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Quantum size effect and electric field effect in thin Bi films*
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Calculations are presented for the occurrence of quantum size effects in the electric field effect in thin

films of bismuth. The penetration of the applied field is treated in a self-consistent Thomas-Fermi type of
approximation. The local value of the conductivity depends on the applied electrostatic potential and is

calculated in the relaxation time approximation. The state dependence of the relaxation time is taken to vary

inversely as the density of states, similar to earlier calculations for bismuth films. The film conductance

shows abrupt changes with applied field for thicknesses which have the Fermi level close to a step in the

electronic density of states. The temperature dependence of this quantum size eA'ect is also considered.

I. INTRODUCTION

The term quantum size effect (QSE) refers to
the size dependence of the electronic properties
of a sample when a state label has a noticeably dis-
crete spectrum rather than a quasicontinuous one
(as in bulk material). A simple model' of QSE for
a thin film of thickness a (0 ~ x- a) is based on the
energy eigenvalue spectrum

E,„~ = &os'+ h'(k'+ k2)/2m,
9 g

~, = 0'v'/2ma', s = 1,2, 3, . . . ,

with k„k, quasicontinuous wave-number labels as-
sociated with directions in the plane of the film.
In contrast with the bulk band behavior, the energy
band for the film consists of subbands"' labeled
by the discrete index s and a steplike structure in
the density of states (per unit volume) given by

1/2-

X(E)= (m/vn'a)

The square brackets denote the integer part of its
content.

Properties of the film which depend in some way
on this step structure have QSE behavior. In or-
der to have a significant fractional change in the
density of states from one step to the next, those
charge carriers involved must have energy E such
that [v'E/e, ] is fairly small, less than 10 for. ex-
ample. In addition the effect of thermal smearing
must be minimized: kT «e, . The conditions are
best fulfilled by a semimetal such as Bi where the
Fermi level occurs near the bottom of one band
and near the top of another in bulk material. ' Thus
for a 100-nm Bi film, one might estimate that the
Fermi energy has a value such that the discrete
index s in Eq. (1) has a value of about 3 or 4 for
the electron band. The value of e, may be about
1.2 meV, somewhat larger than kT at liquid-helium
temperatures. For thinner films the s value would

tend to small values while e, increases.
Calculations of galvanomagnetic. properties of

semimetal films by Sandomirskii' were based on
spherical constant energy surfaces for electrori
and hole bands in the bulk material. The relaxa, -
tion time was calculated in a Born approximation
for randomly distributed &-function scattering cen-
ters. For a state of energy E, the relaxation time
so calculated' is inversely proportional to PE/e, ]
+ 2. It is this step structure in the energy de-
pendence of the relaxation time that is responsible
for most of the QSE oscillations in the calculated
quantities. The electric field effect was also
treated by Sandomirskii' who considered the semi-
.metal film as one plate of a capacitor. By charging
the film, one could change the position of the
Fermi level relative to the step structure in the
density of states. This calculation of the field ef-
fect was not, however, done in any. sort of self-
consistent way. No account was taken of the
screening of the film interior by the charge car-
riers. '

Asahi, Humoto, and Kawazu4 reported calcula-
tions of QSE for thin Bi films. In their work, the
highly anisotropic constant energy surfaces for.
bulk Bi were described in an ellipsoidal-para-
bolic model. "' The electric field effect was not
considered by them.

The present work deals with a calculation of the
field effect for thin Bi films for which the screen-
ing is described in a self-consistent Thomas-Fer-
mi type of approximation. In addition the relax'a-
tion time is treated in a more general fashion and
the ellipsoidal-parabolic model is assume/ to de-
scribe constant energy surfaces in the bulk ma-
terial. All calculations refer to films with the tri-
gonal axis perpendicular to the film. In Sec. II
which follows, we develop the theory used in our
description. Sec. III reports the results of our
calculations.
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II. DESCRIPTION AND THEORY

In the ellipsoidal-parabolic model of bulk Bi, the
electron band has six half-ellipsoids for the con-
stant. energy surfa'ce centered at each of the
pseudohexagonal faces of the Brillouin-zone bound-
ary. These are related by inversion through the
zone center and by rotations of +120' about the tri-
gonal direction. The effective masses along the
principal axes of one ellipsoid are m „=0.0115,
m„=0.00709, m„=1.71 all expressed in electron
mass units. The principal axis labeled "1"is tilted
with respect to the trigonal axis by about 6'. Con-
stant energy surfaces for the hole band are half-
ellipsoids of revolution about the trigonal axis cen-
tered at each of the two hexagonal faces of the Bril-
louin zone boundary. In what follows, the trigonal
axis will be labeled the x axis while the binary and
bisectrix axes are labeled by y and z, respectively.
The hole band effective masses are taken to be
m„„=0.758, m, „=m,„=0.0676. The band overlap
value is assumed to be 37 meV. Reference 3 may
be consulted for further details.

