, respec-
tively) to changes in &„' „,between 10 and 12 eV.

Expression (6) for the diagonal element has a

simple physical meaning-an electron in orbital
p, on atom c. has a binding energy E~(0) corre-
sponding to a neutral system, and experiences
both a potential due to accumulation of charge on
this site and a screened Madelung-type electro-
static potential due to the field on other atoms.
In a neutral system (q = 0), the diagonal element
simply reduces to the atomic ionization potential
E~(0), as used in the conventional non-self-con-
sistent extended-Huekel method, ' The inclusion
of the two first terms corresponds to the iterative
extended Huckel approximation" '" while the
inclusion of all three terms corresponds to the
modified iterative extended Huckel in which
screened Madelung effects are introduced. ""'"

To test the adequacy of the employed atomic
parameters for graphite, the one-electron ener-
gies of the closely related benzene molecule were
computed with the same parameters. A carbon-
carbon bond length of 1.40 A and a carbon-hydro-
gen bond length of 1.10 A were used. The con-
ventional" value for the hydrogen 1s,orbital ener-
gy E,",(0) = —13.6 eV was used. The energies e,.
of the ten valence molecular levels (for which ex-
perimental photoelectron data exist) were com-
pared both with experimental data"'"' & ',."' and
with the results of an extended-basis-set Hartree-
Fock calculation, '" performed with the same nu-
clear geometry. The standard deviation

0 1/2
(~cele ~ empt) 2 (~ expt)2

i i i
t=l i =1

was found to be 0.093 for the. present extended-
Huckel calculation and 0.150 for the extended basis
set Hartree-Pock calculation.

The calculations were. performed in the following
way: one guesses the elements of the charge ma-
trix ( isolated atom values are used as initial
guess) and computes the diagonal energy elements
[Eq. (6)] up to a maximal interaction range R, .
These are used together with the computed overlap
matrix to calculate all the energy elements [Eqs.
(4) and (5)] and to solve the eigenvalue problem
[Eq. (3)] at a selected grid in It space. The eigen-
vectors are used to calculate a refined charge
matrix and orbital charges [Eqs. (Al)-(A10)], and
these in turn are employed for the calculation of
the energy elements [Eqs. (5) and (6)]. The pro-
cess is repeated to obtain a constancy in the
charge-matrix elements and band energies be-
tween successive iterations of less than 10 'e and
10 eV, respectively. Damping of the iteration
cycle'" is used ta facilitate the convergence. The
iteration cycle converges readily for the case of
a perfect lattice of graphite owing to the lack of
interatomic charge transfer in the system. Thus,
in this system the simple non, -iterative extended-
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Huckel method yields good results, as previously
demonstrated. " However, when lattice imperfec-
tions are present (see II),"iterations towards
self-consistency substantially change the final
charges and the energy eigenvalue spectrum. In
the convergence limit one computes the total
energy per atom:

dk n,-e,- k .
CCo B Z j=].

(10)

Numerical first and second derivatives of E,/N
with respect to the totally symmetric stretching
mode are performed to yield equilibrium carbon-
carbon distance@ and force constant, respectively.
The minimization procedure used to obtain the
unit cell parameters at static equilibrium is the
standard steepest-descent method in which the
displacement 5g in the vector $ required to ap-
proach equilibrium is iteratively determined by

6)= -AVIE„,($), (ii)
where $ is a vector whose components are the
structure parameters to be optimized and A is a
numerical scaling factor.

The final eigenvectors are used to compute the
electronic charge density in the valence bands:

a

V(r)= g dk dT, ' ' ' d~~

x O,*. (k, r, .. . , r„)@,(k, r, . . . , r„).

V'V„„(r)= -4mp(r). (i3)

Following this procedure, we calculate the elec-
tronic contribution to the electrostatic potential
I „„(r).This is used for obtaining the perturba-
tive potential exerted by the defect (see Part II).

The convergence of the integrals over the BZ
[Eqs. (10) and (12)] as a function of the k grid used
and that of the sums in dir'ect space [Eq. (4)] as a
function of the interaction range R„was exam-

This can be expressed by the atomic basis orbitals
X„and their expansion coefficients C„",. [Eqs. (1)
and (2)]. The Slater atomic orbitals are then ex-
panded in a series of Gaussians using the 6-G ex-
pansion of Hehre et a/. "' The charge density is
thus expressed in terms of the coefficients C~&(k)
and products of Gaussians centered on various
sites. These multicenter products can be expres-
sed as a sum of Gaussians centered on single
intermediate sites. ' ' lt has been previously shown
in molecular calculations'" that the electrostatic
Poisson potential V„„generated by a charge den-
sity expressed as a sum of Gaussians, can be
analytically calculated directly from the Poisson
equation:

