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Theory of ac and dc electric conductivity by noninteracting electrons
in correlated arrays of fixed scatterers
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It is shown that the procedure of averaging over positions of scatterers interacts synergetically with the
application of the diagonal-projection-operator (5,5 ) decomposition to yield an exact expression for the
ac and dc conductivity for an arbitrarily ordered array of fixed potentials, The formula is evaluated to lowest
order in the scattering strength for arrays of scatterers with various degrees of order from uncorrelated to
periodic; it is a function of density, frequency, and temperature. dc conductivity, for example, is a
minimum for a perfectly random array, increasing to infinity for a periodic lattice at T = 0. Application to
thermal-disorder resistivity in metals is mentioned. In appendices we discuss pervious attempts to solve this
problem, simplify the quantum-mechanical Green-Kubo formula, and calculate the conductivity of classical
electrons moving among dilute uncorrelated scatterers.

I. INTRODUCTION

In this paper we will calculate the electric con-
ductivity for a simple model of a real substance.
Qur starting point will be the Green-Kubo formula
for the ac (~)0) and dc (~ = 0) conductivity o(~)
in terms of the integrated current- current time-
correlation function. The model will consist of
noninteracting electrons moving in an arbitrarily
ordered array of fixed potential wells.

The obstacle with which any attempt to calculate
o(0) is soon confronted is that in the absence of
random scatterers it is infinite. If perturbation
theory is to be used it must be with care, because
every term in the expansion in powers of the scat-
tering strength is either zero or infinity.

Several ways of coping with this vexatious situa-
tion have been invented. ' " Qne is to forget about
the Green-Kubo formula and derive a Boltzmann
equation for the relevant part of the electrons'
density matrix in the presence of an. electric field,
solve it approximately, and obtain the conductivity
from the solution. Another is to manipulate the
equivaalent of the Green-Kubo formula into an ex-
pression for the resistivity (p= o' '), which vanishes
for no scattering, hence promises that a perturba-
tion expansion may be possible. Qr one can param-
etrize divergences in the expansion by giving the
frequency a positive infinitesimal imaginary part,
and keeping only the most divergent terms in each
order of the perturbation, series. The sum of these
terms yields a finite answer.

Each of these methods gives the same result for
conductivity in the simple examples to which they
have been correctly applied. None of them is
particularly easier than the others as far as formal
manipulations or numerical work are concerned,
because they all involve solving an integral equa-

tion equivalent to the Boltzmann equation.
In the present work we aim to accomplish several

things. First, we use the diagonal projection
superoperators 4, 4' to transform the Green-Kubo
expression for o(&u) into a form suggestive of the
Drude formula. " Second, we formally (but only
implicitly) expand o(w) in a power series in A. ,
the scatterer strength, in order to perform the
correlated average over scatterer positions. Be-
cause of the presence of the superoperators ~, the
averages of certain products, in the thermo-
dynamic limit, become products of averages. This
fact enables us to resum o(e), obtaining a formally
exact result.

We will then evaluate o(v) in some interesting
limits to lowest order in X. The case of uncor-
related scatterers has been treated before, but
n.ot for all 0(~ &~. We also consider correlated
scatterers, presenting o(v) for a liquid as a func-
tion of the structure factor, and for a periodic
lattice with thermal- disorder corrections.

II. DERIVATION OF CONDUCTIVITY FORMULA

A. Superoperator formalism

The model we consider is illustrated in Fig. 1.
It consists of independent electrons moving under
the influence of an electric field E(t) = Re(Ee' ')
in an array of fixed scatterers. The Harniltonian is
the sum of eE(t) ~ r and H =H'+ XV, with

N

V(r) = Q Q(r —r,'), (l)

where X is the dimensionless strength of the scat-
terers, of which there are N, located at positions
Lr)j, i = 1, . . . , iV.

