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Mutual drag effect in the magnetoresistivity of antimony
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Isothermal and adiabatic magnetoresistivities of an antimony single crystal have been determined in the
temperature range 1.2-4.2'K. The weak temperature dependence in the magnetoresistivities and the
difference between the isothermal and adiabatic values are ascribed to the presence of the carrier-phonon
mutual drag effect in the magnetoresistance. A simplified model of mutual drag in semimetals based on the
fact that both carriers and phonons drift with almost the same transverse velocity was adapted. The observed
values of mutual drag efficiency and electron-phonon interaction were consistent with those obtained from
other transport measurements.

I. INTRODUCTION

The magnetoresistivity of semimetals, such as
Bi and Sb, has been the subject of previous investi-
gations. ' ' In the present study we will direct our
attention to the rather weak temperature depen-
dence exhibited by the magnetoresistance of anti-
mony in the helium temperature range. ' Since
such behavior seems to suggest that the electron-
phonon scattering is either almost nonexistent or
very inefficient in high magnetic field, it is thought
that the strong electron-phonon mutual drag ex-

. isting in the magnetoresistivity of antimony could
be responsible for this effect. In the theory of the
electron-phonon drag' "phenomena, the relevant
point to our investigation is summarized in the
theoreti. cal conclusion of Kagan": "In the case of
compensated metals with closed Fermi surfaces,
the magnetic field itself produces a unified drift
of the electron and holes, which in turn stimulates
phonon drift. The stronger the phonon dragging the
less effective the scattering and the larger the
transverse resistance. Thus, dragging ean mani-
fest itself in the magnetoresistance of all metals
with closed Fermi surfaces. "

Current usage seems to designate drag phenom-
ena as simple or mutual. The former, as the term
implies, refers to the transfer of momentum from,
say, electrons to phonons by electron-phonon in-
teraction. The latter term seems to be associated
with the idea that carriers interact with them-
selves through their mutual interaction with'the
phonons. Thus when electrons drift in response to
an electric field, they drag phonons with them and

any effect arising directly from this phonon drift
will be referred to as a simple drag effect. For
example, simple drag of phonons by carriers con-
tributes significantly to the Ettingshausen effect.
Now when the simple drag gives the phonons a drift
velocity, the processes of momentum transfer be-
tween phonons and electrons will be affected and

any alteration in elect onic properties arising from
this phonon drift is regarded as a mutual drag ef-
fect. For example, the transverse drift of phonons
(Ettingshausen effect) produces changes in the mag-
netoresistivity by, altering the scattering of car-
riers. Similarly when a longitudinal temperature
gradient is applied to a Sb crystal in high mag-
netic field, the phonons, of course, drift in the
direction of the gradient and thereby transfer mo-
mentum to the carriers, which are obliged by the

applied magnetic field to drift transversely to both
the temperature gradient and the magnetic field.
This gives rise to a simple drag contribution to
the Nernst-Ettingshausen effect and a mutual drag
effect on the thermal resistance.

The experimental procedure and the results are
given in Sec. II. In See. III a simplified drag mod-
el is developed for the case of antimony. Infor-
mation obtained from the adiabatic and isothermal
magnetoresistivities is used with the model to
yield information about the mutual drag and the
contribution of electron-phonon scattering to the
magnetoresistivity. Further, information con-
cerning drag and electron-phonon scattering ob-
tained from other transport properties are also
compared with the present data.

