
PHYSICAL REVIEW B VO LUME 17, N UMBER 2 15 JANUARY 1978

Dynamics of the charge-density wave. II. Long-range Coulomb effects in an array of chains
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In an array of one-dimensional conductors, fluctuations in the phase of the charge-density wave lead to

changes in the electron density which are coupled by long-range Coulomb interactions. The Coulomb effect

has a profound influence on the dynamics of the charge-density wave as observed by inelastic-neutron

scattering. If the momentum transfer equals the Bragg vector of the three-dimensionally-ordered charge-

density wave, it is predicted that almost all of the spectral weight is shifted from the pinning frequency to

the plasma frequency m~, ~. In K2Pt(CN)48r033. 2H20 (KCP) this effect is not observed due to the finite

transverse correlation length that exists in this system even down to the lowest temperature. The organic

conductor tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ), on the other hand, is an excellent

candidate for this effect. By combining our results on the dynamics and the neutron scattering experiment

on KCP, it is concluded that even the existence of short-range order in KCP is impossible to understand

without including the long-range Coulomb effects.

I. INTRODUCTION 1
0&(~) =

(I fi)i&2 (2 8)

In a previous paper' (referred to as I) we have
studied the dynamics of a pinned charge-density-
wave (CDW) in a single chain. In reality we al-
ways have an array of such chains forming a
three-dimensional. crystal. As we shall see there
are interesting compl. ications in the dynamics of
phase oscillations due to the existence of long-
range Coulomb interaction. We shall address this
question and the related question of the three-di-
mensional ordering of CDW in this paper.

LONG-RANGE COULOMB INTERACTION IN AN ARRAY

OF CONDUCTING CHAINS

Let us denote the charge density on the ith chain

by

where B, is the location of the chain in the per-
pendicular direction, L is the linear dimension
in the z direction, and A' is the number of chains.
Equation (2.2) can be approximated by

0'=4wv' Q v,'q,'~g;~'. (2.4)

The total elastic energy then takes the form

If = (4vv') ' g (v,'q,' iv,'q'}(;g;. (2. 5)
a

In Eqs. (2.4) and (2.5) v' is defined by v' =v,'/vz,
where v~ is the Fermi velocity. We are interested
in studying the Green's function including impurity
averaging

p, = p + p, cos[Qz + &f& &(z)] . &(q, i~„)= dr e'""(Tg,-(r)g,-(0))„. (2.8)

'There exist two sources of short-range interac-
tion between these CDWs. T' he first is the elec-
tron-phonon intera, ction and the second is the Cou-
lomb interaction between the CDWs. Due to the
oscillatory nature of.the CDW, it can be shown
that such Coulomb interaction is in fact exponen-
tially short range. ' 'The sum of these two interac-
tions can be parametrized by'

II' = g g, dz cos[y, (z) —y (8)]. (2.2)

This interaction will tend to lock the CDWs in a
three-dimensionally-ordered state. We will separ-
ate P, (z) into two parts as in I, ie. , P, (z) = P', (z)
+g;(z) where Q', (z) is the equilibrium phase and

Q&(z) is the small oscillation about it. We intro-
duce the three-dimensional Fourier transform

This can be written

K), (q, iv„) = 4wv'(u&'„+ v„'q,'+ v,'q,' —4mv' ) ', (2.'I)

Ops 1

p Q~@
(2.8)

This is because &Q,./&z 0 0 is equivalent to a, local
change in the Fermi momentum, which in turn
implies a local change in the electron density in

where I' is the self-energy term which takes into
account the interaction with the impurities as dis-
cussed in I.

There is, however, another type of Coulomb in-
teraction which is long range. The existence of a
spatial variation of the phase Q, gives rise to a
change in the background charge density
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order for the energy gap to remain at the Fermi
surface. This is in fact the mechanism which
couples the short-wavelength excitation in the CDW
to long-wavelength excitation and is responsible for
the optical activity of the phase mode. ' 'This long-
wavelength charge density gives rise to the follow-
ing long-range Coulomb contribution to the ener-

]. 8
'

8
H, =—g dz'dz' —,, y, (z), , y, (z')v„(z -z'),

(2.9)

where v&&(z —z') is the Coulomb potential and we
have used the relation p=Q/m. By considering the
case of a square lattice in the transverse direc-
tion we tiansform (2.9) into Fourier space

array of electron gas. ' We note that the phase
mode which is a kind of Goldstone mode has a fi-
nite energy in the limit q-0, provided lim, , ~ q, /
qi

~

&0, even in the absence of impurity pinning. &

similar situation is known in the theory of super-
conductivity where the Goldstone mode has a non-
vanishing eigenfrequency in the limit of

~
q

~

-0
due to long-range Coulomb forces.