(14)

is calculated. 180 k points in the ~» irreducible
zone are used to generate 10' points by means of
Lagrangian interpolation. Energy channels of
0.02 eV are used. The joint density of states

J„,(e) = — dk5(e —c,(k) + e„(k)),

where e,(k) and E„(k) denote conduction and valence
energy bands, respectively, are similarly cal-
culated. Near the discontinuities in J„,(c) the
derivatives of the valence and conduction bands
are analytically computed in order to determine
the transition energy at critical points. This is
done by the algorithm developed by Delhale and
Andre. '" The k derivative is given by direct dif-
ferentiation of Eq. (3):

d~,. (k), - dE(k)
dk

(16)

where

ined. 180 inequivalent k points in the» irreduc-
ible zone were sufficient to obtain converged re-
sults for the charge density elements (error less
than 10 '%) and total energy (10 %) in a Simpson
integration scheme. " Using the special k points
calculated by Cunningham" for the irreducible
hexagonal BZ by applying the mean-value algo-
rithm of Chadi and Cohen, "it was found that the
six special points

(k„,k,) = (9, 2/9 v 3), (—,', 4/9 W3), ('g, 4/9~3,
(-', , 2/9~3 (—' 4/9W3)(~9', 2/9v 3)

with respective weights of + —' —,', —,
' were

already sufficient to obtain an accuracy of 0.2%
for the total energy. This remarkable y,ccuracy is
further improved when one employs an artifi. cially
large unit cell instead of the primitive cell, thus
reducing the dispersion of the energy bands. In
calculations involving a large unit cell (20-50
atoms instead of two) associated with the defect
problem,

"only the six special points are used.
The charge density [Eq. (12)] in the primitive unit
cell calculations is computed throughout this work
using the 180 k points. The lattice sums in direct
space [Eq. (4)] are found to converge for 8, ~ 22 A.
Since deviations from charge neutrality associated
with the defect structure occur only in the vicinity
of the defect site, a discrete summation over 22 A

is sufficient to include even all the electrostatic
contributions [Eqs. (6) and (7)] and Fourier-trans-
form convergence procedures'" are not required.

Using the computed band structure, the elec-
tronic density of states given by
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iteration cycle due to charge rearrangement in
all the oceuPied 0+@ bands in the Brillouin zone.
This is a distinct improvement over both non-self-
consistent all-valence electron methods" "and
&-electron models. ""

III. RESULTS

A. Band-structure and optical properties

FIG. 1. Two-dimensional Brillouin zone of graphite
with the notation for high symmetry points of Lomer
(Ref. 74).

) —j Q R+0 ~)yak'Rg
dk

Critical points of interband transition are deter-
mined from

&ge, (k) —e„(k)]= 0.

In the approximation of constant transition moment
for the m and. o bands, the imaginary part of the
dielectric function, e,(0, ~) is taken to be propor-
tional to J'„,(E)/&'.

It should be indicated that although in the two-
dimensional graphite structure (with reflection
symmetry in the basal plane) the electronic states
can be rigorously divided into m and 0 states, in
our self-consistent calculation scheme, no such
separation is invoked. Thus, for instance, Ham-
iltonian matrix elements coupling w Bloch states
are allowed to modify through the self-consistency

In the two-dimensional graphite structure there
are two atoms per unit cell. The primitive trans-
lation vectors are a, = a(1,0) and a, = a(&, v 3/2)
where the unit cell parameter a, expressed by
the carbon-carbon bond length R, is v 3R, with

0

R, = 1.42 A.'" The reciprocal lattice vectors are
b, = (2m /a)(1, —1/0 3) and b', ~ (2w/a)(0, 2w /W3).
The first BZ is a hexagon and is shown in Fig. 1
along with the notation of high symmetry points
of Lomer. " The symmetry properties of the hexa-
gonal layer structure and the classification of
electronic states, have been discussed by Lomer'4
and by Bassani and Parravicini. "

' Figure 2 shows the results for the band struc-
ture along the I' -P —Q lines of the present cal-
culation together with the results of Painter and
Ellis" and that of Bassani and Parravicini. "

Figure 3 shows the band structure obtained by
the self-consistent INDO (intermediate neglect of
differential overlap) method, similar to the com-
'plete neglect of differential overlap (CNDO) meth-
od previously used 80, 8x The results of the self-
consistent extended-Huckel calculations of the
present work [Fig. 2(b)j correspond to the con-
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FIG. 2. Band structure of the two-dimensional graphite along the P-J'-Q directions. {a) Painter and Ellis, Ref. 77;
{b) present work, extended Huc'kel; {c) Bassani and Parravicini, Ref. 76. Full lines constitute the 0 bands, the broken
lines the r bands. Fermi level is at P3 ~
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FIG. 3. 1&TOO band structure of the two-dimensional

graphite along the P-I -Q directions (present work).

vergence limit of both direct and reciprocal space
sums, discussed in Sec. II.