II. EXPERIMENTAL PROCEDURE AND RESULTS

The monocrystalline sample, No. 17 of Hef. 6
was used in this study. It was shaped by a spark
cutter from a pure antimony ingot grade 69." The
dimensions of this sample are about 3x2.8&30 mm.
The sample surfaces were lapped on No. 600 emery
paper, electropolished, then subjected to a short
etching. For such samples the surface currents
were greatly diminished and a reasonable correc-
tion could be applied. " The long dimension of this
sample, that is, the current direction, is parallel
to the bisectrix axis which is denoted as x or 1
axis. The lateral faces are perpendicular to the
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FIG. 1. Magnetoresistivity of antimony at 20 kG as a
function of temperature: Adiabatic magnetoresistivity
p~&, curve A; isothermal p&~, curve B. The experiment-
al p,„,value, curve E, shows a step variation at the
A, point of helium, with almost adiabatic behavior in the
He I bath and almost isothermal behavior in the He II
region. The resistivity zero-temperature limit p&& is
shown as the broken line I- . Curve K is obtained from
the zero-field resistivity value by application of Kohler's
rule. Curve G gives a~&~ as obtained from Eq. (12). Curve
H, same as G, but corresponds to the adiabatic 0,'& case.
Curves A, B, L, E have not been corrected for surface
current. Curves K, G, II have been properly modified
to include surface effects.

binary axis (y or 2) and to the trigonal axis (z or
3) which is the direction of the applied magnetic
field H. Under such conditions the bulk transport
coefficients can be reduced by symmetry to a rela-
ti,vely simple form.

The electric current, sufficient to give a mea-
sured longitudinal dc potential difference of -100
p, V, was usually about 1 to 5 mA depending on the
field H. The potential measurements for this in-

vestigation were made with a Rubicon potentiom-
eter using a 147 Keithley nanovoltmeter as a null
detector.

The sample was mounted in a cryostat used for
thermal conductivity measurement. The adiabatic
condition was obtained by evacuating the sample
chamber so that no transverse heat current could
flow. (The effect of longitudinal heat currents was
eliminated by reversing current and magnetic
field. ) Measurements of the Ettingshausen effect
were taken simultaneously with the adiabatic mag-
netoresistivity. Adiabatic conditions were also
used in the measurement of the thermal resistivity
and Nernst- Ettingshausen effect. The introduction
of liquid helium into the sample chamber did not
permit the direct measurement of the isothermal
resistivity because of the low thermal conductance
of liquid helium I in one hand and the Kapitza re-
sistance between the sample and the helium II
liquid bath in the other hand. The isothermal mag-
netoresistivity is estimated instead by applying a
correction term to the measured adiabatic resist-
ivity, which is readily determined from the mea-
sured values for the Ettingshausen, Nernst-Et-
tingshausen effects, and the thermal conductivity.
Isothermal magnetoresistivity can, in principle,
be measured directly in a "Corbino geometry"
experiment, "which allows for a circular unim-
peded Ettingshausen heat flow. But this geometry
does not allow for an adiabatic measurement and
there exist difficulties in transposing results from
this geometry (Corbino disk) to the presently used
geometry (slab sample).

The measured values of magnetoresistivity are
shown in Fig. 1 as a function of temperature for
H =20 kG. Curve A represents the measured adi-
abatic magnetoresistivity and curve 8 represents
the isothermal resistivity as determined after
correcting for the Ettingshausen heat contribution.
Curve E, the magnetoresistivity as measured in
the liquid helium bath, displays nearly adiabatic
behavior in the He I bath and a not quite isothermal
behavior in the liquid He II temperature range.
The zero-temperature extrapolated value for the
magnetoresistivity is shown as the broken line I..
The other curves K, G, H are derived from the-
oretical considerations and will be described in the
discussion.

The most striking feature is the very weak tem-
perature dependence of the isothermal resistivity
as compared with some of the qualitative expec-
tations. Curve K, for example, which is obtained
from simple application of Kohler's rule using
measured zero-field resistivity, shows a much
larger temperature dependence. Near 2 'K, the
expected temperature contribution is hardly 5%
of that expected from Kohler's approximation.
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III. DlSCUSSION

A. Drag equation

The coupled Boltzmann equations for carriers
and phonons are given by'

=0

where fz and N-„are the distribution functions for
carriers and phonons, ' respectively. The super-
scripts "+" refer to carrier holes and electrons,
respectively.