III. INELASTIC NEUTRON SCATTERING FROM CDW

A natural question to ask at this point is whether
neutron scattering will measure the pinning fre-
quency or the plasma frequency. The neutron is
coupled to the lattice displacement and measures
the density-density correlation function. The one-
phonon creation structure factor is proportional to

4718 ~ q»

m a 6»q»+ C~q~
(2.10) S(q, ~) = [n(~)+ 1]W(q, ~)/~,

where

(3.1)

where a is the interchain spacing and EJ and c»
are the high-frequency (high compa. red with the
pinning frequency) dielectric constant. In one-di-
mensional systems e, is usually of the order of
several hundred due to virtual excitations across
a relatively small energy gap, whereas e~ is of
the order of 2 or 3. Hence it is important to take
this anisotropy into account.

In this sectio'n we. solve the problem within a
mean-field theory which treats the impurity pin-
ning within one chain first and then couples the
chains together using Eq. (2.10). We obtain

&(q, i~„)= Kl (ti, i~„)+, , ', )
2p q
'tt'Q 6 q + Cgqg

47t'v~ (d'„+ v,'q,'+ v,'q,' —4@v'Z

(u,*,' = (4mv') 2e'/ma'e,

= 4me'(p/a')/m* (2.12)

Her e m* is the Frohlich effective mass and we
have used the relation'v' = (m/m")vr. Note that
due to the large effective mass in Eq. (2.12),
is of the order of the normal phonon frequency and
not the dielectric. plasma frequency. '

Equation (2.11) implies a pole at a frequency near
w*, for q~=0 and q, -0. We also note the highly
singular dependence of this pole on q. In particular
if the dielectric constant is isotropic (e, = e, ), in
the limit of ~q ~

-0, the plasma frequency (d„(q)
=e,*, cos6), where cos8=q, /~q~. This is a well-
known result for the case of a three-dimensional

2 -1

+(dpj2( / )2 i (2 ~ 11)

where co,*& is the plasma frequency of phase oscil-
lations and is given by

B

W(q, &u) = (() Im g dz d&(p, (z, 7')pz(0, 0))

= p, cos[Qz+ (t', (z)+ g, (z)]. (3,3)

Suppose we ignore the slow z variation in (t)'„we
obtain

W, (o)

0 0
= p'(dim Q dz d&(e '"~ '~' 'o'g, (z, ~)-g, (0, o))

4

x e"g ("]-"g)e'e'e'"~'
i'd &-+u-f 6

(3.4)
Now let us assume that the chains have ordered
three dimensionally, and for definiteness, assume
that neighboring chains are out of phase. This condi-
tion is satisfied in KCP'at low temperatures. Them

(t)~ =Q,R& and Bragg peaks wiii appear at (Q„2k')
where Q~ = (2'/ )(az/z+, z+ g) and h and g are inte-
gers. Equation (3.4) becomes

It is now clear that the only place where the plas-
mon effect i's important is when the transverse
momentum vector q obeys the Bragg condition
of the new unit cell, i.e. , q =@~. When q~ is dif-

xe $q& (R&-R~) fq»» i~„~
.gg ~(a)-$6

n

(3 2)

is the spectral weight function. In Eq. (3.1) n(v)
is the Bose factor and

p, = p, cos[qz+ (t, (z)]
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ferent from Q, the la.st term in Eq. (2.11) is unim-
portant, as the q,

' term in the denominator is large.
In this case S(q, ~) =[n(~)+ 1]ImS, (q, ~),and should
show a, peak only at the pinning frequency.