In Table I we have compared the theoretically
calculated interband transition energies with the
experimental reflectance, " ' energy loss,"photo-
emission, "and secondary-electron-emission" "
spectra. Complete assignment of the experimental
spectra is still lacking. The lowest g —g * transi-
tion between the saddle points Q,„and Q~ states
appears to be consistently determined by all
workers at around 4.5-4.8 eV, while the lowest
o —v* transition (I"~- I",„) has been attributed by
Bassani and Parravicini" to the weak shoulder
observed in the reflectance spectra" at 6 eV and

by Painter and Ellis" to the main reflectance
peak at 14.5 eV. It was argued however by the
former authors that an artificial increase of the
calculated o —o ~ gap from 6 to about 10 eV wouM

yield a better fit with experiment for the calculated
e,(0, '&o) near the Q~ -Q;„ transition. Lateq,
SEE""and photoemission" experiments estab-
lished the onset of the o.—o* transitions at 11.5
~0.1 eV.

The results of the present study are in good
agreement both with experiment and with the first-
principle calculations of Painter and Ellis" and

60—

3. 40—
I

Al
4J

20

'0

&Zu &29

2LI 29
r=r-

1

pe
l0 20l5

Energy {eV)

FIG. 4. Experimental and calculated (in arbitrary
units) &»(0, Q. ( ) Calculation; (-.—.-) experimental
data from reflectance spectra of Taft and Philipp (Ref.
23); (-—--) experimental data from electron energy
loss of Tosatti and Bassani (Ref. 28).

Corbato" for energies lower than about 10 eV
above the Fermi level E~. Points at higher ener-
gy, in the conduction band (i.e. , Q;„and Q;„) are
substantially overestimated by the present cal-
culation. In applications of the EXH band structure
we will restrict ourselves to energies well below
E~+ 10 eV.

The pseudopotential calculation" yields reason-
able results for the main m gap at Q,, —Q~ and the
main o gap at I", —I",„but underestimates strongly
other transition energies. The order of transi-
tions seems to be incorrectly revealed by this
calculation. The INDO band structure (Fig. 3)
agrees well with the previously published results
of Messmer et al."and Kapsomenos" using the
similar CNDO approximation but disagrees mark-
edly with experimental data (overestimation of the
low lying interband transition energies by a factor
of 2-3 and of the width of the valence bands by
a factor of 3-5).

In previous applications of the CNDO method to
band-structure calculations of various carbon-
containing organic polymers (see Ref. 123) and
references therein), no detailed comparison with
experimental optical data was made. Our above
conclusions on the inadequacy of the CNDO ap-
proximation to graphite and our similar experi-
ence on boron nitride, "suggests that this might
also be a poor approximation for carbon polymers.

Figure 4 shows the imaginary part of the. dielec-
tric function perpendicular to the c axis, &»(0, ~)
as calculated from EXH band structure in the con-
stant oscillator strength approximation. This is
compared with the experimentally determined
function using ref lectivity" and electron energy
loss" data. Only the overall features of the cal-
culated &»(0, &u) function could be compared with
experiments since the details of the energy de-
pendence of the oscillator strength is not included
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TABLE I. Comparison between experimental and calculated interband transitions for graphite. Energies given in
ev. E J.c and F. ~~

c denote polarization with respect, to the c axis.

Transition
Expt.

Results
EXH

present work
Painter and

Ellis ~
Bassani and
Parravicini Corbato

Tsukada
et al. " Haeringen

'
\

Q~, @2~ (E &c)

I"
3r I'Su (E ~c)

@~u ~E~c~

4.5, 4.8, ~

4.6 "4 85'
ll.50 + 0.1 "
llf
15.0+ 0.5"
14.8
&20 "16'
15.0 '
14.5 +2"
dipole
forbidden

12.1

17.2
15.8

10.4

4.7 4 5i

14.0

13.0
13.0

15.3

22.4
14.2

9.0

18.7

10.7

4 9

8.9

4.3

~Discre'te variational method, Hef. 77.
"Empirical tight binding, Bef. 76.' First-principles LCAO, Bef. 75.
~ ~-orthogonalzzed-plane-wave, Bef. 73.
'Empirical pseudopotential, Bef. 79.
Beflectivity, Ref. 23.