A standard approximation" is to assume that

(o)~

f ~ f„-V(e)'——.(k h)

(0)
(()) BNqN- =N- —U(&u) ~ (qA)q q 9 (@(dq)

(0) (0)where f~, N-„rae the equilibrium distribution
functions and V(E)and 'U((d) are the drift velocities
of carriers of energy p and of phonons of energy
@x, respectively. k and q are carrier and phonon
wave vectors, k and q their absolute values.

In the presence of an electric field E, a gradient
of temperature V T and magnetic field H integra-
tion may in principle be performed. " It is more
easily expressed neglecting phonon polarization,
assuming electron and phonon isotropy, a mean
free path (mfp), and a quadratic energy dispersion
for electrons and holes. An unscreened defor-
mation-potential-electron-phonon interaction with
a scattering frequency proportional to q is also
assumed. Coupled equations 'in V(e) and U(e) may
then be obtained.

V (e) + (e ' l '/cP ') [ H &V' (e)] —(l '/l~ ) (U(x) );
= (l'/P ') fe'E —[(e —(')/T] v T'I, (3)

U(v) =
+

~+

f'-
V (e) de — -'VT,. (~/2) Bc

(4)

8 X(U()) (() U() (" 1)
d. (5)

The Debye integrals J„(u) =J [e'x"/(e" —1)']dx,
x =Is,q/Ks T, and x'(e) =8s, 2k'/Ks T

l' is the total mfp of the holes (electrons); l~' is
the mfp of the holes (electrons) due to scattering

where (U(x)),', the drift velocity of phonon averaged
in the range of q between 0 and 2k, is approxi-

'

mated by

with phonons; p' is the momentum of holes (elec-
trons) p =5k; L is the total mfp of phonons; I.' is
the mfp of phonons due to scattering with holes
(electrons); k' is the wave-vector magnitude of
holes (electrons) of energy e. s~ is the velocity of
sound. Of particular interest are the limits of in-
tegration corresponding to the Fermi energy with

x(~') =as, 2l,'/K, T =8„*,/T.
The index I' corresponds to the Fermi energy, the
subscripth (e) corresponds to holes (electrons),
g' is the Fermi energy for holes (electrons), and

0,* „ is the scattering Debye temperature of phonon
by electrons (holes).

Though Eqs. (3) and (4) assume isotropic carrier
distributions, they may be adapted to contain some
of the selective anisotropic scattering of phonons
and carriers. Thus, other Debye scattering tem-
peratures are introduced as outlined in Sec. IIIB.

To solve Eqs. (3) and (4), an iteration method is
used, wherein it is recognized that while the car-
rier drift velocities V' are almost entirely limited
by scattering from imperfections, the phonon drift
velocity U is selectively limited mostly by the car-
rier-phonon interaction. The best iteration pro-
cedure will depend on the transport coefficient un-
der consideration and on whether B is zero or not.

B. Selective electron-phonon interaction

In order to carry out the integration in Eq. (4),
we must know L, L' for all q. In the case of anti-
mony at the temperatures of these experiments the
interband and intervalley scattering processes are
negligible leaving only electron-phonon normal pro-
cesses and imperfection and boundary scattering of
phonons. In the former case k' =k+q, by which we
have a limiting condition on q. That is to say, if
[q~ is larger than the maximum diamteeorf the
carrier pocket in the direction of q then carriers
of that pocket will not scatter phonons of wave vec-
tor q, nor -q." In the case of spherical carrier
pockets, those phonons which are not scattered
have q&2k~; these are designated peripheral pho-
nons. Those which can be scattered by carriers
of the pocket (q ~2k~) are called enclosed (en)
phonons. Thus for a spherical Fermi pocket there
exists in q space an image sphere having twice the
dimensions of the carrier pocket. An ellipsoidal
carrier pocket also yields in q space an ellipsoidal
image having twice the'size of the carrier pocket.
For nonellipsoidal pockets- such as occur in anti-
mony, the image assumes a shape modeled on the
carrier pocket but with nearly twice the caliper
dimensions. Basically for a given direction of q
any extremal caliper dimension of the carrier
pocket (central or not) yields a radial dimension
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FIG. 2. Schematic two-pockets representation (Ref.
14) of the regions in q space, corresponding to differ-
ent types of carrier-phonon scattering.

