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Dynamics of the charge-density wave. I. Impurity pinning in a single chain

H. Fukuyarna* and P. A. Lee
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{Received 30 March 1977)

We study the effect of impurities, on the dynamics of charge-density waves. . At low temperature it is a good
approximation to restrict our attention to phase fluctuation only. . The competition between the random
impurity potential and the elastic energy for phase fluctuations leads us naturally to consider two limiting
cases. In the strong pinning case the phase is pinned to each impurity site. The pinning frequency and the
frequency-dependent conductivity can be calculated. In the weak pinning case the pinning mechanism is more
subtle. We show that the system is pinned by effectively breaking up into domains. The domain size is
estimated which in turn determines the pinning frequency. The frequency-dependent conductivity and the
static dielectric constant are calculated.

I. - INTRODUCTION

In the past few years there has been intense in-
terest in the study of charge-density-wave (CDW)
formation in one-dimensional conductors. ' ' Par-
ticular attention has been focused on the eugrent-
carrying properties of the CDW state. ' ' The CDW
is described by a modulation of the charge density

p(x) = p+ p, cos(Qx+P),

where p is the uniform density, po is the amplitude
of the CDW and Q =2hz is the wave vector. The
phase P describes the location of the CDW relative
to the lattice. It was first pointed out by Frohlich'
that if the wave vector Q is incommensurate with
the lattice vector the energy of the CDW state is
independent of its location relative to the lattice,
i.e. , independent of Q. In that case the CDW struc-
ture can slide through the lattice without resis-
tance. Furthermore in cases where the CDW is
formed out of a single band, the CDW structure
has a riet charge and such a sliding CDW will be
current carrying. It has been proposed that fluc-
tuations into the CDW state can account for the
conductivity peak observed in the organic conduc-
tor tetrathiafulvalene-tetracyanoquinodimethane
(TTF- TCNQ). Although the understanding about
the conductivity peak is not yet fully. definite, "'
the situation at low temperatures is slightly less
controversial. Lee, Rice, , and Anderson have
constructed a microscopic mean-field theory for
zero temperature and confirmed the current-
carrying nature of the CDW state. However, they
find that impurity scattering has a profound effect
on the behavior of the CDW. More specifically they
found that the usual self-energy calculation for the
phase motion of the CDW leads to divergence at

. ~ =0. The reason for this is that the phase vari-
able couples linearly to the impurity potential.
This is to be contrasted with the more familiar
deformation-potential coupling which is propor-

tional to the gradient of the phase. Lee, Rice,
and Anderson concluded that because the coupling
is so strong, the CDW is pinned by the impurity
potential. Instead of contributing to dc conductiv-
ity, the CDW is responsible for a low-frequency
peak in the frequency-dependent conductivity. At
the same time the low-lying excitations contri-
bute to a large static dielectric constant. A low-
lying excitation that can be interpreted as the pin-
ned phase mode has in fact been found in KCP
IK,Pt(CN), BR, ,3 2H, G],"and all the one-dimen-
sional conductors are known to have dielectric
constants of the order of several thousand in the
low-temperature insulating phase. " It is there-
fore desirable that a calculation of the frequency-
dependent conductivity for a CDW in the presence
of impurities be performed. Such a calculation
has recently been done by Fukuyama" who con-
sidered the case of weak impurity scattering.
The main approximation made in that work is that
for weak impurity scattering the phase deviation
is small and can be linearized. However, it has
been pointed out recently by Sham and Patton"
and by Imry and Ma'4 that even for weak impurity
scattering, long-range order is impossible in
less than four dimensions. A recent generaliza-
tion" to include long-range Coulomb effects re-
duces this dimensionality from 4 to 3. The im-
portant point remains that in less than three di-
mensions the phase fluctuation can be arbitrarily
large. Therefore linearization in the p'hase vari-
able is not valid for low-frequency excitations
and one should instead linearize about some equil-
ibrium phase Po(x). This is the approach we have
taken in this paper. We -have been able to treat
both the weak- and strong-impurity-scattering
limit and identify the criterion separating the two