The Green-Kubo formula for the linear response
to E(t) gives an electric conductivity whose real
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0

part is"

FIG. 1. Model which we
consider in this paper. . In-
dependent electrons propa-'
gate under the inQuence of
an applied electric field in
an array of scatterers,
whose positions may be
correlated with each other.

and if

9 = {q —z(d —~)
then

G'--, -.= Ei-, 6-.[q-iv —i(E- —E-)] '.krak'q' kk' m' k a i (12)

B. Diagonal projection superoperators

In order to motivate the introduction of the
6, 4' superoperators, "one might look at the ex-

pansion of 9in powers of X:

o s(v) = , Pe'n, —Re dt e'"'Tr[pv ~ v(t)], (2) 8 = 9'+ X9'U8'+ X'O'V9'08'+ (13)

zzH/Tr -(& -BH)

v is the velocity operator, and

(f) &
3Hz $H t

(3)

defining the I iouville superoperator" X, which
can.be shown to satisfy

where P= (e"~- 1)/&u, P=1/kT, and n, is the elec-
tron density. The equilibrium density matrix is"

(60)1~ = 6POPi, (14)

Comparing this with (12) it would appear that in
the dc limit the "diagonal" (E-„—= E;) intermediate
states in this expansion give an important con-
tribution simply because 8'»„-„-„-„=q

' and we will even-
tually take q-0. (We will see later that it is true
that there is something special about the k= q inter-
mediate states, but that it has nothing to do with
the magnitude of 9'.) Therefore we define a super-
operator which singles out these intermediate
states as follows. With 0 and arbitrary operator,

Xo=-i[H, 0], (5) or, for the tetradic elements of 4,
where 0 is an arbitrary operator. With Eq. (4),
the integral in (2) may be performed, giving

c'„(~)= Pq Re Tr(pv ~ Bv),

where q= 3e'n, and

8= (& —i~ —R) '.

(6)

We have added a positive imaginary infinitesimal
part to &-(d+i&, to insure convergence of the time
integral. 8 is, like X, a superoperator.

If now a basis set P.„ is introduced, with

6k+k i~t 5k+'6k I~I '5kk I ~ (15}

6 can'be described as a diagonal projection super-
operator; its complement is 6'=1 —A.

We can now insert 1=6+ 6' wherever we please
in (13}:

g = 8'+ xe'(~+ n. ')U(n. + n. ')8'+ q' ~ ~ (16)

and if we define a propagator 8' with no diagonal
intermediate states

8' = 8'+ X9'~'U8'+ X'8'~ "V8'~'V90+ ~ ~ ~

we can deduce the tetradic" elements of the super-
operators Ko and 'U. From the definition (5) we
find

(Uo)-= U--, - o--
k' krak 'q' k'q'

kl qI

= (q - i ru —~ —xn'Q }',
= (1 —xe'~'u)-'g',

then (16) becomes

8 = 9'+ X8'~'08'+ X' (18a)

(18b)

(v- o-,- o-, v-, - ~
kk' k'q kk'

I

from which it follows that

i~v-, e-; —v-, - e-, &.
kq k'g' i kk' qq' ~1'q kk' & ~

Similarly it is easy to show that if X~ is defined
by

x'0= -z[a', o],
then

The diagonal singularities have been segregated in

(18a) and resummed in (18b). The only singular (-e ')
factors in {18)come from 9'6 = (1 —XQ'6'U) g 'L.

C. Transformation of 0& (w)
I

To apply n. and A' to Eq. (6), we need to know
how they act on the velocity operator. The sim-
plest case occurs when v is diagonal in the p-„

representation: then

~;;,.p —-z(Eg —E-)dye, .5-. (10) 6v= v.
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This is the case if Ij-„are plane waves; it is true
up to interband mixing if gg are Bloch states. We
will take IjI-„ to be plane waves in an L x L x L box
with periodic boundary conditions. Then

where

d'x e'"' [ P(r) —Q]

y -3/2eik r

2p 2p 2p 2v .k k k = ——0 —2x 3x
7

(20)

with Q = fO' Q(~) subtracted so that a constant P,
may be absorbed into O'. With (28), (27) becomes

4 -L QI g QRm ] m 1

6'Uh = 0. (21)