The quantum-size-limited energy spect;rum for
hole states is then given by

g 4

with e,„=v'k'/2m„„a', a being the film thickness.
Thus, the bulk hole band becomes a set of subbands
in the film, each subband labeled by n. The.den-'

sity of states (per unit volume) for each subband
is a constant with value (m „m,„)'~'/mk'a. The total
density of hole states at energy E then depends on
the number of subbands such that n'e» ~ E. This
number is just n= [v'E/e, „]. Therefore, the den-
sity of hole states is

N„(E) = [(m,„m,„)'~'/mk2a] [4E/~,„].
The electron states have energy eigenvalues

which are also size dependent. However the analy-
sis is somewhat more involved since there are
six equivalent half-ellipsoids (which we shall call
reference ellipsoids) for the bulkmaterial and the
crystal x axis does not coincide with the principal
axis because of the 6'tilt angle. One may transform
from the principal axis system to the crystal axis
system so that for one of the reference ellipsoids,

2 my~ mg~

In this expression, e„=m'k'/2m„, a', k, = k, —q„,
q„having-a fixed value for given n, and m„„m„,
m„are given by

mxe™lecos ~+mac s~n Or

m = m„, m„= m„m„/(m„cos'&+m„sin'&),

where 6) is the tilt angle of a reference ellipsoid
with respect to the trigonal axis. The other two
reference ellipsoids may be described from Eq.
(2) by rotating in the k„,k, plane by +120'. For
any one of the three reference ellipsoids, the den-
sity of electron states is

N,'(E) = [(m„m„)'"/vk'a] [VE/~„].
The total electron density of states is, of course,
three times the above, one for each of the three
reference ellipsoids (or six half-ellipsoids). Thus
N, (E) = 3N,'(E).

The Fermi level I' is determined by the charge
neutra, lity condition,

N (E)(I+ e& &&~&r) ~ dE
"-0

N (E)(I~ e(E - 6 + F)/kT)-1 dE

with ~ the bulk band overlap and energies are
measured relative to the bulk band edges. Because
of the step structure and film thickness depen-
dence of the density of states, the Fermi level also
depends on film thickness. The step structure of
the hole density of states has only a small influence
on properties of the film because of the relatively
large value of m,„.'

We next consider the conductivity tensor com-
ponents in the plane of the film o ~ with o.'and p
referring to the y and z directions. We calculate
the conductivity in the relaxation time approxima-
tion, modified because states are labeled by a dis-
crete index s and two continuous ones k„k,. The
expression for the conductivity is easily determined
for a single reference ellipsoid to be

—e' m m '~' "" afa = ~ ~ Q dE —0 (E —n eo)v„(E).
m@a m m~ 2

n 0

In this expression the principal axes coincide with
the crystal axes, y and e, in some order and 7„(E)
is the relaxation time angle-averaged over the el-
lipse labeled by n.

For the hole band, m =m&=m, =m„and the sin-
gle expression above gives the contribution of the
holes to the conductivity.

It is convenient for the electron band to use
g= 2(a + g„). Then each of the three reference ellip-
soids contribute equally to the orientation-averaged
conductivity due to the electrons. The result for the
conductivity is given by
o'= o'~+ oI„

g„=, Q dE '" {E n'e, „) 7( )E, -e' " "
sfo~

7T@ tZ g q2~" ~oh

(4)



UANTUM SIZE EFFECT AND ELECTRIC FIELD EFFECT IN. . .

The relaxation times have yet to be specified.
We consider two possible choices: (a) 7'„(E)= 7„
a constant, and {b) r„(E) inversely proportional to
the density of such states, r„( E) ~ a(m m, ) '~'/

[v'E/e, ]. Case (a) obviously simplifies the calcula-
tions and in fact leads ultimately to an almost
strictly linear field effect; i.e. , no quantum size
effect. It is the second choice which we believe
to be more reasonable in that it is reminiscent of
Sandomirskii's model, v„ccgm /(n+ —,'), and is in
accord with the expected trend of the dependence
of relaxation time on the density of states. Thus
for a larger density of states, a carrier in a
given state has more states available for scattering
and a correspondingly shorter life time.

The conductivity can now be Calculated from the
above and has thickness and temperature depen-
dence similar to that of Asahi, Humoto, and
Kawazu. '

We have now developed our description to the
point of considering the application of an electric
field perpendicular to the film and the consequent
change in the conductance of the film. The field
is screened by a redistribution of charge in the film.