(central) of the phonon image. In antimony, cor-
responding to the three electron pockets there exist
three image pockets which we label b» b» b„and
corresponding to the three pairs of hole pockets
there exist three image pockets which we label a»
a2) a 3.

In principle, we may divide phonon space into 2'
= 64 regions Rs where the iqdex s = (c)(„o.» o.„P»
(6„P,). For example o, = 1 if Rs is inside the im-
age a, and zy 0 lf Rs is outside. For the region
which is common to a.ll regions s =(1, 1, 1, 1, 1, 1),
that is to say, phonons of this region can scatter
carriers of any pockets. If at least one z and one

P is different from zero then the phonons of that
region can scatter both holes and electrons (this
corresponds to the zero-field-compensated drag
region). For peripheral phonons s =(0, 0, 0, 0, 0, 0).

The schematic model for two pockets a and b is
shown in Fig. 2. In region I, s =(1, 1), phonons are
scattered by holes and electrons. In region II, s
= (1, 0), phonons are scattered by holes only. In

region III, s =(0, 1), phonons are scattered by elec-
trons only. In region IV, s=(0, 0), phonons are not
scattered by any of the carriers.

In order to use Eqs. (3) and (4) the anisotropic
situation is approximated by spherical regions
in q space characterized by a single parameter
q,*, which in conforming to the Debye picture
is given by ks, q,*/k~ =0,*. For region I, s = (1, 1)
we have for the- spherical approximation, the pa-
rameter 0,*. Likewise we can make another spher-
ical approximation for the sum of region I and re-
gion II, that is, s =(1,P); thus giving the param-
eter 6f(=6„*). For regions I and III, & =(o.', 1)
and 8$(=6,*). Finally, for the region inside IV
we have the parameter W.

The extension from the schematic two-pocket

model to the six-pocket model can also yield a
spherical approximation; the determination of
the parameters will to some extent depend upon
the transport coefficient in question. In an attempt
to generalize the results of the schematic two-
pocket model we will divide q space into four gen-
eral regions.

The first general region, in the narrow sense,
is region I with s = (1, 1, 1, 1, 1, 1) and in a broader
sense region I' which contains all s where at least
one n and one P are simultaneously different from
zero. Correspondingly we would define a scatter-
ing Debye temperature which may vary between
two values 8,* and 6,*, (zero-field-compensated
drag region).

The second general region would be limited in
the narrow sense as region II made of all s such
that a given e is equal to one, the other coeffi-
cients taking any value (excluding all region s be-
longing to I or I'). In the broader sense it can be
defined as region II' where instead of a given ~ =1
(as in II) we have at least one of the o( =I. Cor-
respondingly 0,*, &0,* and one recognizes that 0,* is
simply 0„*the scattering Debye temperature cor-
responding to one hole pocket (6f, will correspond
to the composite image associated with the three
pairs of hole pockets).

The third region is defined similarly as the sec-
ond region and relates to the electron scattering.

The fourth region corresponds to the peripheral
phonons with s =(0, 0, 0, 0, 0, 0) and a corresponding
scattering temperature 0~4.

C. Isothermal magnetoresistance (gT = 0)

With the field H in the z direction, and E in the
x direction, the first iteration of Eq. (3), using
U(x) =0 gives, under the high-field condition,

(6)

Substituting this value in Eq. (4) gives

If we do not differentiate between the scattering by
electrons of one pocket from another, then L,:=L;
similarly L',. =L+ and L, is given by

'+p p

In this expression the term 1/L~, arising from
other cause than electron-phonon scattering, is
rather negligible except in region IV where elec-
tron-phonon scattering does not occur'.
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With y, =L,(2+o./L'+PP/L ) the U, drag term
in (7) is -y, cE/H and since L, /Ls = 1 -y, «1 one
may neglect to a first approximation the effect due
to the variation of y, from region to region and re-
place it by an average value y. Then the correc-
tion brought by substituting Eq. (7) in Eq. (3) yields
the approximate (mutual) drag term

Self-consistency by more iteration could be
achieved, but is not necessary here, and unwar-
ranted because of the approximations already
made.