Whether or not p~ are plane waves, it follows: from
(9) and (15) that N

~ ~ f1 m

(k~" 2)' g ~ ~ ~ e ( -k~ } x] (29)

Equation (6), with (19) and (18b) is

aR(~) = Pq Re Tr[pv 9'(1 —Xh'US') 'Lv] . (22)

With (17), (21), and the fact that

Now define f (r, ,.. . ,r. ) to be the joint distribu-
tion function for (rl). f is symmetric in its argu-
ments and

9'&=(& —i&u) 'a,
one can show algebraically that

(1 x~'u9')-'a = (1-x'n'v9'~"09')-'~

Using also the fact that

9'~ = (1 ~9'~'u)-'90~,

one can write

(23)

(24)

(25)

L'f„,(r, , . . . , r, ) = d'y f„(r, , . . . , r,.„) (30)

so that each f is normalized and f, = 1. Also f is
assumed to be homogeneous: i.e. , invariant under
translation of all its arguments simultaneously.
The averaging operation will be denoted by P, i.e. ,

os((u) = PqRe Tr[ pv (1-A9'S'Q) '

x (q —i' —X'6'09'd "0) 'b.v] . (26)

0. Average over scatterer positions

Use of the diagonal projection superoperators
has forces o„(&u} into the form (26}. Whether it
is useful depends on whether it can be evaluated,
and the first step in evaluation is to change the
stochastic operators in it to operators averaged
over realizations of the scatterer positions (r,.j
of Eq. (1)."

Imagine that (26) is expanded in powers of X,

which not only occurs explicitly, but p and 8' also
depend on it. The coefficient of A. will contain m
factors of V(r), separated by operators which are
diagonal in the g; representation, so we need to
average expressions like

We emphasize that Eq. (26) is exact in the plane-
wave basis; we have made no approximations what-
ever.

PJLO) =L '" d'r, ~ ~ d'r„ f„(r„.. . , r„)

x O(r„. . . , r„) . (31)

The sum in 4 contains rnid terms. As an ex-
ample of how the averaging works let us take a
general term from 4„which is depicted in the
diagram in Fig. 2, The diagram is constructed
by labeling the intermediate momenta k„.. . , k,
which connect vertices denoting interactions with
scatter, rs at r, , , r, .

The perturbation expansion of Eq. (26) can be
written with a 4+ 4' projection superoperator
separating each pair of 0's. Translated to the
langu'age of Fig. 2 this means that, for example, if
b occurs between vertices 3 and 4, k4 will be con-
strained; i.e. , k, = k, as in Fig. 2(b).

Next we will introduce an Ursell-Mayer cluster
expansion for

e;,;,( ,,)
~ ~ ~ f

leapt

1

xp" (r }~ ~ ~ Q (r. ).
k2k3 f 2 k kg

For P given by (20), we can write
~ + re

L-3ei &k&-'k2) ~ rg y

(27)

(28)

(a)
kI k2 kq

gl g I

(b)
k) k5

gl

'k3

k2
gl

k2

(c)
k~g ki

k5 k(
gl

rw

k5 k,
gl

k5 k(

FIG. 2. Diagrams of terms in 4 ~.
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f„, namely,

f,(r, ) = u, (r,),
f,(r„r,) = u, (r,)u, (r2) +u2(r„r2),

f2(r„r„r2)=u, (r,)u, (r2)u, (r2)+u, (r,)u2(r„r2)

+ u, (r,)u, (r„r, )

+u, (r,}u,(r„r,)+u, (r„r„r,), (32)

where u, (r, ) = 1, and u„(r„r„.. . , r ) - 0 when-
ever the difference between any pair of its argu-
ments exceeds some correlation length ~,. This
defines clusters according to scatterer label;
what we actually want is an expansion according
to position in 4„(or along the line in Fig. 2) be-
cause (i„i„i„i„i,) may not all be distinct. We
want a cluster expansion in which two scatterers
at r; and r& are in the same cluster if either i =j
or r,. and r& are both arguments of au . If, for.
example, a term in 4, has i,=i, and i,=i, one can
define

f,(r„r„r„r„r,) = 5(r, —r, )5(r, —r,,)f,(r„r„r,),
(33)

which can then be expanded in u's according to
(32).