: extremes. We succeeded in removing certain un-
desi, rable features of the previous work. Further-
more our present approach clarifies certain con-
troversies in the literature. In particular Sokol-
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II. DYNAMICS OF, 'I'HE CHARGE-DENSITY WAVE

We consider the dynamics of CBW at low temp-
erature when amplitude fluctuations a,re negligible.
The only dynamical variable we consider is the
phase Q(x). As shown by Fukuyama22 its dynamics
can be described by the effective Hamiltonian

(2.1)

where p is the momentum conjugate to Q and

v = (m/m*)'"v„ (2.2)

is the velocity of the phase mode, nz~ is the ef-
fective mass which can be calculated microscop-
ically, ' and we have introduced

off" has claimed that weak impurities do not pin
the COW. Our results show that even in the weak-
impurity-scattering limit the CDW is pinned at
least as far as the linear conductivity is co~cerned.

where n,. =N, /I. in the number of impurity per
unit length. It is then natural to introduce the di-
mensionless parameter

e = V,p, /n, v~. (2 7)

The strong pinning case discussed above corre-
sponds to e»1 and can be realized by either a
strong impurity potential or a dilute impurity con-
centration. In the opposite limit z «1 we expect
the elastic energy to dominate. The phase Q, (x)
will be slowly varying a,nd the individual terms
in H' can be positive or negative. However, we
shall apply the general argument due to Harris"
to show that even in this case the phase P, can
distort to take advantage of fluctuations in the im-
purity distribution by breaking of the system into
domains and again (f), is not small. It is now clear
that a forms the criterion separating two extreme
ca,ses which must be treated separately.

I et us write

v =v /v~. (2.3) (2.8)

We refer the reader to Ref. 12 for a derivation of
Eq. (2.1) but simply note here that I/2))v' plays
the role of a mass density and the constants in
Eq. (2.1) have been chosen to reproduce the pha, se
mode velocity v,

Next we consider the interaction of the CDW with
impurity potential v(x —R,.) located at R„

V'(j), —V,p, g sin[QR,. +$,(R,)]&(x—R, )=.0.(2.9)

and the dynamics is determined by the term quad-
ratic in (j). This leads us to define

and expand Ho+H' to second order in P. The linear
term in g gives the equation determining Po

H'= g dx p(x)v(x —R,.). (2.4) X~ =mv' dx P'+

We shall assume a short range potential v(x)
= V, &(x), in which case Eq. (2.4) becomes

H'= V,p,g cos[QR,. + (j)(R,.)] . (2.5)

+ ' ' Q P(R,.)'cos[QR,.+(()),(R,.)] .

(2.10)

It is convenient to go to momentum space

1
g]~ ~ ~B4 flfVQ

4mv n,-
(2.6)

Equations (2.1) and (2.5) are our total Hamiltonian.
We see at once that we are facing a highly non-

linear problem. Furthermore in general (j)(R,.)
will not be small. As mentioned in the Introduc-
tion, the way we proceed is to find an equilibrium
distribution &f&o(x) for a given impurity distribution
and then do a small expansion about it. Before
we proceed let us discuss the physical behavior
of $0(x) for two extreme situations. There are
two competing energies in the problem, the elastic
energy and the impurity energy. If the impurity
potential dominates, then we expect that the phase
will adjust itself so that QR,.+ Q(R, ) =-7)' at each
impurity site. The system will gain the impurity
pinning energy of V,p, while paying an elastic en-
ergy per impurity of

dx e'~"q(x),
1

(2.11)

22, = 24' F /(), f' 4, (
—",

) 4'
f 4, f'

--'-V.p. g 4,4, ~(q+e'), (2.12)

(2.13)

The dynamics of the phase mode are best described
by the phase mode, Green's function

22(4, 4', ' „)=f 4 ' '(24( )4 .(0)). (214)
aP

From the equation of motion it is easy to show that
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FIG. 1. Diagrams contributing to the self-energy I'.
rosses represent the impurity potential and solid line

is the phase phonon propagator.