The isothermal magnetoconductivity is then given

y 0]1 0 l 1 ImP ++jJgg] )

p' p (' y) p~-(1-y)p-
o„(H) n

imp lmp y f
(10)

where n is the total number of holes (or electrons)
per unit volume. For a perfect mutual drag, the
coefficient y = 1 and the magnetoresistivity" is
temperature independent and equal to its zero
temperature limit (curve L, Fig. 1).

hausen coefficient and X, is the total (lattice) ther-
mal conductivity.

However"

')I = Te" =[T/(H/c)](C, +—', yC,'" ), (14)

(15)

where (y, ),' and (L,),' are averages of the same
type as in Eq. (5).

When this value of U„ is used in the calculation
of current, J„, the conductivity takes the form

(x",,"= {cr,', , p+o,', (I -y)]

+ gp ——L„, + —Q, (16)

where g, is the carrier's specific heat and C,"
= C(8,*/ T) is the specific heat of the enclosed
phonons, i.e., all phonons except the peripheral
phonons.

Then taking into account the added term in 6 T/sy
the solution of Eq. (3) yields an x component for
the carrier drift velocity

The weak temperature dependence in the iso-
thermal magnetoresistivity is associated with the
term

o,.„„=n(l-y),'+ ' —=(l-y)o„, ( 2)
)+ ) B 8P &

whereby (1-y) is small but not zero.

where we have made use of the relation 1/I' = 1/l,'
+ I/lz . The averages

()„*,)r y, x'e" dx

&,(8~*./T) ~. (e" —1)'
t

and

D. Adiabatic magnetoresistance

Under the adiabatic conditions no transverse heat
current can flow, and therefore a transverse tem-
perature gradient V T, (the longitudinal component
v T„ is negligible) is generated, which should par-
tially "turn off" the simple drag of phonons and
thus yield a more efficient electron-phonon scatter-
ing. Since the Ettingshausen temperature gradient
V T, is small, one may simply superimpose its ef-
fect in Eq. (3) in order to obtain the modified drift
component in the x direction V'„(]'), and the cor-
responding adiabatic magnetoconductivity coeffi-
cient 0». The y component of the phonon drift be-
comes

can be regarded as independent of the limit of inte-
gration" and characteristic of all enclosed phonons
y„= y, = y'" = y (likewise for L). The first bracket
corresponds to 0,', the isothermal conductivity as
in Eq. (10). The second term gives for o» —o» the
quantity

which to a good approximation can be identified
with (v",, /X ) e,", so that from Eq. (14) (H/c)o, t(Ls, /
X,) =-',yC,'". If we introduce ', Ls~C;" =A.;", the c-on-

tribution of enclosed phonons to lattice conduction,
and X'"/y, the conduction of these phonons due to
carrier scattering alone, one obtains

E ~g BT
U, ((o.) =-y.

H
~0/c T Bg

(13) (17)

But since there is no heat flow in the y direction
one has 8 T/ay = —((),", /X )E where v",, is the Ettings-

an equation similar to this obtained by Ziman" for
zero field (p~W, '= (n'/e')( —', C)'T} relating the ideal
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resistivity p~ [in place of o,~(H/c)'(n/e)'] with the
phonon heat conductivity due to carrier scattering
W, ' (in place of A',,"/y).

lt is interesting also to note that c,~ (i.e. , the
undragged conductivity) not (l-y)g, ~ is the ideal
conductivity which appears in this relation (17).
When one expresses Eq. (16) in function of X"'" th' e
corrective term appearing in the adiabatic conduc-
tivity takes the form

(18)

E. Comparison with experimental results

The primary experimental coefficient is the-
adiabatic conductivity c~»~. The isothermal-con-
ductivity g» is determined from the relation g»
=c |,—m,",e2, /A. , with Ettingshausen m,"„Nernst-
Ettingshausen e2„and thermal (lattice) conduc-
tivity X, coefficients measured separately. This
conductivity o» is known rather accurately as well
as g» p

the limit of g» and 0» as T tends to zero.
The ideal conductivity o,.~ is obtained from c,.~

=g, , —g», ,„z, it is known rather precisely except
in the low-temperature range where the uncertain-
ty in the extrapolation to T = 0 yields a relatively
large uncertainty in O,.d.