%ith cluster s def ined in this way, one can see
that, any term in the average of 4, corresponding to
Fig. 2(b) in which no cluster straddles the 4 (in-
termediate momentum k, ) is the same as would
have been obtained if (1,2, 3) and (4,5) were aver-
aged independently. That is, (1,2, 3) and (4, 5) are
uncoupled if no cluster includes scatterers from
both groups. Also, because f,(r„r„r,) and

f,(r„r,) are independent of the center-of mass of
(1,2, 3) and (4.5), respectively, the averages over
them enforce momentum conservation, i.e. , both

yield factors 6;
Qn the other hand, if 4 occurs within a cluster,

then the averages do not enforce momentum con-
servation, and the result of this contribution of
Fig. 2(b) to the average of C, is the same as the
contribution of Fig. 2(c) for k~ close to %,." The
number of such k, 's is of order»I. ~sk/sE2~, so
if the thermodynamic Limit I.-~ is taken before
»-0, the contribution of Fig. 2(b) for straddled
4's can be dropped.

The argument can be extended straighforwardly
to the general term in 4; the result can be con-
cisely expressed as follows. If A and 8 are any
operators which may be expanded in 4 's, then
with P as defined in Eq. (31)

P{X„-,a;;)=P{A„-„)P{E;g. (34)

It follows that Eq. (26), after averaging, can be
written

o „(~)= Pq Re Tr [P{pv ~ (1 —A.B'4"0) '}
x (» —i&a X'P{AU B'4~'Dhj. ) 'v]; (35)

that is, the super operator in the denominator is
n. o longer stochastic, and can in principle be eva-
luated.

We emphasize that Eq. (35) is still exact, valid
for a,ny density or degree of correlation of scat-
terers, in the thermodynamic Limit.

III. EVALUATION OF 0 (~)

A= (» —i~ —12P{&'VB'&'&~j) 'v

which occurs in (35). Replacing B' with B' and
using (9) and (12), one gets

(36)

We will now evaluate Eq. (35) to lowest order in
A. for several systems of fixed scatterers from
randomly disordered to periodic arrays. Consider
the factor

(» —i~)P{lV-„;„I') (» —i~)P{~l'f ~ )
25212 522i ~ " x2 a2 + 22 2t'2& I %2 I ~ %2

which, with (36), gives

= v-„;/(» —i(u), (38)

to be solved for the diagonal matrix A. This equa-
tion is equivalent to the Boltzmann equation of
conductivity theory. If the system is isotropic,
so that P{

~
V2-„. ~') is invariant under a simultaneous

rotation of k and k', then (38) can be solved" as
follows. We consider A-„„- to be a vector in co-

ordinate spa, ce; by symmetry it must be in the k
direction. Make the replacements

A

Aff Q~0, vga vpk' )

where ~k ~=1. Then (38) becomes, with cos&.„2,
=k k'

(3B)

I 22 ~ ) (»22 —o'2~ cosB22 ) "2
(» —ie)2+ (E2 —E2.)' » —i V

(40)

and, if we further assume that the energy depen-
dence of n is weak, as will be the case ai mod-
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crate temperatures where only E~'s close to E„
are important, an approximate solution of (40) is 6»=2~'g P( l v;„, l')(Pkk'

(E E )k
(44)

1

Q~ —'U~ & —zM + %'kk, 1 —cosgkk,

where

(41)
1—
» = ((x'~P(

l
v-„»,

l j (1 —c

os�

(I(kk, )
k~

x 5(E» E», + +) . (45)

2(e —iv)&('P( t Vk». 1'j
(e —i~)'+ (E» —E», )' (42)

If now we let e-0+ in (42), it becomes (with (P

denoting principal vaiue)

w;;, =e'r{(V~. (*jI S( e
»e&

+ (((&5(E, E„—~—)

The Eq. (35), to lowest order in X, can be written

T -1

o&((~) = &(f+P»» "»,1 6 P
,

~
& +~~& +7&

(46)

1/T»=1/T'„+1/T» . (4'I)

which is a generalization of the Drude formula for
conductivity. Here we have put

+(((E, —r, , +ra)]I, (43) IV. COMPUTATION OF rk FOR CORRELATED SYSTEMS

whose real part is the familiar Fermi-golden-
rule transition probability, split in.to components
for emission and absorption of w. Its imaginary
part vanishes for & = 0.