8J = — dx P, (2.17)

it is ea.sy to show using Kubo's formula that the
frequency-dependent conductivity is given by"

is the unperturbed Green's function.
The goal of this paper is to solve Eq. (2.15) to

obtain (X)(q, q ', i&a„))„where ( ),„denoted averaging
over impurities configurations. Furthermore
starting from the phenomenological equation for
the current carried by the CDW

in this approximation I" must be solved self-consis-
tently by combining Eqs. (3.2) and (3.3). It is
convenient to define the frequency

~0 =n,.V

which is the frequency of a standing wave with
wave vector equal to the inverse of the average
spacing between impurities, Define the dimension-
less quantities e = ur/ao and Ii =4mv'I /&uo and anal-

, ytically continue i~„-v —i&, the self-consistency
condition becomes

c(ur) = —— I x)(0 0 i(u -(u —i&).
2 77

(2.18) (3.5)

In the next two sections we shall discuss the solu-
tion in the limits e» 1 a~id c «1, respectively.

This is a cubic equation for I' which can be solved.
It is interesting to first consider the limit e- ~ in
which case Eg. (3.5) becomes

III. STRONG PINNING CASE (e )&1)

The limit is achieved by having either a strong
impurity potential or by having a dilute impurity
concentra, tion. In this limit the impurity poten-
tial dominates and the CDW distorts to take max-
imal advantage of the impurity potential. The
equilibrium configuration &f&o(g) is simply given
by the relation cos[QA,.+$,(R,.)]=-l and we have .

S(q) = L'F~, e "s—~. The .problem now reduces to
a familiar one in random systems. The standard
treatment of this problem is to introduce the self-
energy function E'

2( +2 ~)l/2

The solution of this equation is simply that

F = -2 —2(l —cv')'/'.

Substituting into Eq. (3.1) gives

=0 6o(1,

This form of Im& satisfies the sum rule
/

ImS
q

=77 ~

47t V'

(3.6)

(3.7)

(3.8)

(3.9)

-=&. ..s(q, i&@„), (3.1)

where I' is given in the single-site t-matrix ap-
proximation as illustrated in Fig. l.

I'=n(,'V,p)(1+ ' ' A,. = (3.2)

A. = L ' g a (q, i&@„)

5 (~2- 4&v'I') '/'
'U

(3.3)

The t-matrix approximation is lowest order in n,.
and has ignored correlations between impurities.
We shall return to discuss its validity later. With-

We recall from Eg. (2.18) that

(d 8
Reo(~) = —— Ima(q =0, @ —i&).

2 7r
(3.10)

In Fig. 2 we show plots for Reo'(~) for two values
of e. We note that Reo(+) is relatively insensitive
to & as long as && 1 and that z0 is the characteris-
tic energy at which Reo(~) shows a peak. Thus
the important contribution to the spectral weight
arises from standing waves trapped between nei-
ghboring impurity sites. One might have expected
to find a second class of mode in which a finite
section of length n, ,

' oscillates about the harmonic
potential due to a simple impurity potential. Such
a mode will be expected to be at (2wc)'~'~, . Ex-
amina. tion of our solution shows no particular fea-
ture in that frequency range. These modes are
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IV. WEAK PINNING CASE (e &(1)
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FIG. 2. Imaginary part of the phase correlation func-
tion vs co/coo for the strong pinning case for two differ-
ent pinning parameters q. This is related to the fre-
quency-dependent conductivity Qy Eq. (2.18).

The limit «&1 applied when either the impurity
potential is weak or the impurity concentration
is dense. In this case (t(, (x) is slowly varying and
at the impurity site the total phase QR,. + (t, (R,.) is
distributed almost randomly. Harris" has studied
a similar problem for a magnetic system and has
shown that this distribution is not completely ran-
dom as the system can gain energy by taking ad-
vantage of the fluctuation in impurity distribution.
We shall apply his arguments to the present prob-
1em. lest us Rssunle that f~(x) VRI'les oil scR16
given by a length L0. within this length the total
impurity potential has fluctuations of order L0i"
and by adjusting (j(, this potential energy can be
gained. 1o estimate this gain in potential energy
let us make the simplifying assumption that (f(,(x)
=$ is constant within the length L,. The impurity
potential energy for the length L0 is given by

probably not important because for e&1 the elas-
tic energy is too small to sustain a rigid motion
of a finite section of the CDW.