I Beflectivity, Hef. 24.
"Heflectivity, Hef. 25.
' Thermoreflectance, Hef. 29.
' Adjusted value.
"Secondary electron emission, Hef. 35, 36.
~ Reflectivity, Bef. 26.

in the calculation. The agreement below the m

plasma frequency (~~, =—7 eV)""'"is satisfactory.
At higher energies the calculated e„(0,e) shows
a small shoulder at around 17—18 eV which is ab-
sent in the reflectance spectra and seems to ap-
pear at about 15-16 eV in the electron energy loss
data. Owing to the occurrence of the Q', „state at
relatively high energy in our calculation, the

Q~ -Q,'„ transition is not contributing much to the
calculated e»(0, ~) around 15-20 eV in contrast
with the results of Bassani and Parravicini. "

ln Table II we compare the energetic position of
some high symmetry points in the conduction band,
relative to the theoretical Fermi level E„(located
at the P, point) with the experimental determina-
tion by SEE.." With this technique, only energy
levels located above the vacuum level (E~+ 4),
where the work function 4 for graphite is 4.7 eV,'"
are determined (e.g. , higher than the I",„ level).
Since electrons are initially excited into levels in
high density-of-state regions in the conduction

band and subsequently relaxed due to electron-
electron and electron-phonon scattering into lower.
minima in the energy bands, the energetic posi-
tions observed in SEE experiments provide lower
bounds. Again, it is observed that the present
EXH calculation are in good agreement with ex-
periment for the lowest zone-center conduction-
band levels but in rather poor agreement with
high-energy zone-edge antibonding levels.

B. Density of states

The partial density of states of graphite is
shown in Fig. 5 together with the notation for
special points. Saddle-paint singularities occur at
the Q point while the P point creates local minima
in the density of states. Since a detailed density
of states has not been published previously, only
the gross features of the present calculation can
be compared with previous results. The charac-
teristic widths of the valence bands and the amount

EXH
present work Corbato d

TABLE II. Energies of conduction states at high symmetry points relative to the calculated
Fermi energy, 'compared with SEE data. Energies in eV.

Expt. Painter and
State results Ellis"

7.7 +0.5
12.2 +0.5
8.7 + 0.5

8.0
12.3.

19.1

7.5
10.5
8.0

3.0
9.0
8.2'

11.0
12.8
9.6

~Reference 35.
"Reference 77.

'Reference 76.
Reference 75.
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FIG. 5, Partial density of states of graphite.

of o. -g band overlap at the zone center are given
in Table III. Coulson's" analysis of the soft x-
ray spectroscopy data of Chalkin" suggests a
width of 5.0+0.5 eV for the g-valence subband,
in agreement with the present calculation. The
experimental determination of the total valence
bandwidth is rather controversial. Early K-emis-
sion results of Chalkin" suggest a value of about
15-17 eV while ESCA results of Thomas et al."
and of Hamrin et al."suggest values of 31+2 and
30 eV, respectively. The soft x-ray emission
spectra arise mainly from the 2P part of the valence
band (due to the 2P-1s selection rule for K emis-
sion), while the ESCA spectra gives more weight
to the 2s part (a cross-section ratio o„/a» =13
has been suggested). '" The value obtained by
Chalkin is thus a lower bound to which the 2s part
of the spectrum (with contributions from the vici-
nity of the I';g point) should be added. The large
width of the observed ESCA bands was attribu-
ted"'" to the presence of surface impurities such
as oxygen whose traces are directly detected in
the spectra. Recent x-ray emission spectra of
pure graphite obtained by Muller et al." indicate
a width of 22 eV for the valence band while the

new x-ray photoemission data of McFeely" yield
a value of 24 eV in reasonable agreement with the
present calculation. The energetic overlap be-
tween valence 0. and 7t bands has also been specu-
latively established from various experiments.
Oscillator-strength sum rules for m and 0 transi-
tions indicate a rough overlap of 1-3 eV, '"
while analysis of soft x-ray data"" suggests an
overlap of about 1.6 eV. The valence O. -m over-
lap observed in si.mple aromatic molecules is of
the order of 1 eV "'

Several x-ray photoelectron spectra" "and
emission" spectra of graphite, have been re-
ported. Although direct comparison between x-ray
photoelectron and emission spectra with the cal-
culated profile is complicated by the need to
weight the latter by the energy dependent transi-
tion probabilities, '" the peak positions and the
general features are rather unaffected. In Table
IV we have compared the various features ob-
tained in the combined experimental x-ray photo-
electron" and emission"" spectra with the theo-
retical assignment based on our calculated density
of states. The exact position of our calculated
peaks and their parentage was determined by the
procedure outlined in Eq. (16). The energies of
the calculated values are given relative to the
theoretical Fermi energy as yielded by each au-
thor. The results of the present work are in very
good agreement with experiment and in moderate
agreement with the results of Painter and Ellis,"
while the calculated results of Bassani and Parra-
vicini" reveal systematically lower binding ener-
gies. Owing to very pronounced cross section
effects the occurrence of the relative minima at
-10 and at -14 eV in our density of states near
the I", and P', points, respectively, cannot be
verified by direct comparison with experiment
and it is not sure whether it is an artifact of the
calculation model, or not. The maximum inten-
sity in the experimental photoelectron spectra is
observed at the peak assigned to the Q,'„point and

at the flat top of the I",~ -Q;~ peak, while in the

TABLE III. Partial valence bandwidths (W, and W~), total valence bandwidth (W~,&), and
0-m. band overlaps (Dg —, r) as obtained in various calculations. Energy given in