If qL equals a transverse Bragg vector Q„ the

situation is more complicated. I et us consider
the case when the neutron has good resolution.
Then the appropriate quantity to look at is a spheri-
cal average of the structure fa.ctor in the limit of

4

tlat'

-~' -4~v'&+ ~,*,'[e,/(e, —e,)][»»'/(»»'+ o')]
(3.6)

where &=-I /(c, — e,) and p =q,'/~q —Q,
~

where q',

=q, —Q. The»» integration can be done and in Fig.
1 we show the spectral. weight &rim&(v) for several,
values of. o.. We have used for definiteness the
weak impurity pinning result of I and we have chos-
en w,*,'e, /(a, —e, ) to be three times the pinning fre-
quency y. Ke see that for smaller & the spectral
weight shifts increasingly to the plasma frequency.
This is to be expected by inspection of Eq. (3.6)
which shows that as long as p & a the pole is at
the plasma frequency. While the above arguments
are based on the limit ~q- Q

~

0 and the assump-
tion of good neutron resolution, the qualitative fea-
ture should hold even if the neutron resolution is
poor, as one can perform the spherical averaging
for each finite ~q~ and then average over )q~.

As we mentioned earlier, for most one-dimen-
sional conductors, n is very small. For KCP we
estimate that n =0.02. However, the neutron scat-

tering data' show a peak at 2.5 MeV at both (0, 0,
2k»„) and (~, —,', 2k»;) and no sign of any pla, smon ex-
citation (which should be at 7.19 MeV according
to the optical data') at (~, ~, 2k»;). For an explana-
tion we have to go back to Eq. (3.3). We recall that
KCP is never ordered three dimensionally even at
the lowest temperature. It is then reasonabl. e to
factorize the ( ) term in Eq. (3.4) into

(e' "» '»'g, (z, v )g, (0; 0))

' ')(0 ( , )»), (0, o))

(-1)' '(iR, —It, i/X)-'i'exp( (P, It, i/&,

(0 ( , )4, (0, o)), (3 7)

where I, is the transverse correlation length. Upon
Fourier transform we obtain a convolution of ImS
with a. I.orentzian. I et us specialize to the case
when q =Q~. We obtain

W(q, +Q, &u)=(o ln -- —,
' Im& +qo

qj. 2
4m@'

2 2

—(Q) —»6) + vgqg + vgqg —4 ITv I +' (3.8)

W(&u) =
(~1

dq, w(q, + Q, &o) .

We eut off the averaging at q, equal ',.o the inverse

Here we have introduced a cutoff q, in the integral
and a corresponding normalization factor because
a Lorentzian is not convergent in two dimensions.
Since the important q, dependence is in the plasma
frequency term, we ignore the v~q' term in Eq.
(3.8) and the q~ integration can be performed an-
alytically. Roughly speaking the effect of the con-
volution is to replace the last term in the denomi-
nator in Eq. (3.8) by (u~, 'q,'/[q,'+ (a, /e, )V']. The
result is a reduction in the spectral weight at

To make comparison with experiment we
note that whereas correlation in the transverse
direction is resolved in the neutron scattering
experiment, the opposite is the case in the chain
direction. It is therefore necessary to average
over qg

of the coherence length g, because that is the limit
of validity of the small q, expansion. We again
choose 1 corresponding to th. weak pinning ='o';.;-
tion given in I and u&,*,(c,/(e, —e,))'~'=3y. We al.:;o
know that at q = $,', v,q should approximately equ.'.;!
the bare phonon frequency which is al -o e»--.::'-';,:;
the plasma freouency. We have quite arbiir-' =-:-:.'.",;
chosen v, $, =-2. 5y. From discussions below I:; .
(3.8) it is clear that the relevant di»nensionless
parameter is 0= (e,/c, )((,/A)'. In Fig. 2, W(e)
is plotted for several values of this para, meter.
We can see the change of the spectral weight from
the pinning frequency to the plasma frequency as
this parameter decreases. For KCP at 80 K,
A. =50 A, e,/e, =0.02. The coherence length $, is
unknown but an estimate that satisfies the lower
bound could be 500 A. We obtain (c„/e,)($,/X)'
= 2. For this value we see from Fig. 2 that there
is relatively little spectral weight at the plasma
frequency. The considerable wi. dth is due mainly
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FIG. 2. Spectral weight W taking into account the

finite transverse correlation length X and the finite
resolution in the chain direction. The parameter Q
= (s„/s~)($ 0/X)2 and s~ /s, is chosen to be 0.02. The
solid line is the averaged spectral weight in the ab-
sence of the Coulomb effect. Note the shift in spectral
weight toward the plasma frequency (chosen to be 3y)
as 0 decreases, or as X increases.