As shown in Eqs. (12) and (16), o,d =(l-y)o, ~ is
reduced due to drag by the coefficient 1-y as
compared to o,~ the magnetoconductivity due to
electron-"undragged "-phonons inter action. In

order to obtain an estimate of the magnitude of this
effect one needs to determine separately the values
of g p and y.

A term involving e,~ appears in g~,'|) -g» Eq. (18)
and can be used to estimate the g,~ value. An esti-
mate for y can be obtained from the directed anal-
ysis" of the coefficient m2', = (c T/H)(C +-,' yC"").

Also from Eq. (17) the value yo, ~ =(c /H)'(T/
X,"'")(-',yC;")' can be estimated, since -', yC,

"'" is di-
rectly determined from the &,", or w,", coefficient
analyses and X,"" can be extracted from the lattice.
conductivity. "

The best fit for these different quantities y. ield a
value y=0.93~0.02.'4 The mutual drag therefore
reduces the ideal conductivity by nearly 20 times
from the g, ~ expected value. The value for g,~ is
given in Fig. 3 where it is shown to exhibit the
Gruneisen T' law in the low-temperature range.
A corresponding composite value for the magneto-
resistance "without drag" is also shown in Fig. 2,
with curve G corresponding to the isothermal case
and curve & to the adiabatic case.

To proceed to the analysis of g,~ one may use the
expression (12)

with

where g„, is the deformation potential for holes
(electrons), N the number of atoms per unit vol-
ume, p the mass density, OD the Debye tempera-
ture, p' an anisotropy factor, v+=6 and p =3 the
number of hole and electron pockets, respectively.

In antimony since l& «t& we may to a first ap-
proximation consider only the electron contribution

g,~=g,~. With this approximation the values ob-
tained for the deformation potential and the effec-
tive Debye scattering temperature for electrons are

g, =2.9 eV and 8*=26 'K.

The value for the deformation potential is in very
good agreement with that obtained by Qantmaker
and Dolgopolov" from the radio-frequency size-
effect mean-Bee-path measurement. It is also in

good agreement with the value deduced from the
electronic part of the thermal magnetoresistance. '

The value for 0,* is somewhat smaller than
28.5'K, the value obtained from the electronic
part of the thermal magnetoresistance, ' and smal-
ler than 80.8 'K the eStimate from the size (k„&„&)
of the electron pockets. It is to be pointed out
that the determination of 0,* is affected firstly by
approximating y, to a constant y and secondly by

P

E
CP

~ IOO-

C9

O
OJ

II

~ lO-

10

T (K)
FIG. 3. Value of o~& (corrected for surface current)

is shown as a function of temperature for H =20 kG,
and it is seen to exhibit the expected low temperature
T . But the experimental and extrapolation errors are
too large to trust these results to be a firm confirmation
of the T5 behavior.
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the neglect of the hole contribution g+~. This later
contribution may partly explain the apparent smal-
ler value for 0,*.

, The valueS obtained here for y, $„and 0™,* are
in generaI agreement with those determined from
other transport effects."