In the single-site t-matrix approximation Reo'(((I)
has- a gap at z = co0. Physically one expects to find
spectral weight at lower frequency since there
exist probabilities of finding two neighboring sites
that are farther apart than the average spacing
n, '. The proper treatment of such low-frequency
excitation is beyond the scope of the single-site
approximation which we expect to be valid for

To estimate the spectral weight at lower
frequencies we proceed as follows. 1he probabil-
ity of finding two neighboring sites a given distance
I apart is given by n,.e ' i. In the limit e-~ we
simply assume a distribution of independent oscil-
lators with frequencies given by v(II/I). Their
contribution to the spectral weight is approximate-
ly

anima) (q=0 (u) =4IIv' dt e —5 ((I—mvn,
0

(e(L )= V p Re(Q e "e"i") (4.1)

= —V,p, (n,.L,)'t'. (4.2)

The second line in Eq. (4.2) follows from the fol-
lowing argument. I et

eiQ&i
n

where the sum is restricted to impurities within
the length L, and on the average there are n,.L,
terms in the sum. For a«1, n,.L, is much great-
er than one:and Eq. (4.1) can best be viewed as a
random-walk problem in the two-dimensional com-
plex plane. The radial distance in each step is
unity and the angle is equal to QRI which is ran-
dom. It is clear that after n, L, steps Q can be
chosen so that V(L,) takes on its minimum value
given by

p „(L ) = —(e p (;g e'e "& )
a~

2v3v ~+ e (p(pol pp/ (3.11) then

We note that the spectral weight is exponentially
small for small co. The easiest way of combining
this low-frequency behavior with the high-fre-
quency solution obtained earlier is to assume a

. Green's function of the form

= 1 + 2X„(cosQR„„)„
(4.3)

S(q, ((I) = 4IIv '[-(pI'+ v'q' —Il —if(+)] ',
where

(3.12)

f(~)=;e '"'t".[I'(&u =0)]', (3.13)

is chosen to reproduce Eq. (3.11) in the limit (d-0.

Thus we conclude that (~X„~'),„=n and if we make
the reasonable assumption that (~x„~),„=(~X„~'),'t',
Eq. (4.2) follows.

In order to take advantage of the potential ener-
gy in each section of length L0 the phase must
vary smoothly from section to section. The elas-
tic energy required is estimated to be
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K(Lo) = ~ Lp
'dx(IVy (4,4)

where o. is a numerical coefficient. If we further
assume that the phase difference from section to
section is random between -m to m and that the
true solution smoothly interpolates between them,
this numerical factor can easily be determined
to be

E = L.'[R(L.)+ V.„(L.)j.
The result is given by

L =[(nwv, p, /v )'n, j' '.
or the dimensionless combination

(m,.L,)
' = (nrem)'/'.

(4.6)

(4.7)

(4.8)

This confirms the physical picture that for E «1,
P, (x) varies slowly from one impurity site to the
next and that a finite energy per unit length can be
gained by properly distorting P, (x) to take advan-
tage of the impurity potential.

We are now ready to solve Eq. (2.15) to obtain
S(q, co). Once again we formulate the problem in
terms of the self-energy I' as defined by Eq. (3.1).
The novel feature is that the first-order term

r = p~p cos R+ R
i

(4.9)

which is usually assumed to vanish is in fact
nonzero. Due to the sinusoidal nature of the
CDW the restoring force has the same form as
the impurity potential term V(LD) considered
earlier. By dividing the chain into finite segments
of length Lo, I', can be estimated using Eq. (4.2)
as

(4.10)