&/y
FIG. 1. Spectral weight at a momentum transfer

close to a new Bragg vector and spherically averaged
as described by Eq. (3.6). The parameter 0, = ~~//'(eg
—e~) is the anisotropy in the dielectric constant. The
plasma frequency ~~&(1+n) is chosen to be 3y. Note
the shift in the spectral weight to the plasma frequency
for increasing anisotropy.

to the averaging over q, . This is clear upon com-
parison with the solid curve in Fig. 2 which is the
averaged spectral weight in the absence of Cou-
lomb effects (i.e. , ur,*, -0). It is difficult to make
quantitative comparison with experiment apart
from the fact that the experiment [Fig. 9 of Ref. 6]
shows a broad structure around 2.5 meV and no
feature at ur,*, = 7.19 meV. (We interpret the broad
feature around 5 MeV as due partly to the ampli-
tude mode and partly to the normal phonons with

q, & g' that are measured due to the finite resolu-
tion. ) Note that the scattering intensity -kTo) 'W
using Eil. (3.1) and the ar

' factor tend to shift the
weight to lower frequency.

'Thus the absence of the plasma mode in the neu-
tron scattering of KCP is due to finite range of the
three-dimensional ordering. Physically this is a
consequence of the fact that neutrons couple to the
lattice position and are therefore sensitive to the
phase on each chain. If the chains have random
phase with respect to each other, an excitation of
the lattice position at a definite transverse q vec-
tor must imply a random displacement of the
CDWs from chain to chain. The dipoles induced
at the ends of the sample are incoherent, and the
plasmon is not excited. 'The situation is different
in the optical excitation of the phase mode. 'The

electromagnetic field is coupled to the long-wave-
length charge density. From Eci. (2.8) this charge
density is proportional to the gradient of the phase
and is independent of its absolute value. Thus the
plasma frequency is observable in optical reflec-
tivity' even if the CDWs are completely disordered
in the transverse direction.

It is natural to look for systems where the three-
dimensional ordering is much longer range than
in KCP. An obvious'candidate is the organic con-
ductor TTF-TCNQ where neutron' and x-ray scat-
tering'" indicate a low-temperature ordered state
with the transverse correlation length beyond the
experimental resolution. In the temperature in-
terval 47&T &54 CDWs are expected only on TCNQ
chains and the ordering wave vector is (q„q,)
= (a*/3, 0). At lower temperatures, especially if
T &38, the transverse Bragg vector is (q„q, )
= (a*/4, 0). Thus the situation is very complicated
due to the large size of the new unit cell in the a
direction (4a) and to the existence of two types of
chains in the a direction which are oppositely
charged. There exist eight phase modes in the new

Br illouin zone (0 & q, & a*/4, 0 & q, & Q, 0 &q, & c*),
one of which is the sliding mode Q„ i.e. , all chains
in a unit cell are moving in phase. We focus our
attention on the combination of modes in which the
positively charged chains and the negatively
charged chains move exactly out of phase and de-
note it by (( . In Fig. 3(a) q, is away from the
transverse Bragg vector. The lower mode Q, is
one in which the CDWs on the two chains move in
phase and it is expected to be pinned by impurities.
The upper mode Q is one in which the CDWs move
out of phase and it is split from P, by the inter-
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(b) v, /L, = v, /I. , (4.2)

pe
I
I
I r~

~r r

2kF

(0, q, 0)

2kF

()ra, q, 0)

FIG. 3. Schematic picture of the expected phonon dis-
persion in TTF-TCNQ at low temperature. Solid line is
the mode in which the TTF and the TCNQ chains move
in phase. Dashed line is the optic mode in which they
move out of phase. {b) shows that when the momentum
transfer is near a Bragg peak [in this case (4, 2k+, 0)],
the P mode is pushed up to the plasma frequency co~&.

In practice the dispersion curves will have to be broad-
ened by the neutron resolution function.

chain coupling energy. The other two modes at
q, = 2k~ are the amplitude modes. Since the chains
are oppositely charged, it is the P mode which is
optically active. Thus at q, equal to the transverse
Bragg vector the Q mode is expected to be pushed
up to the plasma frequency. This is shown sche-
matically in Fig. 3(b).