We define 5~, T~, and T~ as follows:

From (1) and (28)
E

V L 3 e((k-k'& ~ r( ykk~ k-k'

so, if n, =N/L', the density of scatterers,

(48)

p((V ~'(= jl.e'(q„,.('((ee, l. ' d'eee're, (r„r,je'' "'' ' ')

=n. L ' lek-' I'S(k-k') (49)

where S(q) is the liquid structure factor,

1 ~ A ~

S (q) = —P e(q (r (- ry& (5o)

The second term can be averaged using (51); for
j Wj', 5f and 5f, are independent,

j ( k-k~ )~ ( 6f-6f g )& (k k ) (6 )

For an uncorrelated array, S(q) = 1. For a liquid
S (q), for small q, is typically much less." The
effects of the correlations are therefore to in-
crease vR for small & and decrease it for large ~,
relative to the randomly disordered system.

Although our assumptions made in Sec. III in-
cluded isotropy and a maximum correlation dis-
tance r„we can still apply our formulas to micro-
crystalline" substances as long as the maximum
size is «L. Isotropy in the large is then satisfied.
Imagine that the scatterers are arranged on a
regular lattice; in fact we shall use the Einstein
model and specify that their displacements from
equilibrium are distributed according to a Boltz-
mann factor

~" ( k-k' )2y p/g

and the right-hand side of (52) becomes"

(53)

N(1 e-(k-. ke& ((»
)

+8 -&k ke& (I& & + (&k ke&. (rq r & (54)
f ~ «]

The unrestricted sum in (54) vanishes unless k
—k'= 0 or a reciprocal-lattice vector. k —k' = 0
does not contribute because (t&, = 0, and if the tem-
perature is moderate interband transitions may
be neglected, so for this case (45) becomes"

1
= 7TX 'Pl L k k 1 —cosgkk

- «6~/ or ) /2

~pwith 5& = r& —r&. Then from (48)

(51) (1 e (k ke &»r/(()

x 6(E» —E„+v) . (55)

L'f ~kk. l'
k ~ l

E
& (k-k' ) ~ (rf- rf, +6f-5f, )

f» f'=&

&i (k-k' &
~ (ry-rp+((p (jpi & (52)

For moderate temperatures Eq. (55) predicts that
the scattering rate v ' will be proportional to T,
and will saturate at high temperatures at a value
equal to that attained by a random array of scat-
terers. This intuitively reasonable state of af-
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fairs was a,nticipated by Allen" from the deviation
from lirieaeity of the temperature-dependerit
metallic resistivity.

V. RECAPITULATION AND DISCUSSION

Starting with the Green-Kubo formula for the
electric conductivity, with the help of the super-
operator fomalism and using the ~, a' projection
superoperators, we have derived an exact ex-
pression for the ae and dc conductivity of non-
interacting electrons in an array of fixed scat-
terer s. We have shown that the form of this re-
sult is preserved when the positions of the scat-
terers are averaged over, independent of the
degree of correlations, from random disorder to
periodic lattices. To accomplish this it was neces-
sary to expand in a perturbation series, but the
resummation was exact in, the thermodynamic
limit. No use was made of X'f (or X'/c) diagonal
singularity arguments to justify resummation, and
our results are valid for all &.

We have shown that the conductivity can be cast
into the Drude form, with iriverse lifetime 7 '
simply expressible in terms of a Fermi-golden-
rule transition probability. We have performed
the average over scatterer positions for two cases:
liquids with isotropic correlations, and the
periodic lattice with thermal disorder.