Property
EXH

present work
Painter and

Ellis e
Bassani and
Parravic ini Corbato'

w
Wa

w~ot

5.6
17.0
21.2
1.4

7 35 8.0
14.5 16"
19.3, a20 7~

2.7, '3 0~

5.0
11.3
13.8
1.3

9.8
16.6
18.5
6.0

~Reference 77.
b Reference 76.

Reference 75.
Reference 35, extended basis set.
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TABLE IV. Characteristic features of the valence density of states in graphite. Energies
measured relative to the Fermi level, iri eV.

Exper imental
feature Energy

Theoretical
assignment

(Present work).

Energy
(present

work)

Painter
and

Ellis
Bassani and
Par ravicini

&-band peak

Top of 0
- valence band

0-band peak

Sharp peak
Local minima
SmaH peak

Flat region

Bottom of
valence band

4c
4cl

8+1d

13.8, 13.0
12-13.8
17'
17-20

Q2„saddle point

z+

Q&, saddle point

9+&„saddle point
deep near I'+3

Q+ ~+

2.5

7.2

13.1
13~ 6
16.2

17—21

21 ~ 2

45

7 ' 5

14.2
14.0
15 ~ 5

-13-15
19.3, 20.7 ~

5.5

11~ 3
12.5
13.3
-12-14

13.8

'Reference 77.
Reference 76.
K-emission spectra, Ref. 30.
X-ray photoemission, Ref. 34.

'X-ray photoemission, Ref. 33.
X-ray emission spectra, Ref. 32.

5 Reference 35.

density of states, the Q'" peak is more intense.
Examination of the calculated unit cell charges
at the Q,'„point [(q", (k, j)+q", (k,j)] (see Appendix
A) reveals 24/o 2s character and 76% 2p character.
The Q' state, on the other hand, around which a
high density of states is accumulated, is a pure
2P state. Using the estimated cross section ratio
for 2s and 2p atomic contributions to the spectral
intensity (o„/o»= 13),'" one obtains that the Q;„
state should indeed reveal higher intensity than the
Q'" peak, in agreement with experiment. Our
assignment agrees with that of McFeely et al. '4

except for the 13.8 eV peak. These authors spec-
ulate that this peak originates from a Aigk density
of states near the I", point. Our calculation re-
veals a relatively sharp increase in the band ener-
gy near P,', and consequently a minima rather than
a maxima in the density of states.

C.- McClure band parameters

The present band-structure calculation can be
used to obtain theoretical estimates of the McClure
y, and y, band parameters"' "previously used in
simple 7t approximations to fit various Fermi sur-
face and optical data. "" Since the optical be-
havior at low energies is determined by the band
structure at the vic'inity of the Q point, while
Fermi surface data are determined by the behavior
at the II -P line in the three-dimensional zone
(perpendicular to the P point at the zone corner),
we have determined the corresponding two values
for y,. The optical parameter y',"is directly

ca]culated72 from the band structure (half of the
v —v" splitting at Q) tobe 2.25 eV. Bothy, and

y, " ' are calculated by numerically fitting a
separately performed three-dimensional EXH
band structure along the II —I' -H line to the
analytical formula of E(kH. , y„y," ') given by
Wallace. " This yields effective values of y, " '
=2.53 eV and y, =0.32 eV. These values are ob-
tained from an all-valence electron calculation
using five in-plane neighboring atomic shells and
considering the interaction of a given plan with its
nearest neighbor planes. In g tight-binding calcu-
lations retaining nearest neighbors only, a single
value is obtained for y, . McClure" obtained values
of y, " ' = 2.8 + 0.1 eV and y, = 0.27 eV from a fit
of a simplified z band structure with only nearest-
neighbor interactions to the observed high-tem-
perature diamagnetic susceptibility and the
de Haas-van Alphen effect. Cyclotron resonance
data fitted by Nozieres" yield (yor" ')'/y, = 25 eV,
compared with McClure's value of 29 eV and our
value of 20 eV. Magnetoref lection data of Dressel-
haus and Mavroides4' give y, = 0.395 eV. Long-
wavelength and uv optical experiments have yielded

y, = 0.14 eV" and y, = 0.40 eV,""while the ultra-
violet optical spectra of the lowest Q-saddle point
transition suggest y' = 2.25 —2.4 eV."''"