IV. THREE-DIMENSIONAL ORDERING OF'CDWs

2v,' &,p, Wn

4 ' ' L' L' (LL')' ' (4. l)

where n is the number of impurities per unit vol-
ume. It is clear that I' is minimized by the rela-
tions

In this section we briefly discuss the question of
three-dimensional ordering in the presence of
impurities in the light of the information on the
dynamics that we have obtained so far. Let us
first assume that we are in the weak pinning re-
gime for the individual chain, i.e. , the phase is

I

slowly varying over many impurity sites. Further-
more, we assume that a short-range three-dimen-
sional ordering is established, i.e. , the phase is
slowly varying in the transverse direction over
several interchain spacings. First let us ignore
the long-range Coulomb interaction. Then the ar-
gument for the domain size and pinning frequency
given in I for a single chain can directly be gen-
eralized to the three-dimensional anisotropic prob-
lem. Let us suppose that the domain size is given
by Lg~. We have to minimize the sum of the elas-
tic energy and the impurity potential per unit vol-
ume

v, /L, = (V,p, /~v'a')'n/v, ' (4.3)

This result is in agreement with the expression
for the range of the exponential decay derived by
Sham and Patton" when generalized to the aniso-
tropic situation. "

The same argument also produces a pinning fre-
quency

y =v, /L, . (4.4)

When combined with Eq. (4.2) and the initial as-
sumption of short-range order, i.e., L~&a, we
obtain

y =v, /L, &v,/a. (4. 5)

This inequality implies that the pinned mode must
have observation dispersion in the transverse di-
rection, since the frequency at a transverse mo-
mentum q~ is roughly given by uP(q, ) =y'+v,'q,'.
Equation (4.5) then implies that m(q, = m/a) ~ 2Z.
In other words we conclude that an interchain cou-
pling v, that is strong enough to give short-range
order must also be strong enough to give obser-
vable transverse dispersion. The problem is of
course that exactly the opposite is seen experi-
mentally in KCP: the mode at 2.5 meV is flat up
to the transverse zone boundary. ' While the above
argument is made only for the weak impurity pin-
ning case, we expect that the general conclusion
would hold in the strong pinning regime, since
three-dimensional ordering would be even more
difficult in that case. Indeed in that case the pin-
ning frequency is given by v, /l, where l is the
average distance between impurities. The ob-
served pinning frequency for KCP is 2.5 meV or
=3 of the normal phonon frequency. This implies
that l =3],. Since $, is the characteristic length
over which the phase can vary, it is even more
difficult to envision how three-dimensional order-
ing is possible if the impurity pinning were in the
strong regime.

From the above discussions we conclude that it
is impossible to understand the short-range order-
ing in KCP without including the effect of the long-
range Coulomb interaction. This problem has been
studied by Bergman, Rice, and Lee,"who con-
cluded that the Coulomb effect tends to cancel the
disruptive effect of the impurities. In the limit
where the Coulomb effects dominate they obtained
a power-law behavior for the correlation function
instead of an exponential decay. Since a power-
law decay has no intrinsic length scale, the do-
main type argument given earlier. will no longer
be applicable in this limit. This also indicates
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that mean-field treatment of the Coulomb effect
given in Sec. II of this paper is incomplete be-
cause the Coulomb effect also affects the single
chain correlation and pinning frequency. We shall
examine this question further in the next section.

V. COULOMB EFFECT ON THREE-DIMENSIONAL

ORDERING

We shall include the Coulomb potential for the
estimate of a domain size, i.e. , instead of Eq.
(4.1) we will minimize

function of x' and we easily find the following

r'= 1+81A/ri', for A/q'«1,

r'=3(l —16A/rl') ', for A/q'~ r6 .

(5.10a)

(5.10b)

Equations (5.10b) and (5.8a) and (5b) imply that if
Coulomb forces are strong enough sothat A/7)'
~ —„, the domain size is infinite. 'This is in agree-
ment with the result of Bergman, Rice, and Lee
%ho showed that the correlation function be/aves
as a power law

((f&(z)P(0)) - (z/f, ) for z» ], , (5.11)

va' ~, +~, (L,/L, )' (5 1)

By introducing r—= v,L,/v, L, and q = c,v,'/e, v, we
rewrite (5.1) as

, (1+2r') —V,p, * WnrL, '~'
4ma'L,' Vj

2 2

+ —, (1+ t)r') '.
7ta 6,

(5.2)