We believe that the results above and the ease
with which they have been obtained illustrate the
power and utility of the 4, 6' method. The alge-
braic manipulations, while nearly trivial, yield
exact expressions to which the random .averaging
may be applied, and whose structure is exactly
preserved urider the random averaging operation.

This is the key to the success of the method.
Qften random averaging is awkward and approxi-
mate, here it is easy and exact. The pattern of
occurrence of diagonal terms in the perturbation
series, enforced by the 4, ~' algebraic mani-
pulations, is in fact reasserted by the random
averaging.

Actual evaluation of the exact expression (35) for
the conductivity is, of course, still difficult, ex-
cept in the lowest order in X, which is the on. ly
case for which we have done it; Higher-order
calculations must not only take account of the ex-
plicit X dependence of (35), but also must expand
8' and the density matrix p in powers of X.
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where we know only that

(1, & ) = [4'VS'(& = 0)4"0&] + O(X) + 0 (e) . (A3)

The idea of the diagonal singularity method of van
Hoves' (X'f or X'/e method) is to keep, for each
order A.

" in the expansion of (A2), only the coef-
ficient of the highest negative power of &, because
it will give the biggest contribution when & - 0.
This means that the contributions of O(A) and
O(e) in (A3) are neglected, and (A2) becomes

. oo /2m., di (o, o)=[~ )('~usa(~=0)n g~] ', (A4)
m=

which, when e = 0, is exactly what (A1) becomes to
lowest order in A. with &=0. Qur point here is that
(A4) is a divergent series when e-0, which is the
case of interest. It is a summable divergent
series, so Eq. (A4) is true, but theorems of term
wise comparison do not hold'for divergentseries:
in particular one cannot legitimately drop high-
order terms in (A3). The reader can easily con-
vince himself that this is true by considering

y2m
1+ +(m+1)! m()

2
= (e —X2) '+a(e ' —1)+be~ ~' (A5)

for e-0. The reason that the X'/& method works
to lowest order in this case [i.e. , (A4) and (Al)
agree] is the lucky accident that (A1) can be ex-
pressed as a geometric series for an, y & and'A. '.

The rationale of the diagonal singularity method,
namely, that the diagonal energy denominators
are smallest and hence give the biggest contribu-
tioris to the sum, is valid only in the absence of
degeneraeies arid for finite level spacings. But
minimum level spacings vanish as L -~, and it
is well known that the order of limits in evaluat
ing the Green-Kubo expressions must be L -~

APPENDIX A: REMARKS ABOUT DIAGONAL

SINGULARITIES

Consider the factor (24) which occurs in the ex-
pression (26) for the conductivity:

9 (1—x 5'08'n''Ug 6)
/2m

„(~us ~ u~), (Al)
m=o

which is a geometric series in the diag'onal super-
operator ~'UQ'~'04. Suppose we want to evaluate
this sum for & = 0, to lowest order in 5, , and
suppose further that we do not know the complete
structure of (Al), but that we wi. sh to evaluate

., d~„(X, &),
m=o
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before e-0.
Divergent series cannot be avoided in calcula-

tion of dc'con. ductivity. " In. Sec. IID we implicitly
expanded into and subsequently resummed a di-
vergent series, in order to perform the random
averaging. But the terms we dropped between
expansion, and resummation vanished in the ther-
modynamic limit, so our resummation was exact.

APPENDIX 8: CLASSICAL LORENTZ GAS

Because of its pedagogical felicity, a discussion
of the evaluation of the Green-Kubo formula for
a classical electron moving in a dilute gas of small
scatterers is appended here. Equation (2) is di-
rectly applicable, with the trace replaced by an
integral over a distribution fun. ction.

a = —,
' Pe'n, dt e '"' d'v f (v)((v ~ v(t))), (Bl)

where f (v) is the equilibrium velocity distribution
function such that

(v)d'v = 1 .