The electronic contribution to the heat capacity
of graphite has been calculated by Bowman and
Krumhansl" using the g -band-structure param-
eters of Wallace. " Using the y, and y, effective
parameters determined in the present study (aver-
age values of y',"and y, " ' were employed) and
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assuming a value of 0.02 eV for the shift of the
Fermi level relative to the center of gravity of
the 7] bands at II,""we obtain C„„=0.43 && 10~
cal mol ' K ' compared with the experimental val-
ues '

.
' of 0.6&& 10 '..

Although the agreement obtained is rather favor-
able, it should be noted that this merely reflects
the fact that the overall level distribution around
the Fermi energy in our model is correct, and
thus, it probably does not constitute a sensitive
test to the adequacy of the theoretical Fermi sur-
face.

D. Charge distribution and bonding

We next turn to consider the charge distribution
in the valence band of graphite. A carbon atom in
its "reactive" state has an electronic configuration
2s"2p„"2p,'~2p,", or using the notation appropri-
ate for a crystal field with reflection symmetry
0„ in the xy plane: 2s"2p,"2p", . This corre-
sponds to the usually assumed sp' hybridization
in planar carbon systems. The total orbital val-
ence charges calculated from the band structure
using the four occupied valence bands and 180 in-
equivalentkpoints in the irreducible BZ [P~~(n) in
Eq. (A6)] comes out tobe 2s'08762P,""'42/', 'ooo'

which corresponds to a total electronic charge
[Q in Eq. (A9)] of 4.0000e with o hybridization of
sp'" which is close to the commonly accepted
ideal sp' hybridization. When the total valence
orbital charges are broken into separate contri-
butions from the individual bands [R, in Eq. (AV)]
it is observed that the lowest valence band (de-
noted o, ) contributes most of the 2s charge having
the configuration (2s""'2po'""2po. o),, while the
next two o bands (o, and v, ) give rise to the con-
figuration (2so' ""2p'""2p") . The m band0' g, 0'pp 03
has the electronic configuration (2so2Po2P,"oo),.
Thus, most of the 0 covalent bonding in the solid

occurring due to s —p overlap, comes from the
two highest 0. bands.

The band orbital charge itself can be decomposed
into contributions from various parts of the Bril-
louin zone [q„(k,j) in Eq. (A6)]. This is shown in
Fig. 6 where the dispersion of the 2s —2p, charac-
ter of the three valence 0 bands along the P —I' —Q
directions is revealed. The o., band changes from
a pure 2s Bloch state at the zone center to about
2 and —, 2s character at the P and Q points, re-
spectively. The 0, band reveals an opposite be-
havior, being a pure 2P, Bloch state at the zone
center and gaining some 2s character at the P and

Q. The third o, band is a pure 2p, Bloch state
throughout the P —I' —Q directions. The band-by-
band orbital charge representation throughout the
BZ shown here, should be viewed as the solid-state
analog of the molecular charge decomposition
used in quantum chemistry. "~~ A two-dimension-
al real-space representation of the charge density
contributed by each band at a given point in the
BZ is easily obtained when the 2s —2p mixing co-
efficients are given as in Fig. 6.

The "bond order" concept introduced by Coulson
for describing r bonding effects can be identified
in our calculation scheme by P, ',~(0,n) which de-
notes the charge-density'coefficient relating the
n wave-function amplitudes of the two translation-
ally inequivalent atoms & and p that are separated
by n unit cells. Calculating these values from our
eigenvectors, we obtain P (0, 0) = 0.525,
P'&"~(0, 2)= —0.183, and P'~'"(0 3)= —0.052. The
value at P (0, 0) can be compared with the value
of 0.662 obtained for the benzene molecule, '" in-
dicating a 52.5/o double-bond character in the form-
er case [P;;;,(0, 0) = 1 corresponds to a 100% double
bond]. The negative values for the bond order of
distant separated atoms, indicate "antibonding"
nodal character.