To this order we obtain a pinning frequency given
by

(4.11)

where we have found it convenient to introduce
the frequency p defined by

~-2/3 L (4.12)

where e is the numerical factor defined in Eq.
(4.4). This frequency can be interpreted as the
excitation of the phase mode with a wavelength
of the order of the domain size L,. In terms
of the frequency scale cop =en,. introduced earlier

y= (n ~)'/'+, (4.13)

(4.5)

The characteristic length (or domain size) L, can
now be determined by minimizing the total energy
per unit length

It is now clear that the previous work of Fukuyama
which performs an expansion in P(x) and has ig-
nored the I', term should be valid for ~ ) y (our
y is up to a numerical factor the same as the .

characteristic frequency obtained in that paper).
This is because high-frequency excitations in-
volve characteristic wavelengths that are short
compared with L,. In such cases an expansion
in P(x) is reasonable and the more subtle consid-
erations here play no role. For z( p the previous
work runs into problems with analyticity. As we
shall show these difficulties are by and large re-
moved by the present treatment.

We also note that Sokoloff" has argued that for
weak impurity potential the CDW is not pinned.
The reason given is that the pinning energy is of
order L '/', where L is the size of the system
whereas the force on the system due to the applied
electric field is linear in L. What is wrong with
this argument is now apparent since we have shown
that the pinning energy is in fact proportional to
L even though it is reduced by (n~L, ) '/' relative
to the strong pinning case. In other words in
Sokoloff's argument, L is limited to L, and is
riot permitted to go to infinity. Of course our
conclusion is limited to the linear conductivity.
Effects that are nonlinear in the electric field
are beyond the scope of the present analysis.

The lowest-order contribution to r yields a
~-function spectrum for Q. Fluctuations about.
this pinning frequency are included by going to
higher orders in the expansion. The second-order
contribution to r is given by

x pe"' & "~'cos[QR, +p, (R, )]

x cos [QR/+ Q, (R/)].

We note that the q =0 term is excluded in the q
sum because its contribution is already included
in I,. It is clear that in the sum over i and j the
iWj terms have random phase and mill cancel.
Keeping only the i=j term we obtain

4mv'r, = -y'(-e' —4n'v'r) '/' (4.15)

If we set I = 0 in Eq. (4.15) we recover the z ' di-
vergence in the self-energy first noted by Lee,
Rice, and Anderson. If we simply insert the first-
order result I'=I', in Eq. (4.15) this singularity
is removed and we have

(4.14)

where A is given by Eq. (3.3). This can also be
written
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Q 3y + y3( R 4» tp) 1/2 (4.17)

It is convenient to mea, sure frequency in units of

z and introduce the following dimensionless quan-
tities,

y =&a/y,

G =41tv'I'/y'.

Then Eq. (4.17) becomes

(4.18)

(4.19)

4m''
u (q, (a) =

1 1 +2+v2q2+ 2+1/3y2+y3( ld2+ 2+1/3y2)1/2

(4.16)

The imaginary part of X),(q, e) shows a gap at
~ =2' 'n'~6y which describes the existence of a
pinned mode. It is interesting to note that for

«y, the first- and second-order self-energy
corrections shown in Eq. (4.16) are in fact the
same order in y [or using Eq. (4.13), the same
order in e]. However, Eq. (4.16) is still unsat-
isfactory as a pole exists in the upper half plane
of S),(q, z). As a result the Kramers-Kronig rel-
ation is not obeyed and the sum rule given in Eq.
(3.9) is off by a factor of 3. The situation can be
remedied by requiring 1 to be self-consistent.
The self-consistency equation is obtained by com-
bining Eqs. (4.11) and (4.15)

0.8

. C}

0.6

3
0.4

0.2

FIG. 3. Imaginary part of the phase correlation func-
tion vs m/y for the weak pinning case. Solid line corres-
ponds to the choice of 2o. =3x 2 / and satisfies the
sum rule. Dashed line corresponds to (y = 3/7t . Note
the linear behavior for small co. The dashed line does
not satisfy the sum rule.