(Vz/A' )(1+2r') —3V,p,. (v, /v, )WnrL,'~ ' = 0, (5.3)

—,—,—r —V,p, '
v nL, '~

va'L,' ' ' v, ' ma'e, (1+t)r')'

Minimization of Eq. (5.2) with respect to L, and r
yields the following two equations

where the coefficient a is equal to (A/7)')-'~' apart
from a numerical constant. For large n the cor-
relation function is very small by the time we
enter the power-law regime. 'This means that the
correlation function is well approximated by an
exponential decay over a large range in z. In this
same regime our domain argument produces finite
estimates for the domain size. On the other hand,
for small n, or large A/rP, the power-law be-
havior dominates. The system has no characteris-
tic length scale. This explains why there exists
no finite solution for the domain size in this re-
gime.

We now examine the ca.se A/g'& —,', when the do-
main size is defined. The pinning energy p' is
given by

(5.4)
Solving (5.3) for L, and inserting the solution into
Eq. (5.4) we obtain an equation for r

r'(r' 1)
(1+2r ')' (1+2r ')'

A = 12e L 'g/v ~g

where I,' is given by

(5.5)

(5.8)

2

Lo = (3m'a'V, p,v, &n/v, v~) ' =, ' ' L... (5.7)
7[' v, a

y' ' = 4''V, p, y n/(LQ, ')"' .

Using Eqs. (5.7) and (5.8) we obtain

4 v
3v L," (1+2r')'

; (1+2r')4 v'

g

4 v~ 1 +O'V

3m L,'

(5.12)

(5.13a)

(5.13b)

(5.13c)

where L, is the domain size in the case of single
chain as defined by Eq. (4.7) of I. In terms of L,'
and x, I, and I ~ are given as follows

L.= L,[(1+2r ')/r]',

L, = (L,'v, /v, )(1+2r ')'/r '.
(5.8a)

(5.8b)

A/rP =r'(r' —1)/(1+ 2r')'. (5.8)

The right-hand side of Eq. (5.9) is an increasing

From Eq. (5.5) we see that r&1 if Coulomb forces
are present, i.e. , AW0. Equation (5.5) is simplif-
ied if we note r/» 1, which Bergman, Rice, and
Lee have estimated to hold for KCP

We note that Eq. (5.13b) is substantially different
from the result in the absence of Coulomb interac-
tion as given by Eq. (4.4), pa.rticularly r» 1, and
that the scaling given by Eq. (4.2) no longer holds.
However, from Eq. (5.13c) we see that we have
the same difficulty as before, namely that y' is
still smaller than the zone boundary energy v~/a
and consequently dispersion in the perpendicular
direction is predicted. 'The pinning frequency in
the case when the domain size is not defined is
much more complicated and cannot be obtained
by the present technique. Hopefully in this limit
it is possible to have short-range order and simul-
taneously a pinned mode that does not exhibit
di sper sion.
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VI. CONCLUSION

We have shown that in a three-dimensional crys-
tal consisting of one-dimensional conducting
chains, fluctuations in the phase of the CDWs in-
duce long-wavelength charge densities which are
in turn coupled by long-range Coulomb interac-
tions. We have studied the implication of this ob-
servation for neutron scattering and concluded that
if the CDWs are relatively well ordered three di-
mensionally, phase mode should be observed at the
plasma frequency at a transverse q vector equal
to a transverse Bragg vector in the ordered state.
In particular, TTF-TCNQ is a good candidate for

/
~the observation of this effect. 'The absence of this

effect in KCP is explained in terms of the finite
transverse correlation length even at the lowest

, temperature.
We also found that the existence of the short-

range order in KCP is impossible to understand
without including the long-range Coulomb effects.
Furthermore, if the Coulomb effect is included in the
estimation of the domain size, the domain size
may go to infinity for sufficiently strong Coulomb

. coupling. 'This is consistent with the results of
Bergman, Rice, and Lee, who found a power-law
decay of the correlation function in this limit. 'The
description of the dynamics in this limit is too corn-
plicated to be treated by the present technique.
However, it seems reasonable to think that if the
self-energy I' appearing in Eq. (2.ll) is properly
renormalized, the conclusions we have reached
concerning the observability of the plasma fre-
quency in neutron scattering should remain qual-
itatively correct.
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