E. Equilibrium unit-cell parameters and bond energy

The unit-cell parameters of graphite under static
.equilibrium are calculated by minimizing the total
crystal energy per unit cell, as a function of the
unit cell parameter a. This minimization pro-
cedure, carried out using the steepest-descent
technique [Eq. (11)] yields a„=2.482 A corre-
sponding to a carbon-carbon bond length of 1.435
A, which is in only moderate agreement with the
experimental value of 1.42 A (experimental unit
cell parameter a= 2.46 A).'" The cohesive energy
is obtained from the total energy per atom at
equilibrium, after subtracting from it the sum of
free-atom orbital energies and the promotion
energy E, gained by the atom when it returns to
its ground (2s'2p') 'P electronic configuration.
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The latter energy has been calculated by Goldfarb
and Jaffe'" to be 6.93 eV and by Jordan and Long-
uet-Higgins' to be 7.61 eV. These yield cohesive
energies E, of 8.73 and 8.05 eV, respectively. It
is interesting to observe that using the two special
k points for the hexagonal two-dimensional BZ
calculated by Cunningham, " instead of the 180 k
points in the irreducible zone, we obtained an
error of only 1.1% in the cohesive energy relative
to the dense mesh results, while the six-point
representation already yields an error of only
0.2%. No direct experimental determinations of
the cohesive energy of graphite are available.
The sublimation energy of graphite at 298 K was
determined to be E,= 7.4 eV.~ " Adding to this
zero-point energy (c'alculated from the phonon
density of states of Young and Koppel" to be 0.18
eV) one obtains a value of 7.58 eV for the static
energy. Since an average of 2 bonds are involved
in the sublimation process, ' the experimental
bond energy per atom is , (E,+ E„,—)= 9.7-10.3 eV
or Es = 4.85-5.15 eV per bond (using E „,= 6.93
eV'" and E„,=7.61 eV,'" respectively). This
compares well with the calculated value of gE,
+E, )=10.44 eV or Es=5.22 eV per bond. Inde-
pendent estimates can be obtained from surface
energies. If we denote by I/W3dR, the number of
bonds per unit area involved in creation of two c

0

surfaces, where d= 3.3 A is the interlayer dis-
tance, the surface energy o, is given by 2Es/
&3dR, . Using. the measured o, value of 4800
erg/cm', '" one obtains a bond energy of 4.9 eV
which is in reasonable agreement with the present-
ly calculated value and with that published previ-
ously. "

The contribution of the m valence band to the .
cohesive energy was calculated by integrating the
m energy band over the occupied part of the zone.
This yields a stabilization of 2.28 eV coming from
this band above. Early r electron calculation on
graphite using only nearest-neighbor interaction
revealed a ~ binding energy of 1.08y,"where y is
the resonance integral. Comparison with our re-
sults of a full band-structure calculation yields B,n
effective value of y= 2.09 eV. This can be com-
pared with various empirical estimates previously
suggested, . such as y=, 3.0 eV,"and y= 2.5 eV.'"
Most of the binding in the crystal results from the
tT bands. The greatest contributions to the co-
hesive energy from these bands were calculated
to arise from the vicinity of the BZ points P and

Q. At these points the stabilization of the energy
bands relative to the atomic energy levels (field
stabilization) is high and s —p hybridization is
very pronounced (Fig. 6). At the I' point s -p
hybridization is low, resulting in a low crystal-
field effect.

The carbon-carbon symmetric stretching force
constarit was computed from differentiation of the
total energy curve at the minimum with respect
to the carbon-carbon distance. This yields
k = 5.6 && 10' dyn/cm. This can be compared with
the corresponding values for the benzene mole-
cule k= 6.71 && 10' dyn/cm" and the naphthalene
molecule k = 4.789 x 10' dyn/cm. " The latter
values were used in calculations for the phonon
spectrum of graphite"*" yielding very good agree-
ment with the measured heat-capacity data and

phonon dispersion curves. "

0 30
(b)

25

-IO 20

Q)

g -I5
CD

LLI

-20

p+
I

)
l5 P

LLI

10

—25

—30
I.IO 'i

l.30 I.50
0

I I 0 l30 I.50

FIG. 7. Dependence of some electron energies at
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of 0 (Y* and & 7t* transitions (b) on the interatomic
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F. Behavior under pressure

The effect of external hydrostatic pressure on
the band structure of the two-dimensional graphite
was investigated by repeating the band calculation
for various values of the unit cell parameter a.
Figure 7(a) shows the variation of some high-sym-
metry energy levels with the carbon-carbon dis-
tance R,= (I/v 3)a and Fig. 7(b) exhibits a similar
plot of the total and m valence bapdwidths (W„,
and W„respectively) and the onset of ~ -z *and
'a -o band to band transitions (Q,„-Q~ and I"~

I';„, respective'iy). It is interesting to note that
upon compression, the bonding 1",„ level, repre-
senting the lower edge of the m valence subband,
is stabilized while the upper edge of the a subband,
the I'3~ antibonding state increases in energy there-
by increasing the a -71 overlap. For lower den-
sities (R, = 1.50 A) these bands exchange their
order and the a -7t overlap vanishes. The a —7l
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band splitting (Er- —Er+ ) is a measure of the
2Q 3g

departure from degeneracy between the in-plane
2p„and 2p, orbitals (forming the 1"~ level) and
the out-of-plane 2p, orbitals (forming the I ~
level), these orbitals being degenerate in spheri-
cally symmetric free carbon state. In layered '

hexagonal crystals having atoms of different elec-
tronegativity in the unit cell (e.g. , hexagonal boron
nitride") this o -)( overlap is small due to the
larger stability of the l"~ level, while in small
aromatic molecules it is of the order of 1-2
eV."'"' The ionization potential of graphite
(-Ep ) is shown to be reduced upon compression,
reaching for a compression of 22% about 70% of
its value in equilibrium under zero pressure.
Similarly, the onsets of the a-o.~ and p -g*
transitions are greatly increased by compression
of the lattice, the latter transition exhibiting a
lower sensitivity due to the relatively low value
of the 2p, —2p, overlap. Experiments on the opti-
cal properties of graphite under high pressure or
high temperature could be useful for elucidating
the interesting features of o -7t band interchange
and other effects introduced by the variation of
the lattice constants.