General Qualitative agreement is, also obtained
by application of Kohler's rule. " If it is assumed
that the scattering zs not affected by the magnetic
field p(H, T)/p(0, T) =F (H/p(0, T)) and the value
obtained for p(H, T) using the zero field p(0, T)
Value is shown as curve K in Fig. 1. The zero-
field coriduction corresponds to a situation of com-
pensated drag, i.e., close to a nondrag conduction
and the estimated "Kohler's value" for resistivity,
matches more closely the nondrag values (curve G)

. than the isothermal experimental value (curve B).
When the results of magnetoresistance are com-

pared with those of- thermal magnetoresistance'
some interesting points can be made. As pointed
out above, the uriified drift of carriers and phonons
under the condition of isothermal magnetoresis-
tance measurement reduces the efficacy of elec-
tron-phonon scattering because of the reduction of
momentum transfer between the two systems. But
the conditions under which thermal magnetoresis-
tance is measured on one hand does not yield the
same unified drift and on. the other hand this effect
depends on energy transfer during the scattering
which even under drag condition is a more effi-
cient scattering than that which depends on mo-
mentum transfer. Assuming a maximum eff iciency,
the experimental electronic thermal magnetoresis-
tance corresponding to phonon scattering x,(,-d„,)

=A.,~, yields the values $, =3.00 eV and 0,*=28.5'K
in very good agreement with the determined 0,~
value. In other words, the contribution to the elec-
trical and thermal magnetoconductivity which are
due to the electron-phonon scattering can be ex-
pressed by

with y, close to unity (strong effect of drag) and

y~ close to zero (unaffected by drag) as c,~ and

pt y ie ld the same elee tron-phonon scattering
parameters.

A weak temperature dependence of the rnagneto-
conductivity of Bi is also observed" which is not
due to drag since y is expected to be small. In Bi
the phonons are scattered primarily by the bound-
aries. Although the electron-phonon scattering is
"efficient" its contribution to the magnetoconduc-
tivity is negligible for other reasons and Kohler's
rule applies for this case.

In conclusion, the weak temperature dependence
of the magnetoresistance of antimony at low tem-
peratures is a direct consequence of the nearly
unified drift of the electrons, holes and phonons.
Analysis of the adiabatic situation, and numerical
determination of transport parameters such as
electron-phonon scattering eff iciency, deformation
potential, Debye scattering temperature are in
agreement with those determined from other ef-
fects. 27

%e would like to acknowledge Dr. R. C. Crosby
for his help during the early part of this study.

~Present address: Dept. of Physics, Illinois Institute
of Technology, ,Chicago, Ill. 60616. In partial fulfill-
ment of Ph.o. degree.

/Present address:. Dept. of Electronic Engineering,
Yamaguchi University, Ube, Yamaguchi, Japan.

No attempt will be made here to give a comprehensive
list of references. References 2—7 are related to this
subject for the case of antimony. Other relevant ref-
erences can be found in those articles.

2C. G. Grenier, J.R. Long, J. M. Reynolds, and N. H.
Zebouni, Load Temperature Physics (Plenum, New
York, 1965);J.R. Long, C. G. Grenier, and J. M. .

Reynolds, Phys. Rev. 140, A187 (1965).
3S.J. Freedman and H. J. Juretcpke, Phys. Rev. 124,

1379 (1961);S. Epstein and H.. J.Juretchke, ibid. 129,
1148 (1963).

4M. C. Steele, Phys. Rev. 99, 1751 (1955).
5Yu, A. Bogod, B.I. Verkin, and V. B.Krasovitskii, Zh.

Eksp, Teor. Fiz. 61, 275 (1971) [Sov. Phys. -JETP 34,
142 (1972)];Yu. A. Bogod and V. B.Krasovitskii, Zh.
Eksp. Teor. Fiz. 63, 1036 (1972) [Sov. Phys. -JETP
36, 544 (1973)].

6C. L. Tsai, D. L. Waldorf; K. Tanaka, and C. G. Gren-
ier, Phys. Rev. B &6, 4968 (&977)

C. L. Tsai, dissertation (Louisiana State University,
197-6) (unpublished) .

The point was noted in Ref. 2. It is also noted in Ref. 5
(1972) that the mean free path determination from the
temperature dependence is in disagreement with its
determination from the size dependence.