In order to see the nature of approximations to
follow, we wish to set up carefully the description
appropriate to a small curre'nt in the plane of the
film. There will be an arbitrarily small. potential
drop to which this current is proportional. Initially
we describe this relationship by using the conduc-
tance Z of a length of the film rather than the more
locally conceived quantity o, the conductivity. Af-
ter certain approximations are made, we shall re-
store the use of o to the description; although it is
the conductance which we ultimately calculate.

For simplicity we consider a square film (I.,= I.,
= I ), a geometry for which averages over crystal-
line directions are easy to perform. A formal ex-
pression for the current associated with carriers
moving in the z direction is

I = —2eg (~,& [f(&) -f.(&)], (5)

where the factor of 2 accounts for spin degeneracy,
c( labels a single particle state with group velocity
component (v,) . The distribution function f((k)
differs from the Fermi distribution function f,(n)
due to the weak current-driving field and to the
scattering mechanism which is described in the
relaxation time approximation.

For the otherwise isolated film, the state label
& coincides with (n, k„k,) and the conductar(ce for

a current parallel to the z direction (collinear with
the potential gradient) is given by

This result is consistent with the earlier one for
the conductivity.

Suppose now that we consider a film on which is
imposed a static charging field perpendicular to
the film. The formal expression for the current
in the plane of the film, Eq. (5), is unchanged in
form. The states, however, are modified by this
field in such a way as to screen the interior of the
film. Thus the state labe1. ~ no longer coincides.
with (n, k„k,) a,nd the problem must be ha. ndled
with some kind of self-consistent approach.

The Thomas-Fermi type of approximation has
been used over the years to discuss screening in
metals and semiconductors with at least semi-
quantitative success. ' One may question the vali-
dity of the Thomas-Fermi approximation applied
to a system which is quantum-size limited. We be-
lieve, however, that it is useful in that it is easily
applied to the problem, it is a self-consistent ap-
proach, and it importantly provides a simple con-
ceptual picture of the screening response.

The Thomas-Fermi approximation is a local one,
the effect of the electrostatic potential being de-
scribed in a band-bending sense. Other quantities,
such as the conductivity, are changed according to
the local distortion of the energy levels. In using
this approximation, we shall return to the use of
the local conductivity. It is the conductance which
is eventually calculated so that in some sense an
average is performed over the local aspects of the
approximation.

Corresponding to the relatively weak charging
field P which is applied perpendicular to the film,
there is an electrostatic potential which locally
modifies the energy of a state E„» to be

Z

with V(x) the self-consistent potential arising from
the applied field. V(x) is determined by solving
Poisson's equation

d'V hp(x)

with &p(x) the excess charge density induced by the
field. This charge density is expressed in terms
of the density of electron and hole states as

(3(m,.m,.)'~'
mh'a

(m,km, k)
' ~'

(i + e (E - E) /kT)-1

Oe

(( et l/ ) (7)
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Thus Poisson's equation becomes a nonlinear equa-
tion which can be solved numerioally for V(x) cor-
responding to an applied electric field of strength
P at x=O.

The conductivity can be evaluated locally at each
point in the film, the expressions in Eqs. (4) being
modified by the now determined potential. They
become

82 C)O s,„f dE " [E —xV(x) —x'x„„]xx[E—x'V(x)],
n " mph +e&(x)

38 Pl~+ 'foal g

2mb'a (m m )'~'~ „2
n

"" 'oe-e&(x)
dE &E' [E+eV(x) —n'e„] 7.„,[E+eV(x)].

The conductance of the film is given by (L,= L,
for simplicity)

-a
Z(P) = [o,(x)+c„(x)]dx

DP
(9),

(a. u, )

The numerically evaluated integral in the above ex-
pression gives the. film conductance for applied
field P. ln a succession of calculations then, the
field effect can be investigated for quantum size
effects.

The presence of a quantum size effect may be
qualitatively understood as follows: For a ju-
diciously chosen film thickness and T = 0, the Fer-
mi level occurs very close to a step in the elec-
tronic density of states. (The effect of the hole
band is negligible. ) Now an external field is ap-
plied and close to the exposed surface, the step
in the density of states moves in energy below the
Fermi level. The relaxation time

E xV(x))"
&oe

is reduced significantly and the conductivity in
this region of the film is lowered. Further in-
creasing the applied field causes the size of this
region of the film to increase, further lowering
the film conductance. One should then expect an
abrupt decrease in the conductance with the usual
linear field effect superimposed. This picture is
confirmed by our calculations which we next pre-
sent.