IV. SUMMARY

The extended-Huckel approximation to the LCAO
matrix elements was used to calculate the elec-
tronic properties of the two-dimensional graphite.
The band structure is shown to agree favorably
with previously published first-principles calcula-
tions for the valence bands and the low-energy
part of the conduction bands. The calculated prop-
erties compared with experimental data, are:
(a) Interband transition energies (compared with
optical data). (b) Energy of high symmetry points
in the valence bands (compared with ESCA data).
(c) Energy of high symmetry points in the conduc-
tion bands (compared with SEE data). (d) Dielec-
tric e»(0, &) function. (e) Density of states (com-
pared with the general features of the soft x-ray
emission and ESCA spectra). (f) Effective values
for the McClure y, and y, band parameters (used
to fit experimental Fermi surface data and optical
data through the Slonzewski and Weiss model).
(g) The parameter yielding the electronic contri-
bution to the specific heat in the Bowman and
Krumhansl model. (h) E(equilibrium unit cell pa-
rameters of graphite (compared with x-ray data).
(i) Cohesive energy (compared with thermochemi-
cal estimates) .. (j) Symmetric vibration stretching
force constants (compared with the value used in
lattice-dynamical calculations on graphite to ob-
tain good fit with the experimental phonon heat
capacity and with the phonon dispersion curves

from neutron diffraction).
The behavior of the band structure for various

values of the unit-cell parameters as well as the
contribution of various bands and points in the
Brillouin zone to the orbital charges, are also
discussed. The overall success of the extended-
Huckel method in accounting for the wealth of
experimental data on regular graphite, seems to
justify its use also for further investigation on
point defect problems in graphite (following arti-
cle) &9

APPENDIX A: ORBITAL AND ATOMIC CHARGE
DEFINITIONS

We give here briefly the working definitions of
orbital and atomic charges used in this work. To
avoid arbitrary partitioning of two-center charge
terms to equal parts, we transform our eigen-
value problem

E(k) C(k) = $(k) C(k) & (k) (Al

in the overlapping basis set [g'(k), $(k), and C(k)
are Fock, overlap, and eigenvector coefficients
matrices, respectively] to an orthogonal eigen-
value problem

I(k) C(k) = &(k) C(k) (A2)

using the Lowdin transformation

+,.(k, r) = Q Q C;,(k)4;(k, r). (A4)

The elements of the crystalline charge matrix are
given by:

~ cc
P''(u, m) = — dk Q a,.c'„,.(k) cs,.(k)e'"'

BZ j=1

(A6)

where ~ is the BZ volume, cr„, is the number of
occupied bands in the ground state, and the inte-
gration is defined nn the occupied part of the BZ.

The. charge contributed by the pth basis function
on band j at point k in the BZ, q~ (k,j ) is related
to the diagonal element of the charge matrix by:

c
P„(n)= — dk q" (k,j).

BZ
(A6)

The contribution of the jth band to the p, -orbital
charge is given by:

I(k) =$ ~~ (k)P(k)$ ~( (k) ~ C(k)=$ ~( (k) C(k).

(AS)

The crystal wave functions C,.(k, r) [E(l. (2)] are
given now in the orthogonalized Bloch representa-
tion 4~(k, r) by:
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R„~=— dkq„(k, j)
BZ

(A&)
The total electronic charge on site & due to all

occupied bands, in the ground state, is given by:

and the contribution of the jth band to the total
electronic charge, on site &, in the ground state,
is given by

(A8)

The BZ integration in Eqs. (A5}-(A8) is replaced
by a numerical quadrature over 180 k points in the
—,', segment of the BZ. The sum of D,. over the
sites & that are nearest neighbors to a vacant
site (where j denotes here the defect band), is
taken as a measure of the localization of the defect
charge density (paper II).

(A9)

and is equal to the atomic valence charge (4e) if
no charge transfer takes place. The net atomic
charge on site & is given simply by the unscreened
charge:

(A10)

where Z is the core charge (+4 for carbon} on
si.te +. For neutral isolated atoms and for an
atom in a homonuclear solid where all sites are
crystallographically equivalent, q„ is zero.
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ern University, Ev'anston, Illinois 60201.
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