See, for example, L. E; Gurevich and I. Ya. Korenblit,
Fiz. Tv'erd. Tela 9, 1195 (1967) [Sov. Phys. -Solid
State 9, 932 (1967)].
Yu. Kagan and Y. N. Flerov, Pis'ma Zh. Eksp. Teor.
Fiz. 20, 621 (1974) [JETP Lett. 20, 284 (1974)] ~

F. W. Sheard, J. Phys. F 3, 1963 (1973).
J. M. Ziman, Electrons and Phonons (Oxford U.P. ,
London, 1960).

~A. H. Wilson, The Theory of Metals, 2nd ed. (Cam--
bridge U.P. , Cambridge, 1954).

~4Both pockets shown here are modeled after the Fermi-
surface determination by'R. A. Herrod, C. A. Gage,
and R. G. Goodrich, Phys. Rev. B 4, 1033 {1971).

5Grade 69 zone refined bar, Cominco Products, Inc. ,



MUTUAL DRAG EFFECT IN THE MAGNKTORESISTIVITY OF. . . 625

Spokane, Washington.
More detailed information about the sample treatment
and experimental procedure is given in Refs. 6 and 7.
O. M. Corbino, Phys. Z. 1P, 561 (1911);see, for ex-
ample, Methods of Experi emerita/ Physics (Academic,
New York, 1959), Vol. 6 B.
This approximation is used by Gurevich (Ref. 9) among
others.
Since we have T «T&, the Ziman cutoff function is
practically-a step function. See J. M. Ziman. Philos.
Mag. 1, 191 (1956).
In the present case the Hall conductivity is negligible
so that with 0&2 «a&& the magnetoresistivity equals the
reciprocal. of the magnetoconductivity p&&

~ 0
&& .

R.-S. Blewer, N. H. Zebouni, and. C. G. Grenier, Phys.
Bev. 174, 700 (1968).

2If y and L are not supposed constant, the term d~&{1

-y) is replaced approximately by cr,»(1-p~)+(&, ~I

—0,+&
& ) (1 -y&&) and o e&L is replaced by a similar term.

- Indices I, II refer to region of scattering character--
ized by8& (or 2kgf) ande2 (or 2~Eh) ~th Oepl
=g( =(g/&) p~)/l f $ and

e~ xedx
1 7 $ CJ5(ef /'T) (1 p$)

p (
with

1 1 +2 0.
Lg L~

where Pu snd P both between 1 and 3 and 1 -yn
=(1/Ls)(1/Ls+2 n/L') with gu fudged between
1 and 3.

238ee, for example, J.M. Ziman, Ref. 12, 'p. 321.
24Efficient drag y ~ 1 is well confirmed mostly thx'ough

Nernst-Ettingshausen data, see Refs. 2, 17; also M. S.
Bresler and N. A. Red'ko, Zh. Eksp. Teor. Fiz. 62,
1867 (1972) fSov. Phys. -JETP 35, 973 (1972)];S. K.
Bansal and V. P. Buggal, J. Phys. Chem. Solids 35,
979 (1974).

25G. N. Rao, N. H. Zebouni, C. G. Grenier, and J.M.
Reynolds, Phys. Rev. 133, A141 (1964). The values
a+ =1.6, a =2.6 pertain to electron-impurity scatter-
ing. Note that there is an error of sign in the Hall
effect in this article and that in Sec. III electron and
hole could be reversed. The value obtained for h~ will
depend on the value chosen for a . Here the value S~
=2.9 eV corresponds to a =2.6.

26V. F. Gantmaker and V. T. Dolgopolov, Zh. Eksp.
Teor. Fiz. 60, 2260 (1971) [Sov. Phys. &ETP 33, 1215
(1971)), give a value [b,

"
) =2.9 eV.

2~General correlations in the contribution of drag in the
different transport coefficients of antimony. will be pub-
lished at a later date.
See, for example, A. H. Wilson, Ref. 8, p. 315; or
J.M. Ziman, Ref. 12, p. 491.
J.R. Sybert, dissertation (Louisiana State University,
1961) {unpublished) .