G(y =0) to be real is that

2~1/3+ ( y2 G) 1/2 (4.20) o 3 )& 2 /
3 =- 1.89. (4.21a)

Note that in the scaled variable the self-consis-
tency equation is now independent of e, and this
is the consequence of the observation made earlier
that the first- and second-order terms in I" are
the same order in e. It is in fact possible to sum
the series shown in Fig. 1 to all orders as done

by Fukuyama, " the only modifica, tion being the
nonvanishing of the first order term. It is easy
to show that in the scaled variable the higher-
order terms are higher order in E. We have
chosen for simplicity to treat here the «&1
limit and keep only the second-order term.

The Green's function is given by

(4.21)

where G is obtained from Eq. (4.20} by solving
a cubic equation. The result for Res(&o) is shown
in Fig. 3. While a peak occurs around y =1 or
~ = y as expected this result for c(u&) is still
unsatisfactory. We find that for small &o, Re@(10)

This implies that the Kramers-Kronig
relation is not obeyed because that requires that
Ima'(ll&-0)- &ll in&a which is not the case. The source
of this difficulty can be traced back to the fact that
for y =O, G(y =0) obtained from Eq. (4.20) is com-
plex and hence ImS(q =O, u&-0) is nonzero. It is
easy to show from Eq. (4.20) that the condition for

e, =c((o /y)', (4.22)

where &o' =42ne2/m*. The numerical coefficient
depends on the choice of n and for 2n'~' =1.89,
c= 1.59. The functional form of Eq. (4.22} is in-
dependent of n and has-the satisfactory interpre-
tation of being the contribution to the dielectric
constant due to the pinned mode at a characteris-
tic frequency y given by Eq. (4.13).

With our choice of a given in Eq. (4.5), 2n'/3
=1.345 and this inequality is not obeyed. We note
that this choice of n is based on rather crude es-
timates of the-minimization of the total energy.
We therefore take the point of view that ~ should
be adjusted to obtain a result that has the proper
analytic properties. It is possible to show direct-
ly that if o! is chosen to obey Eq. (4.21) then the
sum rule Eq. (3.9) is satisfied. We also note
that if e is chosen to satisfy the equality in Eq.
(4.21), o(~) -&o2 for small ~; otherwise a, gap
exists in the spectral weight. We feel that a rea-
sonable approximate solution is obtained by choos-
ing 2e'~' = 1.89. The result is shown in Fig. 3.

Finally we remark on the static dielectric con-
stant &, which is directly related to the real part

, of u(0, 0). This has the form
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V. CONCLUSION

In this paper we have studied the effect of im-
purities on the dynamics of the charge-density
wave. We have restricted our attention to phase
fluctuations only and our conclusions should be
valid at low temperatures. We distinguish between
the strong and weak pinning regimes. When the
impurities are either dilute or their coupling to
the charge-density wave strong, it is physically
obvious that pinning will occur. In this limit we
obtain an analytic form for the dynamic response
function. On the other hand, when the impurities
are dense or their coupling weak, the pinning ef-
fect is much more subtle. We find that in this
case the system can be thought to break up into
domains whose size we can estimate. The domain
size also determines the pinning frequency which
is found to go as the one-third power of the im-
purity concentration. The response function and
the frequency-dependent conductivity are also
calculated in this limit.

While we have restricted our attention to one-
dimensional systems in this paper, the general
consideration can also be applied to higher dimen-
sions. In particular, the layered compounds" are
very interesting experime'ntal systems to study.

In the weak pinning case we can apply similar ar-
guments as those made in Sec. IV. Let the elastic
energy be given by —,'IC J d'x (VQ)' and let n denote
the two-dimensional impurity concentration. It
is easy to show that the domain size I, is given by

Furthermore the pinning frequency should again
be given by vI.,'. This result is different from
that of McMillan, "who found a pinning frequency
which goes as n'~'. The difference arises from
the fact that McMillan has factorized the quartic
term in the free energy into quadratic terms which
he then. treates self-consistently. While the
charge-density wave is permitted to adjust to the
impurity potential, both amplitude and phase fluc-
tuations are equally likely in his treatment. We
feel that our tr'eatment is more realistic in the
low- temperature limit.
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