III. RESULTS AND DISCUSSION

Our numerical results follow from the solution
of Eqs. (6)-(9) and the determination of the Fermi
level from the charge neutrality condition for the
overlapping bands. At temperatures of 4.2 K and
higher, considerably more time is required for the
numerical w'ork. Most calculations then refer to
T=O K.

The quantum size effect on the electric field ef-
fect should only be discernible for film thickness

~~j (X IO )

Q (nm)

50 100

FIG. 1. Film conductance in arbitrary units is shown
as a function of film thickness at T= 0 K. Discontinu-
ities occur at thickness values for which the Fermi
level coincides with. a step in the electron density of
states.

FIQ. 2. Fractional change in film conductance with
applied electric field is shown. Calculations at T =0 K
and at T = 4.2 K give virtually identical results. The
film thickness a = 60 nm is such that the Fermi level is.
far from a step in the densitv of ~&» "
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FIG. 3. Fractional change in film conductance is
shown for two types of assumptions for the relaxation
time. The broken line has q- a constant; the solid line
is for & inversely proportional to the density of states.
The calculation is for a 66-nm film at T= 0 K.

such that the Fermi level is close to a step in the
electronic density of states. One may locate these
regions from a knowledge of the thickness depen-
dence of the conductance at T= 0 K with no exter-
nally applied transverse field. That dependence
Z, vs a is shown in Fig. 1. These results were ob-
tained with the relaxation time being inversely pro-
portional to the density of states. At those values
of film thickness for which the conductance is dis-
continuous, the Fermi level coincides with a step
in the electronic density of states. These values
are at about 44, 67, arid 90 nm for the range of our
calculations. No significance should be attached
to their precise values since they depend on ef-
fective mass and band overlap parameters.

For a film w'hose thickness is not close to a step
value, one expects a linear field effect. Such a
case is shown in Fig. 2 for a 60-nm film. The
fractional change in conductance b,Z/Z, is linear
in the applied field. The calculations give the same
result at T= 0 K and at T= 4.2 K.

The quantum size effect is present in the calcula-
tions for a='66 nm illustrated in Fig. 3. In one set,
for the broken line, the constant relaxation time
assumption was used; the field effect is almost
linear. The on1y indication of a quantum size ef-
fect is a slight upturning of the curve. The solid

, curve shows the second set of calculations for the
inverse density-of-states-dependent relaxation
time. There is an abrupt departure from linearity
in accord with the qualitative discussion given
above. All calculations subsequently discussed
were done in the inverse density-of- states approxi-

FIQ. 4. Fractional change in conductance with electric
field for a 67-nm film at T =4.2 K.

mation for the relaxation time dependence.
We note that the zero-field slope Z, 'dZ/dP 'at

I' = 0 is positive for this value of film thickness, a = 66
nm. The value of the zero-field slope can change
with a small change in temperature or thickness.
Thus in Fig. 4, for a film thickness of 67 nm at
T=4.2 K, the zero-field slope is negative. The
slope is negative at T=O K with a further increase
of a to a value between 67 and 68 nm.

77 K

5 «a

FIQ. 5. Fra'ctional change in conductance for a 68-
nm film is shown for three temperatures, T = O.j., 4.2,
77 K. The quantum size effect has disappeared at the
highest temperature.
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FIG. 6. values of the
zero-field slope, I'
= Zo (dZ jdI) at I =0,
are shown vs the film
thickness at T = 0 K.
Quantum size effects occur
in the vicinity of discontin-
uities.

The temperature dependence of the field effect
is dramatic at a film thickness of 68 nm as shown
in Fig. 5 for values of T equal to 0.1 K, 4.2 K, and
VV K. The zero-field slope is positive at T=0.1 K,
negative at T= 4.2 K, and positive again at T=77 K.
In addition, the structure or quantum size effect
has disappeared at VV K.

We see then that quantum size effects in the elec-
tric field occur over a very narrow range of thick-
ness and at low temperatures. As described above,
the field effect alternates its behavior over a 2-nm
thickness variation from 66 to 68 nm. With tem-
perature, it has washed out at T = VV K. Its ex-

perimental observation would require the use of
films of exceedingly uniform thickness. Efforts to
observe experimentally in this laboratory' size
effects of the above type have not been successful
to date.

We summarize in Fig. 6 the field effect over a
wide range of film thicknesses by giving the value
of the zero-field slope, I"= Z, '(dZ/dP)i at P= 0,
all for T=O K. Quantum size effects occur in the
regions where the slope has discontinuities. One
should expect these discontinuities to moderate at
higher temperatures, for films of nonuniform
thickness, or both.
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