i=1,2. . . .
t

If now successive scatterings are assumed to be
independent, all we need to know about the matrix
8; is its average value

vi =Bi vi„~,

Implied by the double brackets in (Bl) is an aver-
age over initial positions of the electron, and over
all possible realizations of the random scatterers.
The orbits are assumed to be straight lines be-
tween scatterings, which occur at times t„t„t3. . . .
The velocity is v, =v for 0&t &t„v, for t, & t&t, . . . ,

where v,.=F, i =0, 1, . . . because the scat-
terings are all elastic. If each scattering is de-
scribed by a rotation matrix 8;, then

Thus

T v g (cos8)'
.1+1(dT;

O
1+i(dr

and f inally

v
i(d+ T '(1 —cos8) '

v' = ' ) — d vf(v)v' )
e'n Pm

Z.'fPl . 3g (d
(B4)

Then take the inverse to get the resistivity:

S WL P~&=a '= 1+
&2' 32 &

d'vf(v)v' ) . (B5)

Here we h@ve again made a perturbation expansion. ,
keeping only the first-order term in v. Equation
(B5) is well behaved for &u - 0 and we have accomp-
lished the removal of the divergent terms in (B4)
for (d-0. So (B5) says

2

v = —,
' pe'n, f (v)d'v .

z(d+ T ( 1 —cosO

which has the same form as Eq. (46) as must be
the case at least in the high-temperature limit.

Equation (B3) affords an easy way to see exactly
where several attempts in recent years to cal-
culate resistivity in the dc case have erred. Since
a straightforward perturbation theory for 0 is then
obviously impossible attention was focused on the
resistivity, which vanishes for no scattering
and therefore may be amenable to perturbation
calculation. We define an effective scattering fre-
quency

v =(1 —cos8)/r = (8')/2T .

First, expand (B3) for finite &u as a perturbation
series in v, keeping the first-order term.

(R; ) = ( cos8,) = ( cos8) .

Then

te ' 'v(t)
00- Q v, . (cos8)' '. (B2)

g, (d

o(0)= ' &~),'

whereas (B3) says

o(0) = ' &~ '), ,

where the brackets are now defined

(B6)

t

Now if the intervals &t,. =ti —t, , are distributed
accordin. g to the Poisson distribution ( g) f = d'vf (v)v'g (v d'vf (v)v'.

P(nt) = ~ 'e

then.
i

((e ' ")) = exp(-t Q at,.)
tpQ i

4t j t' dye p ifd(jA f

= (1+i~r) '.

These two expressions for g(0) are equal if f(v) is
a I5 function in energy, as is the case in the degen-
erate electron system at T = 0. But as has been
pointed out by Huberman and Chester, ' they are
quite different in other situations. Equation (B6)
is wrong; the reason it is wrong is obvious from
the derivation. Similar mistakes, well hidden,
have been made in ea, ch of the papers in which its
equivalent has been. derived.
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APPENDIX C: SIMPLIFICATION OF

THE QUANTUM-MECHANiCAL GREEN-KUBO FORMULA

The usual form for an isotropic system is

where

o,((c) =q df e'"'Tr[pv ~ v(t)] .

dp' IN ~ 2 dPI dp' dt'.

: v(to)= -', e'n, f dl 'rr pv. i(() v(t+'())')) e'"'.
0 0

(C 1)
From this we will derive E(I. (2). We first change
variables t'= t+iP ', and decompose the integrals,
with i p" = t',

oo 8 0'

a ((c) = ——6' as(~')

It is easy to show that the first term in (C2) is pure
imaginary, so if a= as+i az, then aa((a)
=qP Rea, (&u), which is Eq. (2).

Because a((c) is a causal response, " its real and
imaginary parts are related, according to the
Titchmarsh theorem, "by the Hilbert transform

+ qa, (&u) (e"s —1)/(c, (C2)

Then, after reversing the order of integration in
the first term, arid letting q = 3 e'n„we get

8
a(u)) = iq dp!'(e" (s s' ' —1)a) 'Tr[pv v(ip")]

Although o„(~) as given above is not a manifestly
even function of , one can demonstrate it as fol-
lows. First, observe that the trace in Eq. (Cl) is
a real, even function of t. It then follows that
a*(&)=a(-cu), so a((a)+a*(u&) is even.
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